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The concept of fitness is central to evolution, but it quantifies only the expected number
of offspring an individual will produce. The actual number of offspring is also subject
to demographic stochasticity—that is, randomness associated with birth and death
processes. In nature, individuals who are more fecund tend to have greater variance
in their offspring number. Here, we develop a model for the evolution of two types
competing in a population of nonconstant size. The fitness of each type is determined
by pairwise interactions in a prisoner’s dilemma game, and the variance in offspring
number depends upon its mean. Although defectors are preferred by natural selection
in classical population models, since they always have greater fitness than cooperators,
we show that sufficiently large offspring variance can reverse the direction of evolution
and favor cooperation. Large offspring variance produces qualitatively new dynamics
for other types of social interactions, as well, which cannot arise in populations with a
fixed size or with a Poisson offspring distribution.

cooperation | evolutionary game theory | demographic stochasticity | over-dispersion

The past decades have seen a proliferation of research using evolutionary theory to study
social traits, in the fields of biology, animal behavior, and even social science (1–7). Most
of this theoretical development has been based on mathematical models that assume
either infinite populations (5, 6, 8–10) or finite populations of constant size (2–4).
Despite these simplifying assumptions, mathematical models provide rich insights into
how exogenous and intrinsic factors drive the evolutionary dynamics of social behavior.
The literature contains a rich set of explanations for cooperation based on repeated
interactions, the establishment of reputations, and various forms of population structure
(3, 4, 7, 11–21). Several of these theoretical insights have been validated by controlled
experiments on human subjects (22–29). This field of research has been so successful
that the question of how cooperation can be favored by natural selection, famously posed
by Darwin, is now not only resolved, but resolved in distinct ways applicable in different
contexts.

But most mechanisms known to support cooperation boil down to some form of
population structure, either physical or social, so that cooperative interactions occur more
often than by random chance (30). Here, by contrast, we reveal a qualitatively different
and pervasive mechanism that can promote cooperation by natural selection or social
contagion—even in populations lacking any form of exogenous or endogenous structure.
We focus on demographic stochasticity—namely, fluctuations in the abundances of types
that arise from randomness in birth and death processes. We show that this realistic feature
of natural populations can by itself promote social behaviors that would otherwise be
suppressed in idealized populations of constant (or infinite) size.

There is precedent for the idea that demographic stochasticity alters evolutionary
dynamics. Foundational work by Gillespie established that the variance in the number
of offspring, not just the mean, influences the evolution of competing types (31, 32).
More generally, demographic stochasticity alters the dynamics of competing types under
frequency-independent selection (33–43) and also frequency-dependent selection (44–
48) in populations of nonconstant size. For example, when a population of nonconstant
size contains two types with the same expected number of offspring but different variances,
one type is favored when the population size is small, and the other type is favored when
the population size is near its carrying capacity (33–35). A few studies have shown that
demographic stochasticity can even reverse the direction of natural selection, promoting
a type that would otherwise be disfavored without demographic stochasticity (44–46).

Prior work on selection with demographic stochasticity has either assumed constant
fitness (33–35, 42), in which one’s fitness is independent of the composition of the
population, or assumed different carrying capacities for different phenotypes, e.g.,
producers enjoy a larger carrying capacity than nonproducers (44–46). In addition, prior
studies of reproductive variance typically assume that offspring numbers follow a Poisson
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distribution (33–35, 44–47), so that the mean and variance in
offspring number are identical. However, a Poisson-distributed
offspring number is a special case, and empirical field studies have
found that over-dispersion in offspring number (i.e., variance
greater than mean) is commonplace across diverse taxa (49–52)
and also for human social contagion (53–55). We will show
that demographic stochasticity with over-dispersion produces
qualitatively different outcomes than stochasticity with Poisson
offspring numbers.

In this paper, we develop a general framework to study
evolutionary dynamics with demographic stochasticity, which
can capture both frequency-dependent fitness, arising from
social interactions, as well as over-dispersion in the number of
offspring, or imitators. We provide a simple analytical condition
that governs the long-term outcome of competition between
multiple types. Applied to pairwise social interactions involving
cooperation or defection, we find that demographic stochasticity
can favor cooperators provided the offspring variance is suffi-
ciently large, even without any other mechanisms. For more
general pairwise payoff structures, we show that demographic
stochasticity can reverse the stability of equilibria, from coex-
istence to bistability and vice versa or from dominance of one
type to dominance of another type. Our analysis highlights the
profound effects of demographic stochasticity on the evolution
of interacting types in a population.

