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Abstract

Hemorrhagic transformation (HT) is one of the most serious complications 

after endovascular thrombectomy (EVT) in acute ischemic stroke (AIS) pa-

tients. The purpose of this study is to develop and validate deep-learning (DL) 

models based on multiparametric magnetic resonance imaging (MRI) to auto-

matically predict HT in AIS patients. Multiparametric MRI and clinical data 

of AIS patients with EVT from two centers (data set 1 for training and testing: 

n  =  338; data set 2 for validating: n  =  54) were used in the DL models. The 

acute infarction area of diffusion-weighted imaging (DWI) and hypoperfusion 

of perfusion-weighted imaging (PWI) was labeled manually. Two forms of data 

sets (volume of interest [VOI] data sets and slice data sets) were analyzed, respec-

tively. The models based on single parameter and multiparameter models were 

developed and validated to predict HT in AIS patients after EVT. Performance 

was evaluated by area under the receiver-operating characteristic curve (AUC), 

accuracy (ACC), sensitivity, specificity, negative predictive value, and positive 

predictive value. The results showed that the performance of single parameter 

model based on MTT (VOI data set: AUC = 0.933, ACC = 0.843; slice data set: 

AUC = 0.945, ACC = 0.833) and TTP (VOI data set: AUC = 0.916, ACC = 0.873; 

slice data set: AUC  =  0.889, ACC  =  0.818) were better than the other single 

parameter model. The multiparameter model based on DWI & MTT & TTP 

& Clinical (DMTC) had the best performance for predicting HT (VOI data 

set: AUC = 0.948, ACC = 0.892; slice data set: AUC = 0.932, ACC = 0.873). 

The DMTC model in the external validation set achieved similar performance 

with the testing set (VOI data set: AUC = 0.939, ACC = 0.884; slice data set: 

AUC = 0.927, ACC = 0.871) (p > 0.05). The proposed clinical, DWI, and PWI 

multiparameter DL model has great potential for assisting the periprocedural 

management in the early prediction HT of the AIS patients with EVT.
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1  |   INTRODUCTION

Acute ischemic stroke (AIS), which has high mortality 
and disability rates, is seriously harmful to human life 
[1]. Endovascular thrombectomy (EVT) has been proven 
to benefit AIS patients with large vessel occlusion (LVO) 
[2–4]. However, the serious complication of hemorrhagic 
transformation (HT) often occurs after EVT [5]. Recent 
studies have shown that the incidence of HT after EVT 
can be as high as 31.9% [6] and increased morbidity and 
mortality [7]. Identifying this serious complication could 
help to adjust periprocedural management, especially 
by predicting needs for intensive care among patients at 
high risk of HT.

Neuroimaging, especially magnetic resonance imag-
ing (MRI), has shown to be effective in identifying tissue 
at risk of infarction [8]. Additionally, diffusion-weighted 
imaging (DWI) and perfusion-weighted imaging (PWI) 
can detect tissue ischemia earlier than other conven-
tional neuroimaging modalities in experimental and 
clinical settings, which may inform on the risk of HT [9]. 
Previous studies have reported that the large initial le-
sion volume on DWI, a large area of perfusion loss, and 
regions with very low cerebral blood volume (CBV) were 
important for predicting HT [6, 10–12,]. However, as a 
single measure, none of these MRI-based indices has 
been shown to be able to reliably identify tissue at risk 
of HT prior to EVT. In addition, automated MRI PWI–
DWI mismatch estimation may be significantly differ-
ent in individual patients when using different software 
packages [13]. Thus, because of the various risk factors, 
postprocessing software, settings, and chosen parame-
ters, it is still difficult to predict the HT after EVT early 
in AIS patients in the clinical workflow.

Deep learning (DL) is a form of representation learn-
ing—in which a machine is fed with raw data and de-
velops its own representations needed for pattern 
recognition—that is composed of multiple layers of 
representations [14]. Although DL algorithms require 
a large amount of data to function, they have exceeded 
the capabilities of classical statistical machine-learning 
(ML) techniques on specific imaging tasks like multi-
class classification [14, 15]. Convolutional neural net-
works (CNNs), a type of DL algorithm, have grown to 
be central in this field. CNN methods take image data 
as input and iteratively warp it through a series of convo-
lutional and nonlinear operations until the original raw 
data matrix is transformed into a probability distribu-
tion over potential image classes [16]. CNNs have shown 
strong performances in the prediction of tissue outcome 
[17] and detection of penumbral tissue in AIS [18]. It 

also has the advantage of including simultaneously both 
multiple-input biomarkers and spatial information and 
being capable of modeling complex interplays between 
the input images. Overall, the predictive results from 
CNNs yield an infarction probability, providing a much-
needed certainty level, and CNN may be a suitable can-
didate for predicting HT in AIS patients receiving EVT, 
which is not yet reported.

