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Homeostasis, the ability to maintain a relatively constant internal environment in
the face of perturbations, is a hallmark of biological systems. It is believed that this
constancy is achieved through multiple internal regulation and control processes. Given
observations of a system, or even a detailed model of one, it is both valuable and
extremely challenging to extract the control objectives of the homeostatic mechanisms.
In this work, we develop a robust data-driven method to identify these objectives,
namely to understand: “what does the system care about?”. We propose an algorithm,
Identifying Regulation with Adversarial Surrogates (IRAS), that receives an array of
temporal measurements of the system and outputs a candidate for the control objective,
expressed as a combination of observed variables. IRAS is an iterative algorithm
consisting of two competing players. The first player, realized by an artificial deep
neural network, aims to minimize a measure of invariance we refer to as the coefficient
of regulation. The second player aims to render the task of the first player more difficult
by forcing it to extract information about the temporal structure of the data, which is
absent from similar “surrogate” data. We test the algorithm on four synthetic and one
natural data set, demonstrating excellent empirical results. Interestingly, our approach
can also be used to extract conserved quantities, e.g., energy and momentum, in purely
physical systems, as we demonstrate empirically.

biological control | biological regulation | computational biology | data analysis |
artificial neural networks

Living systems maintain stability against internal and external perturbations, a phe-
nomenon known as homeostasis (1–3). This is a ubiquitous central pillar across all
scales of biological organization, such as molecular circuits, physiological functions, and
population dynamics. Failure of homeostatic control is associated with diseases including
diabetes, autoimmunity, and obesity (3). It is therefore vital to identify the regulated
variables that the system aims to maintain at a stable setpoint.

In contrast to simple human-made systems, where often a small number of known
variables are under control, biological systems are characterized by multiple coupled
feedback loops as well as other dynamic structures (1). In particular, they are not divided
to separate “plant” and “controller” entities, as commonly characterized in control theory,
but rather make up a complex network of interactions. In such a network some variables
are maintained at a stable setpoint, whereas others are more flexibly modulated to
maintain the former regulated variables around their setpoints. A classic example is
blood glucose concentration, which is tightly regulated, while the rates of glycolysis and
gluconeogenesis are flexible variables (3). Thus, in general, one may find a hierarchy
of control, where some variables are more tightly controlled than others (4, 5). This
biological complexity makes it challenging to identify the regulated variables that the
system actively maintains at a setpoint, in contrast to those which are stabilized as a
byproduct.

Experimentally, a regulated variable can be identified by performing perturbations
(6). When the system is perturbed, compensatory mechanisms will adjust other variables
to restore it to its setpoint by using feedback (4). However, designing such experiments
requires prior knowledge about the system, which is not always at hand, and may be
technically challenging or infeasible. Biological systems regulate internal variables, rather
than measured variables, which are generally determined by experimental constraints.
Our assumption, related to the concept of observability (7), is that a combination of the
observed variables will correspond to the relevant internal variable.

In recent years, technological advancements brought about a huge number of available
datasets that were not tailored to find regulated variables, but could offer the opportunity
to point out possible candidates. This raises the question: can we elicit the regulated
variables of a system given a set of measurements with minimal prior assumptions?

In this work, we develop an algorithm, Identifying Regulation with Adversrial
Surrogates (IRAS), that aims to identify the most conserved combination of variables in
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a system. This combination, operationally denoted the control
objective, may represent a quantity that is of high importance
to the system. To this end, a quantitative measure needs to
be defined, which enables comparing the degree of invariance
of different combinations. Standard statistical measures, such
as the variance or coefficient of variation, are not suitable
due to their sensitivity to scale and bias and insensitivity to
temporal aspects. We propose a new measure, the Coefficient
of Regulation (CR), which captures the property of temporal
invariance. Straightforward optimization of this measure does not
provide the required result (for reasons explained below). Rather,
we show that a combined utilization of temporal invariance, and
the geometric distribution of data, can be successful in the task.

IRAS receives as input an array of temporal measurements
and outputs the control objective as a combination (function)
of the observed variables. At its core, it runs iteratively between
two competing players; one player aims to minimize the CR,
i.e., to find the combination which is most invariant in the data
relative to time-shuffled data. The second player gradually pushes
the time-shuffled ensemble to statistically resemble the real data,
thus rendering the optimization problem more difficult for the
first player. Eventually, the control objective is found when these
two players converge.

To demonstrate the generality of our approach, we validate
it on five examples from very different domains. First, we
simulate a kinetic model of protein–protein interactions, in
which the controlled variable combination is known. We show
that IRAS identifies with high accuracy the control objective.
Second, we analyze data from a psychophysical experiment,
where human observers’ response statistics are modulated by
an artificial controller. Our algorithm identifies correctly the
known control circuit. Then, extending beyond the biological
domain, we illustrate the generality of IRAS by considering
two examples of dynamical systems with conserved quantities—
a physical spring system with energy conservation and the
nonlinear Lotka–Volterra predator–prey system with a particular
known conserved quantity. Based on observing noisy trajectories
of these systems, with different parameters, we recover both the
individual parameters of each system and the explicit forms for
the conserved quantities. Finally, we evaluate IRAS on a dataset
of complex physical equations (8) that serves for benchmarking
machine-learning algorithms and identify the correct governing
equations from trajectories without prior information.

A. Problem Illustration. We are interested in identifying empir-
ically, from a set of measurements, a quantity which is most
conserved around a setpoint. This “control objective” could
represent something of high importance to the system and
could thus shed light on the system’s functionality. How can
we elicit a possible control objective of a system given a set
of n measurements over time, Z(t) = (z1(t), . . . , zn(t))? If
the control objective itself is unknown, it is likely not directly
measured. However, it could be possible to describe it as a
combination of the measured variables, that is maintained around
a setpoint,

c(t) = g(Z(t)) ≈ cset. [1]

As a simple illustrative example, consider the case of three
proteins whose abundance is measured across time in a single cell.
Fig. 1A shows these traces along time, as the system presumably
goes through various perturbations. While the amount of the
three proteins, P1(t), P2(t), and P3(t), varies significantly over
time, the ratio P2(t)/P1(t) is maintained around a setpoint cset =2
with small fluctuations (black line). No other instantaneous

relationship between the proteins is present in the data. We thus
expect the combination g(P1, P2, P3) = P2/P1 to be identified as
the control objective of the system.