Model

We first consider an evolving population of two types: coopera-
tors (C) and defectors (D). Each individual interacts pairwise
with each other, in which the cooperator pays a cost c to
bring his opponent a benefit b (b > c), and the defector
pays no cost and provides no benefit. In other words, pairwise
interactions follow a simple “donation game”, which provides a
minimal model for studying the evolution of cooperation (56).
Following all pairwise interactions, each individual obtains an
average payoff that will determine their reproductive output (or,
equivalently, the number of individuals who copy their type
by social contagion). In a population with x cooperators and
y defectors, the cooperator’s payoff (denoted by πC ) and the
defector’s payoff (denoted by πD) are

πC =
x

x + y
b− c, [1a]

πD =
x

x + y
b. [1b]

In a classic Moran model, which is the most common description
of haploid population dynamics, each birth event is followed
by a death event, and so the population size remains constant.
Here, we remove this constraint by decoupling the birth and
death events. Births are assumed to follow a continuous-time
Markov process with independent and stationary increments
(SI Appendix, section 1), such that the expected number of
offspring individual i produces per unit time is

E(ξi) = B + sπi, [2]

where B is a baseline number of offspring, πi is the payoff for i′s,
and the parameter s > 0 is the intensity of selection. Note that the
baseline birth rate is the same for all individuals, regardless of type,
and it does not depend upon payoffs from social interactions. The
selection intensity s measures to what degree the payoff derived
from social interactions affects the offspring number. Since the

defector’s payoff πD is larger than the cooperator’s payoff πC
in any population state, defectors always have a greater expected
fecundity.

To fully describe the birth process, we also specify the variance
in the number of offspring. We are particularly interested in cases
of over-dispersion, which can be modeled in many alternative
ways (50, 51), such as a quasi-Poisson model (variance pro-
portional to mean), mixed-effects Poisson model, and negative
binomial model (variance a quadratic function of mean). Here,
we study a general class of Markov birth models by stipulating

Var(ξi) = δ1B + δ2sπi, [3]

where parameters δ1 and δ2 measure the magnitude of offspring
variance Var(ξi) relative to the mean E(ξi). The parameter δ1
controls how offspring variance depends on the baseline birth
rate; and δ2 controls how offspring variance depends on payoffs
from social interactions. Specific choices of δ1 and δ2 produce
various well-known classical models, such as a deterministic
system with logistic total population size (δ1 = δ2 = 0) or a
Poisson offspring distribution (δ1 = δ2 = 1). In the regime of
weak selection, the number of offspring produced per unit time
is overdispersed whenever δ1 > 1.

Deaths are modeled as a Poisson process, arising from two
rates that are summed. First, an individual dies at constant
baseline rate, D. Second, to model competition for limited
resources, additional deaths occur at rate λ times the current total
population size. Thus, for cooperators, the number of individuals
who die within a unit of time follows a Poisson distribution
with mean and variance equal to Dx + λx(x + y); and likewise
for defectors with mean and variance Dy + λy(x + y). This
formulation of a density-dependent death process constrains the
total population size to remain finite (Fig. 1).

For simplicity, we define α = B − D which describes the net
population growth rate from baseline birth and death events. To
avoid rapid extinction of the population, we consider the regime
α > 0. For most of our analysis, we focus on the scenario where
the selection is weak relative to the population growth rate (i.e.,
s � α). When α ∼ O(1), this condition is equivalent to the
classic assumption of weak selection s � 1 (2, 4, 7, 13).

Results

Evolution of Cooperation with Demographic Stochasticity.
Given the class of models described above for the payoff-
dependent birth process and the population size–dependent
death process, the evolutionary dynamics of x and y can be
approximated by a two-dimensional Itô stochastic differential
equation (SI Appendix, section 1):

dx = x [α + sπC − λ(x + y)] dt

+
√
x [δ1B + δ2sπC + D + λ(x + y)]dW (1)

t , [4a]

dy = y [α + sπD − λ(x + y)] dt

+
√
y [δ1B + δ2sπD + D + λ(x + y)]dW (2)

t , [4b]

where W (1)
t and W (2)

t are independent standard Wiener pro-
cesses. Although the birth process can be overdispersed in our
model (when δ1 > 1), deaths follow a simple Poisson process
with variance equal to mean.

To study how the relative abundance of cooperators and the
total population size evolve over time, we make the coordinate
transformation (p, n) = (x/(x+y), x+y). Applying Itô’s lemma
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Fig. 1. Evolutionary dynamics with demographic stochasticity. (A) Competition between cooperators (blue circle) and defectors (red circle) in a stochastic
population of nonconstant size. Each individual i derives payoff �i from pairwise game-play with each other individual in the population. The number of offspring
produced by an individual within time1t has mean (B+ s�i)1t and variance (�1B+�2s�i)1t, both of which are higher for defectors than for cooperators. When
selection is weak (s � �), the population quickly reaches carrying capacity (during time period I) while the frequency of cooperators and defectors remains
unchanged from its initial value (p0 = 1/2 shown here). Thereafter (time period II), the population remains near carrying capacity (M ≈ 1,000 shown here), while
the frequencies of cooperators and defectors slowly vary until either cooperators go extinct (example in panel B) or defectors go extinct (panel C). Parameters:
b = 3, c = 1, s = 0.01, �1 = �2 = 1, x0 = y0 = 10, � = 1× 10−3, B = 2, D = 1.