Our aim in what follows is to develop an algorithm that
receives as input a set of experimental measurements, and outputs
the control objective as a combination of current, and possibly
previous, measurements. After defining a measure of invariance
(Section 1.A), we explain why simply optimizing it is insufficient
(Section 1.B) and construct IRAS, a two-player algorithm, to
minimize it under iterative constraints (Section 1.C). Then,
we validate the algorithm on five examples, where the control
objective depends on current variables in one case (Section
2.A), extended to include also past values in a second case
(Section 2.B) and then also extended to include system-specific
parameter estimation in the third and fourth cases (Section 2.C).
Finally, we validate the algorithm on a dataset of physics-
related examples that serves for benchmarking machine-learning
algorithms (Section 2.D). IRAS is data-driven and is not provided
with a model of the system or with possible candidates for the
control objective based on prior knowledge. Rather, it is based
solely on the raw measurements. To the best of our knowledge,
such an empirical approach has not been developed previously
and could potentially be useful to many experimental systems.

1. Algorithm Development

A. Quantifying Invariance Around a Setpoint. Based on our
assumption that a regulated variable is held relatively constant, we
first seek a measure that quantifies the invariance of a combination
around a stable setpoint. We posit that the controller couples
system variables (such as the levels of the two proteins above)
that would otherwise be less, or even completely, decoupled. As
perturbations are encountered, these variables covary, and their
joint distribution

Z ∼ PZ (z1, . . . , zn), [2]

defines the geometry of the manifold which the data occupy.
By arbitrarily permuting each component zi independently
over time, we can create a surrogate dataset Z∗ in which the
correlations in the data have been eliminated—in particular,
those induced by the control. The distribution of this surrogate
dataset reflects only the single-variable properties:

Z∗ ∼ PZ∗(·) = 5iPzi(zi). [3]

Importantly, a combination c(t)=g (Z(t)) that is invariant due
to the operation of the controller, would become noninvariant
in the surrogate data,

c∗(t) = g(Z∗(t)) 6= c(t). [4]

To quantify the sensitivity of a combination to independent
shuffling, we consider the ratio

σ (c)
σ (c∗)

=
σ (g(Z))
σ (g(Z∗))

,

where σ is the standard deviation (SD) computed over time. We
expect that for a regulated combination, destroying all temporal
order will increase its SD considerably and decrease this ratio.
Note that when the components of Z are independent, i.e., there
is no relation between them, the ratio is identically 1 for any
combination g.
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Fig. 1. Coefficient of Regulation (CR) as a measure of combination invariance. (A) A synthetic example of ratio control in a biological system. The amounts of
three proteins, P1, P2, and P3, fluctuate over time and are modulated by discontinuous perturbations (t=25,50,75). In the face of these perturbations, the ratio
P2(t)/P1(t) is held around a setpoint cset =2 with small fluctuations (noise with SD 0.15). (B) To calculate CR, temporal correlations between the measurements
are destroyed by shuffling the time points of each measurement independently. (C) While the distribution of P2(t)/P1(t) in real data is narrow (black), the
distribution of the ratio between shuffled measurements is much wider (red dashed), resulting in a small CR. (D) Since there is no correlation between P2 and
P3, the distributions of their ratio in real and in shuffled data are of the same width, and CR = 1.

Fig. 1B illustrates this definition: Starting from measurements
Z , we create the independently shuffled ensemble Z∗ where
correlations between variables are destroyed. Referring to the
protein example in Fig. 1A, the combination g(P1, P2, P3) =
P2/P1 is maintained around the setpoint, resulting in a narrow
distribution over time and a small SD (Fig. 1C , black).
Eliminating the temporal correlation between P1 and P2 by
shuffling their time points results in a much wider distribution
and a higher SD (Fig. 1C , dashed red). Other combinations such
as g(P1, P2, P3) = P2/P3, exhibit distributions of similar widths
over the shuffled and the original data (Fig. 1D). Consequently,
the SD ratio is approximately 1, indicating that this combination
is not regulated by the system.

The SD ratio, that quantifies invariance in temporally ordered
vs. temporally shuffled data, can be generalized to shuffles that
are not completely random but obey some constraint. As shown
below, this generalization will be required for developing our two-
player algorithm. Specifically, given a suggested combination c=
g(·), one may construct a weighting function ζ (·), that defines a
biased shuffled ensemble Z̃ . Then, we define the Coefficient of
Regulation (CR) as follows:

γ =
σ (g(Z))

σ (g(Z̃))

where Z̃ ∼ PZ̃ (Z̃) = PZ∗(Z̃)ζ (g(Z̃)),
[5]

and the special case of completely random shuffles is obtained
for ζ = 1.

To summarize, we defined the Coefficient of Regulation (CR)
as a measure that quantifies the sensitivity of a given combi-
nation to the destruction of temporal correlations between its
constituents. It is based on a surrogate data technique (9), applied

here to multiple variables by shuffling each of them separately
and measuring the effect on their combinations. The shuffles can
be completely random or performed under some constraints. We
next consider the question of how this measure can be used to
identify the control objective without prior assumptions.

B. Straightforward Optimization Fails by Shuffle Artifacts.
Since low values of CR indicate invariance around a setpoint,
one may expect that the combination that minimizes CR with
respect to unconstrained shuffling, ζ (·)≡ 1 in Eq. 5, is a good
candidate for the control objective of the system. If so, we would
seek to find

argming
σ (g(Z))
σ (g(Z∗))

. [6]

A prohibitive pitfall of this approach can come about by
unconstrained shuffling of the data to produce Z∗ in Eq. 6.
In fact, the CR can be brought to its minimal value of zero,
if there is a property that is always satisfied by the data but is
violated by the shuffles (SI Appendix, section SI3.1, (S.9) for a
proof). With such a property, one can construct a combination
which attains a value of zero on the data and nonzero on the
shuffled data, rendering the CR zero. This solution of the simple
optimization problem holds information about the geometric
distribution of data points but does not necessarily identify a
regulated combination.