to Eq. 4, neglecting diffusion terms of order O(s), and assuming
δ1B � δ2s (SI Appendix, section 2A), the dynamics can then be
described by the equations

dp = scp(1− p)
(
−1 +

δ2
n

)
dt +

y
n2

√
x(δ1B + D + λn)dW (1)

t

−
x
n2

√
y(δ1B + D + λn)dW (2)

t , [5a]

dn = [nα + s(b− c)pn− λn2]dt +
√
x(δ1B + D + λn)dW (1)

t

+
√
y(δ1B + D + λn)dW (2)

t . [5b]

In the simple case when there is zero variance in the birth
and death numbers (i.e., δ1 = δ2 = 0 for births and zero
variance for deaths), the diffusion terms in the SDE above vanish,
and the system reduces to an ordinary differential equation
(SI Appendix, Eq. 13). This deterministic ODE provides a
reference point for comparison to any stochastic system. In
the deterministic system (i.e., when there is no variance in the
number of births and deaths per unit time), dp is always negative
and the abundance of cooperators continuously decreases until
cooperators reach extinction. Thus, cooperation is never favored
by natural selection in this deterministic limit.

In general, changes in the total population size depend on both
the frequency of cooperators and the current population size. But
for sufficiently weak selection intensity (s � α), changes in the
total population size n are much more rapid than changes in
the cooperator frequency, p. And so, we can approximate the
dynamics under weak selection by a separation of timescales,
assuming that the cooperator frequency p does not change its
value until the total population size n has grown logistically to
its equilibrium value (α + s(b− c)p)/λ, which we denote by M
(SI Appendix, section 2A for discussion of this approximation).

M is called carrying capacity, and it describes the maximum
number of individuals that the environment can sustain. When
the net growth rate is much larger than selection intensity, α � s,
the carrying capacity is well-approximated by M ≈ α/λ.

For a stochastic system (δ1 6= 0 and δ2 6= 0), the trajectories
of p and n are not determined by the initial conditions alone
but also depend upon chance events in the birth process. We
quantify the evolutionary advantage of cooperators by studying
the probability of fixation—namely, the chance of eventual
absorption into the full-cooperation state (p = 1). Starting from
x0 cooperators and y0 defectors initially (thus p0 = x0/(x0 + y0)
and n0 = x0 + y0), the fixation probability, denoted by ρ(x0, y0)
or ρ(p0, n0), is the probability that at some time t defectors
become extinct while cooperators still exist, that is y(t) = 0 but
x(t) > 0 (57). In the regime s � α, the fixation probability
can be approximated by separating the timescale of changes
in p versus changes in n (58). This analysis is tantamount to
assuming that the total population size n rapidly reaches its
carrying capacity, while p remains unchanged from p0 and that
subsequently p evolves in one dimension while the population
size remains near the slow manifold n = M (Fig. 1 and
SI Appendix, Fig. S2). Under this analysis, we can derive a
simple expression for the fixation probability (SI Appendix,
section 2A)

ρ(p0, n0) ≈ p0 +
sc

(δ1 + 1)B
(δ2 −M) p0(1− p0). [6]

We performed numerical simulations, drawing sample paths
from the full SDE system given by Eq. 4, to verify the accuracy of
this analytic approximation for the fixation probability (Fig. 2).

Note that fixation probability does not depend on the initial
population size, but rather on the initial frequency of cooperators.
In the absence of selection (s = 0), the fixation probability equals
the initial frequency of cooperators, p0. And so, we say that
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A B

Fig. 2. Demographic stochasticity can favor the evolution of cooperation. Colors represent the fixation probability of cooperation relative to neutral drift,
� − p0, as a function of parameters �2 and �1. We say that selection favors cooperation when cooperators are more likely to fix than under neutrality (blue
regions). Panel (A) shows exact solutions sampled from the stochastic differential equation (Eq. 4), whereas panel (B) shows the analytical approximation in the
regime of weak selection (Eq. 6). The dashed line indicates the separation between regimes that favor cooperation (blue) or favor defection (red). Parameters:
B = 2, D = 1, s = 0.005, b = 1.1, c = 1, � = 5× 10−3, x0 = y0 = 50.

cooperation is favored by selection if the fixation probability
exceeds p0, which will occur whenever

δ2 > M . [7]

This simple condition tells us when demographic stochasticity
causes selection to favor cooperators, even though selection
disfavors cooperation in a population of constant (or infinite) size.
In particular, demographic stochasticity can favor the fixation of
cooperators when the offspring variance is sufficiently large–that
is, when δ2 exceeds the carrying capacityM . What matters for the
direction of selection, then, is the size of the offspring variance
arising from payoffs in social interactions, relative to its mean.

We can gain some useful intuition for the forces that govern
the fate of cooperators by considering the advection term in
Eq. 5a. The first term in this expression,−scp(1− p), represents
the deterministic contribution to the evolution of cooperator
frequency, which always opposes cooperators. However, the
second term in this equation, δ2scp(1 − p)/n, arises from
demographic stochasticity and it always favors cooperators.
Whether or not cooperation is favored overall depends upon
the balance between these two forces—the deterministic force
suppressing cooperation and demographic stochasticity that
favors cooperation. For δ2 < M , the deterministic disadvantage
is the stronger force and so cooperators are net disfavored (recall
that n rapidly reaches carrying capacity n = M before cooperators
change frequency, because α � s). However, if δ2 > M ,
the stochastic advantage matters more than the deterministic
disadvantage so that cooperators are favored, which constitutes
an evolutionary reversal compared to a classical model without
demographic stochasticity.

Other model parameters, s, c, p0, δ1, and B, do not produce
a reversal in the direction of selection for cooperation, but
they nonetheless influence the fixation probability. For example,
increasing δ1 or increasing the baseline birth rate B moves the
fixation probability toward the neutral value, p0. Moreover, in
the regime where demographic stochasticity favors cooperation,
δ2 > M , the fixation probability is increased yet further when
the selection intensity s is large or when the cost of cooperation c
is large (Eq. 6). Both of these results contravene the classical
intuition that selection and the cost of cooperation should
disfavor cooperators. We have performed simulations to verify

the effects of all these parameters, in comparison to the analytical
approximation (SI Appendix, Fig. S1).

An Explicit Birth–Death Process. Our model of demographic
stochasticity is quite general, stipulating only a few properties
of the Markov birth and death processes for competing types.
We have analyzed this class of models by approximation, using
a stochastic differential equation. We can construct explicit
examples of discrete-state birth and death processes that satisfy
our model stipulations.

Most prior studies of demographic stochasticity are based
on a reproduction process with a single offspring per birth
event, which naturally leads to a Poisson birth process (33–
35, 44, 47, 59). The Poisson process occurs as a special case
within our family of models, when δ1 = δ2 = 1. In this case, our
analysis shows that demographic stochasticity alone cannot favor
cooperation because δ2 < M . We will therefore consider non-
Poisson birth process, in which the offspring produced per unit
time is overdispersed. This is a realistic scenario for many species,
especially pelagic organisms, that have heavy-tailed offspring
distributions (60, 61); as well as for social contagion (53–55).

We define a birth process in discrete states and continuous
time by two factors: the times of birth events and the litter
size (offspring number) in each such birth event. A natural way
to describe this is through a compound Poisson process (62).
Specifically, for individual i with payoff πi, the times of birth
events obey a Poisson process with intensity θi. In each such
birth event, the number of offspring produced (litter size) is also
stochastic. We consider two cases: the litter size itself follows a
Poisson distribution with mean µi, or the litter size follows a
negative binomial distribution with parameters qi and m (qi ∈
[0, 1] and m ∈ N∗). Both of these distributions have been used
to model litter sizes in empirical studies (50, 52, 63).

We consider compound birth Poisson processes whose param-
eters (θi, µi, and qi) depend linearly on the payoff πi. For any
choice of parameters δ1, δ2, and B, a corresponding compound
Poisson process can be constructed (SI Appendix, section 3 and
Fig. S3). We have performed Monte-Carlo simulations of these
explicit population processes (discrete state, continuous time).
We find good agreement (SI Appendix, Fig. S3) between the
fixation probability observed in these individual-based simula-
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tions and the analytic approximation for the fixation probability
that we derived from a stochastic differential equation (Eq. 6).

Intuition for the Effects of Demographic Stochasticity. There is
a simple intuition for how demographic stochasticity can favor
cooperation in our class of models, even though cooperation is
always disfavored in models with constant (or infinite) population
size. The key insight has to do with the rapid growth of the total
population size to carrying capacity, followed by slow dynamics
in the frequency of cooperators near the manifold n = M .
Importantly, during the slow dynamics, there are still small
fluctuations that move the population off the manifold n = M ,
followed by a rapid return back to carrying capacity. These small
fluctuations have the effect of inducing an advective force pushing
the frequency of cooperators p in one direction or another.

To be more precise, we have already noted that the total
population size n equilibrates much more quickly than the
frequency of cooperators p (Eq. 5), in the regime we study α � s.
And so, given an arbitrary initial state p0 and n0, n will quickly
converge to the slow manifold n = M ≈ α/λ, while p does not
change from p0 (SI Appendix, Fig. S2B). After the population size
reaches carrying capacity, trajectories then move along the slow
manifold until one type or the other fixes (p = 0 or p = 1). We
focus on the dynamics on the slow manifold, which simplifies
the analysis to a one-dimensional system (58).