We illustrate this for the protein example presented above,
where the ratio P2/P1 is maintained around a stable setpoint.
The average CR of this combination over 100 realizations is
not zero but rather 0.17± 0.09 because of random fluctuations.
Conversely, a combination with a zero CR can be constructed
based on the following general property of the data: in the
observed time-series, P2(t)/P1(t) ≈ 2 with small noise such that
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Fig. 2. Failure of straightforward optimization. Optimal combination values
found by the single-player algorithm, a neural network which minimizes the
Coefficient of Regulation with unconstrained shuffling (CR, Eq. 5, �(·) ≡ 1).
This algorithm was fed with time traces of the three proteins, with the ratio
P2/P1 being the conserved combination. The network output is displayed as
an arbitrary-value colormap in the (P1 , P2) plane. Shuffles that fall within the
boundaries of the data (the white lines) have a practically fixed value, while
shuffles outside these boundaries attain values that are correlated with their
distance from the boundaries. The found combination has a CR of almost
zero (0.004 ± 0.003). However, its Pearson correlation with the ground truth
conserved combination is 0.11± 0.08.

the data always satisfies P2 > P1. This constraint is not obeyed
by the shuffled data: some values of P2 are smaller than P1 at other
time points, so that some shuffled traces will haveP∗2 < P∗1 . Thus,
for example, the combination g(P1, P2, P3)= sgn(P2 − P1) is 1
at each time point yielding a SD of zero for the real data, but
different from zero in the shuffled data. Consequently, the CR is
equal to zero. This artifact creates a potential pitfall to a simple
optimization of Eq. 6.

Let us demonstrate this effect by a specific implementation,
where the CR is optimized by an artificial neural network.
Stretches of data similar to those presented in Fig. 1A are fed
into the network, with the target of minimizing the CR. Using
a nonlinear network allows to search for combinations which are
not necessarily linear, such as the desired ratio or the undesired
sign function in this example. The network provided as output
an optimal combination g(P1, P2, P3) that can be computed for
any value of P1, P2, P3 but, due to the nonlinearity, cannot be
easily expressed as a simple analytic formula.

To gain intuition into the combination found by the network,
we compute g(P1, P2, P3) over the shuffled ensemble and plot
its value as a function of P1 and P2. Fig. 2 depicts this value as
a colormap in the (P1, P2) plane. Our prior knowledge of the
true regulated combination in this example allows us to mark its
value (red line, depicting P2/P1 =2) and moreover to delineate the
region where real measurements occur (two white lines). Exami-
nation of this figure reveals that the optimal combination found
by the neural network is practically constant on shuffles that
remain within the limits of the data (flat light green area between
the white lines). Outside these limits, it obtains varying values cor-
related with the distance of the shuffled point from the real data.

This suggests that the optimal combination found by the
neural network identifies the region occupied by the data,
presumably by constructing an indicator function as described
qualitatively above. Indeed, the output combination has a CR

value of nearly zero, but a very low correlation with the true
regulated quantity P2/P1. We refer to this algorithm as the
“single player” since it involves only a single optimization
goal: a “combination player” that aims to find a combination
minimizing the CR. Analyzing its failure allows us to identify
a way to correct it: If we constrain the shuffles to a set that
is plausible in light of the data distribution, we may prevent
the optimization algorithm from constructing artifact functions
that reflect structural differences between the measured and
shuffled ensembles. This is analogous to the scientific process
of searching for appropriate surrogate data when trying to
demonstrate statistically significant effects: too strong a shuffle
may show significance when it is absent (10, 11). In our case, we
automate this process by introducing a second player. The goal
of this “shuffle player” is to constrain the shuffled ensemble such
that it better resembles the data distribution, while still destroying
temporal relations. This will be called IRAS (the “two-player
algorithm”) and will be described next.

C. IRAS Captures the Control Objective. In the previous section,
we reasoned that constraining the shuffled ensemble to be more
similar to the real data may avoid artifacts and lead to meaningful
combinations. Inspired by the concept of two competing players
as implemented in the Generative Adversarial Nets algorithm
(12), we developed a scheme that alternates between optimizing
the CR and constraining the shuffled ensemble.

The first player, termed the combination player, is a neural
network that takes a step toward minimizing the CR. In the first
iteration, CR is computed with respect to the unconstrained
shuffled ensemble (ζ ≡ 1), outputting the first proposed
conserved combination. The shuffle player makes use of this
proposed combination, g(·), to create a new shuffled ensemble
Z̃ , which better resembles the statistical structure of the data.
Formally, this corresponds to the selection of a resampling
function ζ (·) that minimizes the distributional distance

D
(
g(Z), g(Z̃)

)
where Z̃ ∼ PZ̃ (Z̃) = PZ∗(Z̃)ζ (g(Z̃)).

[7]

The constraint in the second line, as well as the inputs to the
shuffle player in Fig. 3, stresses the fact that this player only
has access to g(·) for creating the new ensemble. It turns out
that the shuffle player can solve Eq. 7 exactly and obtain D =
0. To see this, we note that the distribution of g(Z̃) is given

Fig. 3. IRAS Algorithm outline. The time-series data Z is shuffled to create
the unconstrained shuffled time-series Z∗. The “shuffle player,” exposed only
to the 1D combinations g(Z) and g(Z∗), sets the weighting function �(·) used
to resample Z̃ from Z∗, such that the 1D distributions, PZ(g(Z)) and PZ̃(g(Z̃)),
are identical. Then, given Z and Z̃, the “combination player” updates g(·)
toward minimizing its CR. These steps continue to iterate until no further
improvement is possible.
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by PZ̃ (g(Z̃)) = PZ∗(g(Z̃))ζ (g(Z̃)). We obtain PZ̃ (g(Z̃)) =
PZ (g(Z̃)) for the choice

ζ (g(Z̃)) =
PZ (g(Z̃))

PZ∗(g(Z̃))
. [8]

The resampling function ζ (·) takes into account the distribution
of g(·) both in the original data Z and the unconstrained shuffled
ensemble Z∗. A detailed description of the resampling procedure
is given in SI Appendix, section SI3.2.1. At the end of this step, g
has a CR of 1 with respect to the new resampled surrogate data
Z̃ (by definition—these ensembles have the same distribution
of g). The combination player then starts another round of
optimization, searching for a new g based on the CR with respect
to the new shuffled ensemble

argming
σ (g(Z))

σ (g(Z̃))
. [9]

In this way, the two players mutually inform each other of their
current step results, and the process continues iteratively until
the combination player can no longer decrease the CR. We refer
to this as IRAS, the two-player algorithm (Fig. 3).

To demonstrate IRAS in action, we return to the protein
example. Fig. 4A depicts the progression of steps of the two
players at a stage of the iterative optimization. A colormap of the
combination in the (P1, P2) plane, found by the combination
player, is shown on the top left. This combination defines
a probability distribution on the real and shuffled data (Top
Right). The shuffle player constructs a new shuffled ensemble by
resampling (Bottom Right); by construction, in this new shuffled
ensemble, the distribution of g matches that of the data (Bottom
Left). The combination player receives this updated shuffled
ensemble and the next optimization step begins.

Gradually, the resampled shuffled ensemble approximates the
distribution of the real data and a map which approximates
P2(t)/P1(t) emerges as the output combination. At the final step,
Fig. 4B, the combination player cannot further minimize the
CR. We find that indeed IRAS converges and outputs the true
conserved quantity, P2(t)/P1(t), as observed in the Bottom row of
Fig. 4B*.

2. Validation

After presenting the construction of IRAS, we seek to validate it
on datasets with a known control objective or a conserved quan-
tity. We chose three validation examples from different biological
scales: a kinetic model of protein interactions, a measured dataset
from a psychophysical experiment, and a model of interactions in
an ecological system. Additionally, to demonstrate the efficiency
of our algorithm in studying mechanical physical systems, we
model a simple physical spring system where energy is conserved.
Finally, we validate the algorithm on a dataset that serves for
benchmarking machine-learning algorithms. Throughout the
validation examples, we use a single neural network architecture
whose details are listed in SI Appendix, section SI4. Code
implementing IRAS on one of these validation examples is
available at https://github.com/RonTeichner/IRAS.

A. A Kinetic Model of Regulatory Interactions. We first validate
IRAS on simulated data generated from a kinetic model that

*For a detailed view of the iterations, SI Appendix, Fig. S6 and the video at iterations.avi.

describes regulatory interactions between three proteins incor-
porating a feedback loop. In the considered model (inspired by
ref. 4), the total amount of two proteins P and S, namely P + S, is
controlled by another protein M under perturbations in protein
expression parameters. The model (see illustration in Fig. 5A) is
described by the differential equations

Ṁ = K − F (P + S)− γM (t)M

Ṗ = kP(t)M − γP(t)P

Ṡ = kS(t)M − γS(t)S,

[10]

where the three proteins M,P, S are linked in a feedback loop.
Both P and S are positively affected by M , with their steady-
state values proportional to it. The concentration M in turn
is negatively affected by the sum P + S, with the strength
of this negative feedback given by the rate constant F . The
degradation rates γM , γP , γS and the production rates kP ,kS
are perturbed over time as shown in Fig. 5 B, Top. Fig. 5 B,
BottomRight shows the trajectories of the three proteins across
time. Small changes in S or P induce swift and sharp changes in
the production rate of M and maintain P + S around a stable
level. This is reflected in a high negative correlation between
S and P.

To gain a better insight into the stability of the combination
P + S, we consider the steady state of the system for a fixed
set of parameters. At steady state, the rate of change of all three
proteins is zero, and P + S is given by

Pss + Sss =
K

F +
γMγPγS

kPγS + kSγP

,
[11]

where Pss and Sss are the steady states of P and S, respectively (SI
Appendix, section SI6.1 for the steady states of the three proteins).
If the strength of the negative feedback is large and satisfies

F �
γMγPγS

kPγS + kSγP
, Pss+Sss will approximately remain around

the same setpoint despite the perturbations. This indicates that
g(M,P, S) = S + P is a possible control objective of the system
under these conditions. Indeed, applying IRAS on 30 realizations
of this model, we find that it outputs the control objective S + P
with high accuracy; Fig. 5 B, Bottom Left shows their overlap.
The mean Pearson correlation between them is 0.97 ± 0.005
over the 30 realizations. We present in SI Appendix, section SI6.2
additional examples, including cases where different parameters
lead to different conserved combinations, that are still captured by
the algorithm. In summary, IRAS identifies correctly the control
objective in a dataset generated from a kinetic model of regulatory
interactions.

B. Relational Dynamics in Perception. Human perception is
inherently noisy and the source of this noise is an important
issue in Psychophysics research (13–15). An experimental design
was introduced to address this question, which involves a closed-
loop controller that modulates the input stimulus according to
the human responses, with the goal of decreasing variability
and maintaining the response probability at a pre-determined
setpoint (16), Fig. 6A. It was shown that this feedback loop
indeed quenches the response variability.

The data from these experiments provide a unique opportunity
to apply and validate IRAS, as we have a ground truth component
in the system—the engineered controller that records the human
responses and determines the next stimulus. This controller is
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Fig. 4. IRAS demonstration. (A) A step of the iterative algorithm (Fig. 3) is displayed. Top Left: the value of an intermediate combination g(·) given by the
combination player, is displayed in the (P1 , P2) plane together with the true combination (red line) and the data limits (white lines). TopRight: distriubtions of
this combination over the data (PZ (g(Z)), blue) and unconstrained shuffles (PZ∗ (g(Z∗)), dashed green). BottomRight: The shuffle player examines these 1D
distributions and resamples Z∗ via the weighting function �(·) to construct the constrained shuffles Z̃, over which the 1D distribution of g matches the data. The
resampling probability is displayed in the (P1 , P2) plane. BottomLeft: Combination player receives this resampled shuffled ensemble, another optimization step
begins and the combination player updates g(·). (B) Combination values (Top Left) and resample probability (Top Right) at the final iteration. The combination
player has captured the control objective (the map approximates P2/P1), and the shuffle player has captured the data distribution (delineated by white lines).
Bottom: values of the combination along a stretch of time together with the ground-truth combination.

coupled to a noisy biological system, the human observer. For
validating our algorithm, we feed it with the complete raw data,
including both input stimuli and responses. If working correctly,
IRAS should identify the synthetic controller as the most
regulated combination and allow us to derive a mathematical
description for the way it sets the stimulus. We emphasize that

the algorithm does not have access to any internal variables of the
synthetic controller.