In the coordinate system (x, y), the slow manifold is defined
by x + y = M , and the fast manifolds are lines connecting
the origin to points on the slow manifold (Fig. 3A). Given
any initial condition, the trajectory will rapidly approach the
slow manifold along one of these lines and then subsequently
move within the slow manifold. However, unlike the case of a
strictly constant population size, the system with demographic
stochasticity does not lie precisely on the slow manifold at all
times. Small fluctuations take the system off the slow manifold
briefly, and then the system rapidly returns to the slow manifold.
Critically, the position where the system returns to the slow
manifold, after a fluctuation, is not necessarily the same as where it
started. In fact, there can be a systematic deviation in the position
on the slow manifold that arises from stochastic fluctuations
and rapid returns—which produces an advective force on the
frequency p along the slow manifold (Fig. 3B). It is this systematic
deviation, caused by demographic stochasticity, that introduces
a force favoring cooperation.

To understand these effects of stochasticity, we consider a
population starting at point (x, y) on the slow manifold. In a
short interval 1t, the population will leave the slow manifold
and move to (x + 1x, y + 1y), due to stochasticity in birth
and death processes; and then, it will rapidly return to the slow
manifold at some point (x′, y′). The fluctuation (1x,1y) follows
a two-dimensional Gaussian distribution with variance x(δ1B +
δ2sπC + D + λn)1t in the x-direction and variance y(δ1B +
δ2sπD + D + λn)1t in the y-direction (SI Appendix, section 1).
And so, we can compute the return point x′ = (x+y) x+1x

x+y+1x+1y
and the corresponding expected change in x:

E[x′ − x] ≈
xy

(x + y)2 δ2s(πD − πC )1t. [8]

We conclude that if πC < πD, fluctuations from and rapid
returns to carrying capacity are expected to increase the number
of cooperators and decrease the number of defectors. However,
if πC > πD, the cooperator frequency is expected to decrease.
And when πC = πD, demographic fluctuations will not affect
the direction of evolution (SI Appendix, Fig. S4).

For the donation game we have studied so far, cooperators
always have a lower payoff than defectors regardless of the
population state. And so, the advective force arising from
demographic stochasticity always favors cooperation, regardless
of p. If this force is large enough relative to the deterministic
force favoring defectors, then it can produce a net advantage
for cooperators. For other types of pairwise games, however, the
direction of deterministic selection (πC vsπD) may depend on the
current frequency p in the population, and so, the noise-induced
advection may change sign along the slow manifold, producing
complicated effects on long-term dynamics. We investigate these
effects of demographic noise on evolutionary dynamics for
general two-player games in the next section.

General Evolutionary Games with Demographic Stochasticity.
For an arbitrary two-player/two-action game, the two-
dimensional system can be simplified to a one-dimensional
system by separation of timescales, provided selection is suffi-
ciently weak, s � α. Suppose the game has the following payoff
structure:

C D
C
D

(
a b
c d

)
.

[9]

Players have two strategies, which we still generically call coop-
eration (C) or defection (D). When two cooperators interact,
both of them receive payoff a. When a cooperator interacts with
a defector, the cooperator receives b and the defector c. Mutual
defection brings payoff d to both players. The average payoffs for
a cooperator or defector in a population are, respectively,

πC =
xa + yb
x + y

,

πD =
xc + yd
x + y

.

[10]

We can describe the dynamics by a stochastic differential
equation:

dp = sp(1− p)
(

1−
δ2

n

)
(πC − πD)dt

+
1− p
n

√
x(δ1B + D + λn)dW (1)

t

−
p
n

√
y(δ1B + D + λn)dW (2)

t , [11a]

dn = [nα + s(pπC + (1− p)πD)pn− λn2]dt

+
√
x(δ1B + D + λn)dW (1)

t

+
√
y(δ1B + D + λn)dW (2)

t . [11b]

Since the population size quickly equilibrates to the carrying
capacity M ≈ α/λ, we substitute n = M into Eq. 11a which
yields a one-dimensional equation for the evolution of p along
the slow manifold:

dp = sp(1− p)
[(

1−
δ2

M

)
(b− d + (a− b− c + d)p)

]
dt

+

√
(δ1 + 1)Bp(1− p)

M

(√
1− pdW (1)

t −
√
pdW (2)

t

)
.

[12]
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Fig. 3. How demographic stochasticity can favor cooperation or defection. (A) We consider stochastic population dynamics that feature a separation of
timescales, where the total number of individuals n = x + y changes much faster than the fraction of cooperators p = x/(x + y). Starting from x0 cooperators
and y0 defectors, trajectories rapidly converge to the slow manifold (x + y = M) along the fast manifold x/y = x0/y0. (B) Stochastic fluctuations away from the
slow manifold, followed by rapid return to the slow manifold, can induce an advective force on the frequency of cooperators. Stochastic fluctuations follow a
two-dimensional Gaussian distribution whose variance–covariance structure is illustrated by the ellipse. For example, a fluctuation from point (x, y) to point
(x+1x, y+1y) will rapidly return to the slow manifold at point (x′ , y ′), producing a deviation x′−x in the number of cooperators. The effect of these fluctuations
constitutes an advective force on the frequency p of cooperators (Eq. 8). The direction of the advective force depends on the shape of the ellipse, governed by
the variance of 1x and 1y. These effects of demographic noise are similar to those discussed by ref. 44, but they arise here even when both types have the
same baseline birth rate and the same carrying capacity.