The task in the experiment of ref. 16 consisted of sensory
detection of a weak visual stimulus. In sequential trials, users
were presented with a random raster of black and white pixels.
A smaller foreground raster drawn from a different distribution
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A B

Fig. 5. IRAS captures the control objective in a kinetic model. (A) An illustration of the closed loop system. Protein M induces the production of both S and P
and receives a negative feedback of their sum. (B) Top: perturbations cause step-like variation in kS over time. The duration of each step is 0.01 which is much
longer than the timescale of the feedback loop � = 1/F = 0.0005 (F = 2,000). This enables the controller to track the changes in S + P. Each step was sampled
from a normal distribution with a mean 150 and a SD 30. The rest of the parameters were sampled similarly: P , S = 70 ± 15, M = 80 ± 15, kP = 150 ± 30.
BottomRight: The trajectories of the three proteins and the combination S + P over time. The BottomLeft: a zoom-in of the combination P + S (black) within the
purple box in the Right panel along with the output of the algorithm (dashed red).

was embedded in the background raster area. A single session
was composed of multiple trials, where the foreground raster was
displayed at a random location on the screen; in some of the
trials, only the background was displayed. In each trial, users had
to respond if they detected the foreground raster and withhold
response if not. The synthetic feedback controller set the contrast
of the foreground raster as a function of the previously received
responses, increasing it when response probability was low and
vice versa, with the objective of maintaining a fixed probability
of response. The response time was also recorded in each trial,
but the controller did not make any use of this information.

The experiment was performed on eight human subjects
yielding a dataset that consists of three-dimensional, discrete
time-series, including the stimuli, responses, and reaction times,
over 450 trials for each subject. Fig. 6B depicts a portion of the
three components of raw data as a function of trial number t.
The three observables are the raster contrast levels (st ∈R, blue);
corresponding binary responses (rt ∈{0, 1}, orange); and reaction
times (τt ∈R, green). Our validation here will consist of feeding
this data to IRAS to find the most regulated combination.

Recall that in Section 1, IRAS was presented for the case
where the most regulated combination of measurements is sought
among instantaneous functions c(t)=g(z(t)). The shuffle player
created an ensemble where all correlations among observables
measured at the same time point were eliminated. Here, we
would like to derive the most regulated combination between
measurements at consecutive time points. We expect that this
will allow for the identification of the synthetic controller that
sets the stimulus st as a function of past values. To this end,
the shuffled data provide a random present for a given past,
while preserving correlations within the same time point—and
thus preventing the algorithm from detecting a combination that
does not relate past and present observations. Over T + 1

consecutive observations (T > 0), we now seek the most
regulated combination constructed as

c(T )
t = gT (zt−T :t)

zt−T :t =

[ st−T st−T+1 . . . st
rt−T rt−T+1 . . . rt
τt−T τt−T+1 . . . τt

]
.

[12]

While the shuffle player creates surrogate data of the form

z∗t−T :t =

 st−T st−T+1 . . . sjt
rt−T rt−T+1 . . . rjt
τt−T τt−T+1 . . . τjt

 , [13]

where sjt , rjt , and τjt are the observations obtained at some
random time jt . We refer the reader to the SI Appendix, section
SI3 for the complete technical details of implementing IRAS over
varying time-windows of size T .

We ran the algorithm on the experimental dataset with this
definition of shuffles, for different values ofT . In each evaluation,
the yielded combination gT (·) is the output of an artificial neural
network; therefore, it is effectively a black-box. In this case, we
could approximate the network by a multivariate polynomial and
obtain an interpretable expression while remaining close to the
actual network output (Pearson correlation of 0.88± 3e−5 over
the 8 human subjects). ForT = 3, the resulting approximation is

g3(zt−3:t) ≈ σ−1
s (st − 1.91st−1 + 0.92st−2 − 0.009st−3)

+ σ−1
r (8e−6rt + 1.4rt−1 − 1.4rt−2 − 0.03rt−3)

+ σ−1
τ (2e−6τt − 4e−6τt−1 − 7e−6τt−2

− 5e−6τt−3), [14]
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B

Fig. 6. Relational dynamics in perception (A) Trial-trial variability in human sensory detection is tested. A synthetic feedback controller sets the stimulus,
which is the contrast of a foreground raster displayed on the screen. Then, the user responds positively when detecting the raster or negatively when not. (B)
Raw data from psychophysics experiment. A portion of the measured time-series zt = [st rt �t ] in a human sensory detection experiment. The stimulus st
(blue dots) is a time-series of image-contrast values, the responses rt (orange dots) are a Boolean time-series of detection, and �t (green dots) is the reaction
time from stimulus to response. (C) Normalized mean-square-errors of stimulus estimation values as defined in Eq. 16. Stimulus estimation is obtained from
the analytical expression of the feedback loop detected. The estimation errors decrease monotonously up to T = 5 implying an effective timescale of 5 trials.
Dashed red lines are the MSE of errors higher and lower than the MSE which lies on the blue line.

where σs = 0.035, σr = 0.5, στ = 0.34, are the standard
deviations of the stimulus, the response, and the reaction time,
respectively.

Comparing these results to our prior knowledge of the
experimental system provides strong support to the validation of
IRAS. We expect the synthetic controller to be identified by the
algorithm, and therefore, the current stimulus will be a function
of previous responses. This should translate to small coefficients
for rt and τt , compared to that of st . Furthermore, all reaction
time coefficients should be negligible because they were not used
by the controller. Examining the coefficients in Eq. 14 shows
that these are indeed properties of the discovered combination.
To examine whether this combination captures the synthetic
feedback control loop, we test whether it can predict the stimulus
values correctly. Removing the negligible terms in Eq. 14 and
recalling that gT (·) ≈ cset we predict (up to a constant term),

σ−1
s ŝt ' σ−1

s (1.91st−1 − 0.92st−2 + 0.009st−3)

+ σ−1
r (−1.4rt−1 + 1.4rt−2 + 0.03rt−3). [15]

Here, we denoted the stimulus obtained from the learned
combination by ŝt so that it can be compared to the true stimulus
value st , set by the controller in the experiment. The normalized
mean-square prediction error

NMSE =
var(ŝt − st)

var(st)
, [16]

is extremely low, approximately 10−8, testifying to a high degree
of functionality of the internal synthetic feedback loop detected
by IRAS.

Another important question that our methodology allows to
address is the effective timescale of the feedback loop. Running

the algorithm on various values of T , we estimated the mean-
square prediction error Eq. 16. Fig. 6C and SI Appendix,
Fig. S8 show the result as a function of T , testifying to an
effective timescale of 5 trials. Because the system works in
closed-loop, this timescale cannot be directly compared to the
controller timescale. In summary, IRAS identifies correctly the
most regulated combination, corresponding to a synthetic control
feedback loop, in data obtained from a real-world experiment
with a human in the loop.

C. Identifying Conservation Laws. IRAS identifies quantities
that are maintained at approximately constant values throughout
the dynamics, based on the empirical criterion of CR. There can
be different underlying reasons why a quantity remains fixed.
For biological systems, such behavior may indicate regulation—
i.e., compensation that protects some variables from external
perturbations. In closed dynamical systems, constant values often
represent exact conservation laws.

In the previous sections, we validated IRAS on datasets of
simulated and experimental biological systems. The assumption
was that different realizations of the simulation, or different
experiments, were statistically similar. Specifically, we assumed
that all systems share the exact same g function. More generally,
different systems might share the same functional form for g,
but with different system-specific parameters. In this section, we
demonstrate how IRAS deals with a family of datasets that stem
from systems with different parameters. As an example for this
challenge, we first focus on a Hamiltonian mechanical system
(17, 18). Hamiltonian mechanics describes dynamical systems
through conservation laws and invariances. The Hamilton–
Jacobi equations relate the state of a system to some conserved
quantity, e.g., energy. In this context, specific a-priori knowledge
of the system is required to identify its invariants; finding
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invariants in a general dynamical system, or even knowing
whether or not they exist, is a difficult problem. Developing
automated computational methods to find invariants from data
is a challenge of much recent interest (19–24). A conservation
law is a function that satisfies Eq. 1; therefore, IRAS is suitable for
its identification. We note that optimizing for conservation alone
can lead to trivial quantities, such as predicting a constant g(z)= c
independent of z. A recent paper (25) refers to a nontrivial g(·)
by the term useful conservation law.

We consider the ideal frictionless mass–spring system shown
in the upper right corner of Fig. 7A. This system is commonly
used to test algorithms designed for the identification of con-
servation laws (25, 26). The system’s Hamiltonian and dynamic
equations are

H =
k
2
q2 +

1
2m

p2,

q̇ =
∂H
∂p

, ṗ = −
∂H
∂q

,
[17]

with two parameters: the spring constant k and the mass
m. The dynamic variables are q, the coordinate denoting
deviation from equilibrium, and the momentum p. The most
conserved instantaneous combination is the Hamiltonian, re-
flecting conservation of energy. We examine several systems
with different parameters, such that the value of the conserved
quantity differs between them but the functional form is the
same. Fig. 7A shows the observed traces as a function of

time (Left) and in the (p, q) phase plane (BottomRight) for
three systems. Fig. 7 B, Left, shows the corresponding time-
series of the Hamiltonian, namely the energy as a function
of time.

The different physical systems share the same conservation law
with the Hamiltonian as the invariant combination. However,
the value of this combination is different in each system and
depends on the parameters. Running IRAS over the pooled
data from all systems, in the same setting used in the previous
sections, that is, optimizing a combination c(t) = g (p(t), q(t)),
leads to a low mean Pearson correlation of 0.65 ± 0.15.
This low value occurs because the learned combination g()
did not incorporate system-specific parameters. To address this
problem, we now present an extension to IRAS that allows
for identifying a regulated combination that is a function of
both the measurements and of parameters that are estimated
simultaneously for each system (detailed in the SI Appendix,
section SI3). In the extended version, the learned instantaneous
regulated combination is

c(s)(t) = g
(
p(s)(t), q(s)(t), θ (s)

)
,

θ (s) = 2
(
p(s), q(s)

)
,

[18]

where superscript s is for system s ∈ {1, 2, . . . , 100}, and p(s)

and q(s) are the time-series observed from system s. The set of
parameters estimated for system s is θ (s)

∈ Rl with l a user-

A

B

Fig. 7. IRAS captures the conservation law in Hamiltonian mechanics. The dataset contains 100 different mass-spring systems. In each system, k and m
were sampled uniformly between [0.5,1.5] and the initial conditions, p0 and q0 between [0.15,0.25] and [0.1,0.2] respectively. The raw observations consist
of times-series of length 1,000 of p and q corrupted by a zero-mean additive Gaussian white noise with SD 0.01. (A) TopRight: ideal mass on spring with mass
m and spring constant k. Left: time traces of momentum, (p, solid lines) and coordinate, (q, dashed lines) for ideal mass–spring systems with spring and mass
constants k = (0.72,1.13,1.05) and m = (0.59,1.32,1.48) in the Top, Middle, and Bottom panels, respectively. BottomRight: same trajectories plotted in the phase
plane (p, q). (B) Left: the energy as a function of time for the three systems in (A) with corresponding colors. Right: a zoom-in of the energy and output of the
combination learned by IRAS in a short stretch of time.
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defined hyperparameter, and where 2(·) is a second artificial
neural-network (SI Appendix, Fig. S5 in SI Appendix, section
SI3). Here, we set l = 2. Indeed, the extended IRAS captures the
conservation law yielding a mean Pearson correlation of 0.95 ±
0.012 between c(s) and H(s) (averaged over all systems). Fig. 7
B, Right, shows the values of ground-truth H together with the
learned combination c along a stretch of time for a single system.
The parameters estimated by 2(·) match the physical quantities
of spring and mass constants, exhibiting Pearson correlation of
0.88 and 0.82 with θ (s)

1 and θ (s)
2 , respectively (averaged over all

systems).
As a limiting case, we tested the extended algorithm, Eq. 18, in

a scenario where all mass–spring systems are identical with k = 1
and m = 1. The resulting Pearson correlation between H and
the identified combination is 0.96± 0.01. This testifies that the
extended algorithm does not negatively affect the performance
when estimating system-specific parameters is unnecessary.