In the case of deterministic births and deaths (δ1 = δ2 = 0 and
neglecting variance in the death process), this equation simplifies
to the classic replicator equation (9, 10).

For general games, there may be interior equilibria of interest,
instead of simply fixation of one strategy or the other. But p = 0
and p = 1 are absorbing states of the SDE system, and so all
trajectories will eventually reach one of these states and then
become invariant. To study the interior dynamics, therefore, in
this section, we introduce rare mutations to avoid fixation on
the boundary (p = 0 and p = 1). We assume that the mutation
occurs only when a phenotype perishes (i.e., when the number
of one phenotype reaches zero, a new mutant of this phenotype
arises). Technically, this is equivalent to imposing a reflecting
boundary condition on the boundary. The resulting evolution
of cooperator frequency p becomes an ergodic Markov process
which has a unique stationary distribution v∗(p), conditioned
on n > 1. The probability density at p will be proportional to
the amount of time trajectories spend near p. We will study the
stationary distribution from two perspectives. One perspective
is to analyze the deterministic behavior on the slow manifold,
which neglects stochasticity altogether in Eq. 12 and studies the
equilibria of the resulting ordinary differential equation. The
other, more nuanced perspective accounts for stochasticity.

When we neglect the stochastic terms, then Eq. 12 becomes
an ODE with the same equilibrium points and stabilities as
the classic replicator equation, provided δ2 < M . However, if
δ2 > M , then the equilibrium points are the same as the classic
replicator equation, but the stabilities are reversed: Equilibrium
points that are classically unstable become stable and conversely.
And so, the value of δ2, which determines the payoff-related
component of offspring variance, can reverse the evolutionary
outcome, even from a deterministic perspective.

More generally, we can classify three different types of two-
player/two-action games. Dominance games (Fig. 4A) arise when
one strategy is always dominant, providing higher payoff than the
other strategy regardless of their frequencies in the population.
Here, without loss of generality, we assume defection dominates
cooperation (a < c and b < d , e.g., a prisoner’s dilemma).

For dominance games, when δ2 < M , then all trajectories will
converge to the full-defector state (p = 0 stable and p = 1
unstable). However, if δ2 > M , then all trajectories will converge
to full-cooperator state (p = 1 stable and p = 0 unstable).
Coexistence games (a < c and b > d , e.g., a snowdrift game)
arise when each strategy yields a higher payoff when the other
strategy is more frequent in the population (Fig. 4B). For
coexistence games, if δ2 < M there is only one stable equilibrium,
p∗ = (d−b)/(a−b−c+d), and so cooperators and defectors will
stably coexist. But when δ2 > M , then p∗ becomes unstable and
p = 0 and p = 1 are each stable—so that all trajectories converge
to either the full-cooperator state or the full-defector state.
Coordination games (a > c and d > b, e.g., a stag-hunt game)
arise when each strategy yields a greater payoff when it is more
frequent than the alternative strategy (Fig. 4C ). For coordination
games, when δ2 < M , there is an unstable internal equilibrium
p∗ and stable boundaries (p = 0 and p = 1). But when δ2 > M ,
p∗ becomes stable while p = 0 and p = 1 become unstable.
In summary, in a population with sufficiently large offspring
variance (δ2 > M ), the outcome of each type of game has the
dynamical properties classically associated with the opposite type
of game in a deterministic setting. In other words, demographic
stochasticity effectively transforms the payoff structure of a game
in the following way(

a b
c d

)
⇒

(
−a −b
−c −d

)
. [13]

We can also characterize general two-player games in terms
of the stationary frequency distribution of the two strategies.
We derive the stationary distribution v∗(p) under reflecting
boundaries in SI Appendix, section 4A. This description accounts
for more details in the stochastic dynamics, and it reveals a
similar, transformative effect of large offspring variance. If δ2
is sufficiently large, namely δ2 > M , then the modes of the
stationary distribution can be moved from one boundary to the
other boundary (dominance games, Fig. 4D), from the interior
to the boundaries (coexistence games, Fig. 4E) or from the
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Fig. 4. General evolutionary game dynamics with demographic stochasticity. We consider three types of representative games, such as prisoner’s dilemma
(A and D), snowdrift game (B and E), and stag-hunt games (C and F ). In the prisoner’s dilemma games, when demographic stochasticity is absent or does not
meet �2 > M, defectors dominate the population (see trajectories sampled in A, Left part). However, the evolutionary direction can be reversed for �2 > M, where
cooperation becomes the dominant strategy (see trajectories sampled in A, Right part). Shown in (D) is the stationary distribution of cooperators, conditioned
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from coexistence of two strategies (B, Left part) to bistability (B, Right part), effectively transforming the snowdrift game to a stag-hunt game. And conversely,
demographic stochasticity can transform the stag-hunt games into a snowdrift game, with respect to equilibria. Parameters: B = 2, D = 1, s = 10−3, �1 = 1
(A, B, D, E), �1 = 2.5 (C , F ), � = 10−4, x0 = y0 = 100.