As a second example for identifying conserved quantities, we
consider the Lotka–Volterra ecological system model, also known
as the predator–prey equations (27),

ẋ = αx − βxy
ẏ = δxy − γ y.

[19]

The model consists of a pair of first-order nonlinear differential
equations in which two species interact, one as a predator and
the other as prey. The densities of prey and predator are x and y,
respectively, and α,β, γ , δ are positive real parameters describing

the interaction of the two species. This is an autonomous system
with a well-known conserved quantity given by

V = δx − γ log(x) + βy − α log(y). [20]

As in the frictionless mass–spring system example, we examine
100 systems with different (α,β, γ , δ) parameters, such that the
value of the conserved quantity differs between them but the
functional form of V is the same. Fig. 8A shows three examples of
trajectories from such systems, while Fig. 8 B, Left demonstrates
the known conserved quantity. Similarly to the previous example,
the extended IRAS captures the conservation law yielding a
mean Pearson correlation of 0.93 ± 0.03 between c(s) and V(s)

(averaged over all systems). Fig. 8 B, Right, shows the values of
ground-truth V together with the learned combination c along a
stretch of time for a single system. We note that running IRAS
over the pooled data from all systems without learning system-
specific parameters leads to a low mean Pearson correlation of
0.12± 0.11.

In summary, IRAS correctly identifies a conservation law
which is the most “regulated” (conserved) combination in two
examples of closed dynamical systems. With the extension of
estimating a user-specified number l of parameters for different
systems, the algorithm can identify the relevant parameters
and construct the conserved quantity as a combination of the
instantaneous observations and the estimated parameters.

D. Identifying Complex Physical Equations. To further chal-
lenge the IRAS algorithm, we evaluate it on a broad range of

A

B

Fig. 8. IRAS captures the conservation law in predator–prey dynamical systems. The dataset contains 100 systems where in each system, the parameters
were sampled uniformly within a range of 0.1 about the values (�, �,  , �) = (0.25,0.075,0.15,0.07), and the initial conditions, x0 and y0 within a range of 1.0
about the values (x0 , y0) = (4.5,7.5). The raw observations consist of times-series of length 500 of x and y corrupted by a zero-mean Gaussian white noise with
SD 0.055. (A) TopRight: predator–prey illustration. Left: time traces of the numbers of predator, (x, solid lines) and prey, (y , dashed lines) for a Lotka–Volterra
model with parameters � = (0.208,0.205,0.200), � = (0.026,0.032,0.034),  = (0.106,0.106,0.101) and � = (0.020,0.021,0.028) in the Top, Middle, and Bottom
panels, respectively. BottomRight: same trajectories plotted in the phase plane (x, y). (B) Left: the conserved quantity as a function of time for the three systems
in (A) with corresponding colors. Right: zoom of the conserved quantity and output of the combination learned by IRAS in a short stretch of time.
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Table 1. IRAS captures physical relations
Combination #observables Corr

I.9.18 F − Gm1m2
(i2−i1)2+(j2−j1)2+(k2−k1)2 10 0.91

II.36.38 f − �mB
KbT −

�m�M
�c2KbT

9 0.87

I.11.19 A− x1y1 − x2y2 − x3y3 7 0.92

I.29.16 x −
√
x2

1 + x2
2 − x1x2 cos(�1 − �2) 5 0.92

Observations generated in FSReD (8) for four physical equations describing the law of
force in planetary motion, spontaneous magnetization, scalar product of vectors, and the
interference effect (28) serve as inputs to IRAS. The observables are corrupted by noise
as described in the main text. The final column lists the Pearson correlation between the
known physical equation and the combination learned by IRAS. The high correlation values
testify to a correct identification of the underlying physical equation.

physics problems, taking advantage of the recently published
“Feynman Symbolic Regression Database” (FSReD) (8). This
was generated using equations from the seminal Feynman Lectures
on Physics (28). For each physical equation, the dataset provides a
table of numbers, whose rows are of the form {z1, z2, . . . , zn, y},
where y = f (z1, z2, . . . , zn). In symbolic regression challenges
(29), the aim is to discover the correct analytic expression for
the function f (·). Here, to validate IRAS, we denote y as the
n + 1 observable, and we look for a combination g(Z) where
Z = [z1, . . . , zn+1]. IRAS, if working correctly, should learn the
combination g(Z) = zn+1 − f (z1, z2, . . . , zn).

The dataset contains equations with between 2 and 10
observables. The table for each equation contains 105 rows with
the data points [z1, . . . , zn] that were sampled uniformly in [1, 5].
Out of 100 different available equations, we picked four with high
numbers of observables. For example, this is the 10 observable
equation for the law of force in planetary motion

g(Z) = F −
Gm1m2

(i2 − i1)2 + (j2 − j1)2 + (k2 − k1)2 , [21]

where Z = [G,m1, m2, i1, i2, j1, j2, k1, k2, F ]. As in ref. 8, we
added independent Gaussian noise to zn+1 (F in Eq. 21) of
standard-deviation 0.1σ (zn+1). To quantify the performance of
IRAS, we compute the Pearson correlation between the ground-
truth physical equation and the learned g(Z), for each of the four
examples. As shown in Table 1, the agreement is excellent.

3. Discussion

Detecting invariants in dynamic data is a technically challenging
problem with many potential applications. We presented IRAS,
an algorithm that receives as input raw dynamic measurements
and provides combinations, or functions, of these variables
that are maximally conserved across time. Such conservation
can be the result of internal regulation, where some variables
compensate others to protect a control objective or it can be
the result of symmetry and exact conservation laws. Taking
a phenomenological approach to the problem, we introduced
a quantitative measure—the Coefficient of Regulation (CR)—
that characterizes the sensitivity of a combination to destroying
temporal order among its constituents. This measure, regardless
of the mechanism underlying invariance, serves as the basis of
an optimization algorithm that outputs the combination most
severely affected by temporal shuffling.

While the CR is an intuitive measure and can be shown
to be very small for regulated or conserved combinations, its
straightforward optimization is insufficient to escape “trivial”
combinations that do not provide meaningful relations between
the variables (Section B). To identify meaningful combinations

with small CR, some constraints on the shuffled ensemble need
to be implemented, so that time-ordering is destroyed while
respecting the boundaries of the data. We proposed an iterative
process between two players, one minimizing the CR and the
other creating successively more constrained shuffled ensembles.
IRAS converges when the two players cannot further improve.
The algorithm then outputs a combination of variables as a
proposed conserved quantity.

We provide validation in five distinct examples taken from
very different realms and which reveal three versions of IRAS.
First, we validated the simplest version, which optimizes an
instantaneous combination—namely a function of the dynamic
measurements at the same time point. Using a kinetic model of
interactions between proteins, with feedback regulating a sum
of two of them, we simulated traces over time in which system
parameters were randomly perturbed. The feedback in the system
induced compensations that maintained the control objective at a
setpoint. This objective was correctly identified by the algorithm.

Second, we analyzed data from a human-computer closed-
loop visual detection experiment (16), where the computer
implemented a feedback loop that clamps the human response.
Here, the CR was minimized among combinations that include
consecutive time points in the data, aiming to recover the target
of the engineered control system. The qualitative dependence
between variables was identified correctly.

Third, we investigated two dynamical systems with known
conservation laws. Here, we presented a generalized version of
IRAS, suitable for cases where data from many similar systems
are available, each with a different parameter set. Another neural
network was added which identifies the parameters simulta-
neously with the two-player CR optimization (SI Appendix,
Fig. S5). We emphasize that also here, no prior knowledge
regarding the parameters was used. We demonstrated the success
of the algorithm in identifying correctly the energy constant in a
collection of ideal spring systems with different masses and spring
constants, in the presence of noise. Similarly, we demonstrated
the correct identification of the conservation law in a predator–
prey system. These results are significant in light of the difficulty
to identify conserved quantities, even in a single system (26). For
example, trivial constants can result when attempting to identify
conserved quantities in physical systems (25).

The conserved quantity is an implicit relation between
measurements, defining a constraint and thus effectively reducing
the dimensionality of the data. This is somewhat reminiscent of
dimensionality reduction problems. The goal, however, is quite
distinct in the two scenarios. Dimensionality reduction aims to
describe the maximal amount of variability in the data using as few
descriptors as possible. In contrast, we aim to find a meaningful
combination of the data with a minimal amount of variability.
The restriction to meaningful combinations, achieved through
temporal shuffling, renders the two approaches qualitatively
different and not easily comparable.

Our main motivation in this work was to understand regu-
lation in complex biological systems. Often, such systems are
“reverse engineered”—for example, using system identification
or other methods, to build mathematical models based on
observed data (30–36). A model can then be investigated to
shed light on the functionality of the system, its robustness,
and other properties. However, multivariable, multiparameter
models are generally hard to understand even with explicit
equations. Specifically, identifying a conservation law analytically
or even proving its existence is an open research problem (37–
43); thus, methods for deriving the differential equations of a
system leave the question of identifying the conservation law
unsolved.
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Instead, we propose to analyze the properties of complex
biological systems bypassing the modeling stage, to provide
insight directly from dynamic data. We ask the general question:
“What does the system care about”? in the sense of control theory.
Namely, we seek to identify, directly from data, conserved or
regulated quantities that the system protects from fluctuations
and perturbations. Such homeostasis is a phenomenon of central
importance in many biological contexts.

Recovering the control objective in an observed system is
dealt with in Inverse Optimal Control (IOC) and Inverse
Reinforcement Learning (IRL) (44, 45). However, in both
IOC and IRL one has access to samples of a behaving system,
acting according to some policy (usually a near-optimal one).
These samples consist of both the system states and the
external controls that drive the state-transitions. There is a clear
separation between the states and the controls. Our biologically
motivated setting corresponds to observing measurements of
system variables without such separation. We are not aware
of any IOC or IRL methods that deal with this type of
problem.

Identifying conservation laws from observed data was also
addressed in ref. 31. By identifying correlations between partial
derivatives of pairs of variables, the algorithm detects physically
meaningful quantities. These include the conserved Hamiltonian
and the nonconserved Lagrangian. No distinction in terms of
invariance is made between them. IRAS, on the contrary, is
designed to find the most conserved quantity in the data by
optimizing a measure of invariance under the shuffle constraint.
Additionally, the algorithm in ref. 31 does not scale well to high-
dimensional data and does not address homeostasis in families of
systems that differ in their parameters.

Being a purely data-driven analysis method, we tell the story
of the system in the “language” of the observables. Thus, we are
limited by them. Spurious correlations between measurements
may manifest as artefactual regulated combinations. Likewise, if
by some fortunate coincidence, the controlled objective of the
system is one of the individual raw measurements—IRAS will
discard it because it is not a combination. Both of these caveats
highlight the importance of biological context in data analysis.

The presented algorithm detects the most regulated combina-
tion within the observables. Commonly, a biological system will
regulate multiple different objectives via different feedback loops.
Once the most regulated combination was identified, we would
like to continue the analysis and discover the next regulated
combinations and be able to describe a hierarchy of control
objectives (5). This aim is left for future work.

Data, Materials, and Software Availability. All study data are included in
the article and/or SI Appendix. Previously published data were used for this work
(Included in references).
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