boundaries to the interior (coordination games, Fig. 4F ). These
results are in agreement with the ODE-based analysis above, and
they show that a sufficiently large offspring variance will reverse
the evolutionary dynamics in an interacting population. These
dramatic effects extend to games with more than two actions,
including the rock-paper-scissors game (SI Appendix, Fig. S5).

We have seen that large offspring variance can reshape the
payoff structure of a game, producing dynamics classically seen
in an entirely different game type. So far, we have focused on
the scaling factor δ2, which governs how offspring variance
grows with payoff, as opposed to δ1, which governs the baseline
offspring variance. The value of δ1 can also profoundly influence
evolutionary outcomes, although this cannot be seen from a deter-
ministic perspective alone because δ1 has no effect on stabilities of
equilibria. Analysis of the stationary frequency distribution shows
that a large baseline variance (δ1B) can transform any game into
a coordination game (SI Appendix, section 4A). An example of
this result is shown in Fig. 4F , where even though δ2 = 25,000
exceeds the carrying capacity, the stationary distribution is not
unimodal around an intermediate frequency. This is because the
effect of δ2 here is offset by the effect of δ1. And so demographic
noise, especially when offspring variance is high, can qualitatively
change the evolutionary outcomes compared to predictions of

traditional analysis by replicator equations for fixed or infinite
population size (64).

Discussion

The question of how cooperation can be maintained is a
longstanding and active area of research, spanning multiple
disciplines. A large literature has produced compelling ex-
planations for cooperation, but these typically rely on some
form of population structure or repeated interactions. Here,
we find that even in a well-mixed population with one-shot
interactions, natural stochasticity in the offspring process can
favor cooperation that would otherwise be suppressed. For other
types of social interactions, as well, demographic stochasticity
can reverse the direction of evolutionary trajectories and produce
behavioral outcomes that contravene classical expectations.

It is intuitively easier to invade a noisy population than
a stable population. And so, natural selection near carrying
capacity prefers types not only with higher fecundity (greater
mean offspring number) but also with lower reproductive noise
(smaller offspring variance) (31, 33, 34). The reversal in the
direction of selection in a stochastic population reflects this basic
trade-off between offspring mean and offspring variance. A larger
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payoff produces higher fecundity but also greater noise in the
reproduction process. Whether it is the mean or the variance
in offspring number that dominates the course of evolution is
determined by their relative importance, which is governed by δ2
in our model. Classical models of populations often neglect the
effects of offspring variance or assume the offspring variance is
small (Poisson offspring distribution); but more realistic models,
we have seen, permit regimes where offspring variance is more
important than fecundity.

Although demographic noise has been studied extensively in
population models, the underlying mechanism for our results
is qualitatively different from those explored in prior studies.
Most research on demographic noise has been restricted to
constant fitness for competing types (31, 33–42), which does not
describe social interactions. However, Constable et al. analyzed
a frequency-dependent fitness model, and they also found that
demographic noise can reverse the direction of selection (44).
Their model is based on the production and consumption
of a public good. One phenotype produces the public good
at a cost that reduces its baseline birth rate, while the other
phenotype does not produce the public good. They analyze the
case when “cooperators” (who produce the public good) have
a larger intrinsic carrying capacity than nonproducers, and the
larger carrying capacity then yields an evolutionary advantage by
making producers more robust against invasion. This mechanism
is thus a stochastic form of r versus K selection (65), and it
occurs when births and deaths follow Poisson processes. By
contrast, in our model, the evolutionary advantage of cooperators
arises even though both types have the same baseline birth
rate and the same carrying capacity; and it arises only when
the birth process related to payoff is sufficiently overdispersed.
This mechanism is thus fundamentally different from a trade-off
between baseline birth rate and carrying capacity (44–46), and it
is more closely related to phenomena in populations with heavy-
tailed offspring distributions (61, 66–68), even though our model
lacks discontinuous jumps in frequency trajectories that arise in
models with constant population size. We note that selection is
assumed to be weak in our analysis, with respect to mean offspring
number, but that payoffs may still have substantial effects on the
offspring distribution, especially when it is over-dispersed.

Aside from promoting cooperation in the prisoner’s dilemma,
demographic stochasticity also transforms outcomes in other
forms of social interaction. Stochasticity can effectively convert
a snowdrift game into a stage-hunt game, for example, so that
the stable co-existence of types expected in a deterministic or
Poisson setting is transformed into bi-stability, with one type or
the other winning out. Here, again, the underlying mechanism
that reverses the evolutionary outcome is over-dispersion in the
offspring contribution related to payoff, even when both types
have the same baseline birth rate and carrying capacity.

The core insight underlying these results arises from the work
of Gillespie on the evolutionary effects of fitness variance (31, 32).
And yet, the mechanism by which offspring variance influences
evolution, in our analysis, is qualitatively different from models of
exponentially growing (31) or constant (32) population size. Our
analysis incorporates explicit density dependence in the death
rates, which keeps the population size bounded without imposing
an (unrealistic) assumption of constant size. In this explicit
setting, the effects of offspring variance on type frequencies can
be understood as the combined result of stochastic fluctuations
away from carrying capacity followed by rapid return along a fast
manifold (Fig. 3). Moreover, our analysis pertains to frequency-
dependent selection, unlike early studies on variance effects, and
it reveals that stable internal equilibria (balanced polymorphism)
can be converted to the dominance of one type or conversely.

Finally, by constructing explicit discrete models that satisfy the
stipulations of our SDE, we have shown that offspring variance
can reverse the arrow of selection only when the birth process is
overdispersed, whereas such reversals cannot occur for Poisson
clutch sizes. All these results are qualitatively different from early
studies on fitness variance (31, 32).

Our analysis has assumed a fast-growing population (α � s),
which rapidly reaches carrying capacity before any change in
the relative frequencies of competing types. The dynamics of
competition may be more complicated in a stochastic, slow-
growing population, because their analysis cannot be reduced
to a one-dimensional slow manifold. In this regime, fixation of
one type may occur before reaching carrying capacity. We can
nonetheless derive approximations for the fixation probability
in this regime as well (SI Appendix, section 4B), and, in the
case of the donation game, we find that cooperation will be
favored by selection provided δ2 exceeds the initial population
size, δ2 > n0. This condition is typically easier to satisfy
than Eq. 7, and it is confirmed by both numerical simulations
and Monte Carlo simulations of compound Poisson process
(SI Appendix, Figs. S6 and S7). Moreover, in this regime of a
slow-growing population, after either cooperators or defectors fix,
the population will then tend to grow logistically to its carrying
capacity; but in this case, the carrying capacity is larger for
cooperators (SI Appendix, Fig. S8), which provides an additional
evolutionary advantage and by increasing their chance of long-
term persistence (SI Appendix, Fig. S9).

Our results highlight the strong impact of stochasticity on
evolutionary outcomes for competition in populations. The
demographic stochasticity we have studied arises from intrinsic
properties of birth and death processes, which have size of order
O(
√
n). As the population size grows toward infinity this form of

stochasticity has little influence on evolutionary dynamics, which
is consistent with the recent finding that migration in finite,
group-structured populations can favor cooperators provided
the population size is not too large (69). Aside from intrinsic
stochasticity during reproduction, real populations may also be
subject to external noise, arising from exogenous variation in
environmental conditions. Unlike demographic noise, exogenous
noise can be substantial even in populations of arbitrarily
large size. Prior studies on environmental fluctuations, includ-
ing fluctuations in selection intensity (70), carrying capacity
(40, 41), and payoff structure (39), have analyzed their effects
by imposing an external noise term onto an otherwise classical,
deterministic and continuous system of equations. The effects
of exogenous noise on discrete stochastic systems remain less
explored, and they are likely to differ qualitatively from stochastic
perturbations of continuous systems (71). Coupling intrinsic
demographic noise with external environmental noise may
produce even more complicated effects, which remains a topic for
future research.

The impact of stochasticity on competing strategic types likely
extends beyond the two-player games we have focused on, to
include many aspects of nonhuman and human social behavior.
Even if behavioral spread is caused by biased imitation, there is
nonetheless variance in the number of individuals who imitate a
type, as well as physical variation in population sizes of interact-
ing social groups as individuals move between social settings.
Empirical data have documented burstiness, a form of over-
dispersion, in social interactions (72, 73). Likewise, in the context
of behavior during an epidemic, there is evidence of super-
spreading individuals that cause over-dispersion in infectiousness
(55, 74), which may influence frequency-dependent competition
among cocirculating variants. Extending our model and analysis
to these settings remains an open topic for future research.
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Materials and Methods

There are no empirical experiments associated with this study. SI Appendix
provides a formal definition of our mathematical model and the derivation
of its analysis by separation of timescales. The SI Appendix also presents the
analysis of arbitrary two-player/two-action games, and games with more than
two strategies, by deriving the stationary frequency distribution under reflecting
boundaries. Finally, the SI Appendix describes the implementation of Monte
Carlo simulations for associated discrete-state, continuous time processes.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix.
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