In this study, we developed and validated DL models 
to automatically predict HT in AIS patients receiving 
EVT by using multiparameter on DWI and PWI images. 
We hypothesized that the CNN model can be used to 
provide predictive information before therapy for assist-
ing the periprocedural management in AIS patients with 
EVT.

2  |   M ATERI A LS A N D M ETHODS

2.1  |  Patient selection and clinical data

From January 2016 to October 2019, data from Nanjing 
First Hospital and the Affiliated Jiangning Hospital of 
Nanjing Medical University were collected. Patients with 
AIS were included in this study if (1) they are first-ever 
AIS within 24 h from the onset, (2) DWI and PWI exam-
inations were performed before EVT therapy, (3) receiv-
ing EVT therapy or bridging therapy (both intravenous 
thrombolysis [IVT] and EVT) according to the guide-
lines for managing AIS, and (4) follow-up MRI or non-
contrast CT within 24 h after EVT therapy. Patients with 
previous intracranial hemorrhage, brain surgery, large 
territorial lesion, or subarachnoid hemorrhage after 
EVT therapy were excluded. All patients in this study 
provided written informed consent before examination 
and treatment. The study was approved by the local 
ethics committee of the Nanjing Medical University. 
Finally, a total of 338 patients from Nanjing First 
Hospital (data set 1) and 54 patients from the Affiliated 
Jiangning Hospital of Nanjing Medical University (data 
set 2) were included. Data set 1 was used to train and test 
the models and data set 2 was preserved as an independ-
ent external validation set. The flowchart of this study is 
shown in Figures 1 and 2.

HT was independently reviewed on follow-up noncon-
trast CT or cranial MRI within 24 h after EVT therapy by 
two neuroradiology staff (Y-CC, attending doctor with 
4 years of experience in neuroradiology, and XY, director 
with 10 years of experience in neuroradiology). In case of 
discrepant assessment results between the two readers, a 
consensus was established. HT was categorized according 
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to the Heidelberg Bleeding classification (HBC) [19] and 
European Collaborative Acute Stroke Study (ECASS) 
classification [20] (see Table 1). HT and contrast agent 
extravasation were distinguished by comparing the pre-
vious CT or MRI scans, and the result was confirmed on 
CT or MRI scans at 2–7 days after the therapy.

2.2  |  MRI protocols and analysis

MRI on admission and follow-up MRI were performed 
on 3.0  Tesla MRI scanner (Ingenia, Philips Medical 
Systems) with an eight-channel receiver array head coil. 
The DWI images were acquired using a spin-echo (SE) 
sequence with the following parameters: repetition time 
(TR), 2501 ms; echo time (TE), 98 ms; acquisition ma-
trix, 152  ×  122; three directions; field of view (FOV), 
230 × 230 mm; flip angle (FA), 90°; slices, 18; slice thick-
ness, 6 mm; intersection gap, 1.3 mm; and b values, 0 and 
1000  s/mm2. DSC-PWI images were acquired using a 
T2*-weighted gradient recalled echo (T2*GRE) sequence 
with the following parameters: TR, 2000 ms; TE, 30 ms; 
acquisition matrix, 96 × 93; FOV, 224 × 224 mm; FA, 90°; 
slice thickness, 4 mm; and scan time, 88 s. Fifty phases 
and 20 images were obtained from each phase. During 
dynamic acquisition, a dose of 0.1 mmol/kg of contrast 
agent (Magnevist, Bayer Schering Pharma, Germany) 
was injected at a rate of 4 mL/s.

The PWI data were analyzed by using a Philips ad-
vanced workstation. The arterial input function (AIF) was 
selected by manually identifying the M2  segment of the 

MCA ipsilateral to the acute infarction. The cerebral blood 
flow (CBF), CBV, time to peak (TTP), and mean transit 
time (MTT) maps were generated from circular singular 
value decomposition of the concentration–time curve.

2.3  |  Preprocessing

As DICOMs with different modalities might have differ-
ent pixel intensity ranges, we converted the pixel inten-
sity of DWI into [−2200, 2800] and PWI into [0, 4095] to 
keep the intensity range consistent. In order to achieve 
the same contrast and brightness and easy to display le-
sions, we found that the lesions display of all patients 
was the best when the window width and level were 0–
255. Therefore, we linearly compressed the pixel inten-
sity range into [0, 255] of all DICOMs. Then we used the 
OpenCV library to histogram equalize the image to en-
hance contrast. Images were then saved as PNG files.

Furthermore, the clinical data (age, gender, NIHSS 
score on admission, time from MRI to onset, time from 
MRI to EVT therapy, and history of hypertension, dia-
betes mellitus, hyperlipidemia, homocysteine levels, and 
atrial fibrillation) were collected (Table 2). The patient's 
clinical data were entered into the CNN model in text 
form. Age was encoded by means of normalization. Sex, 
smoking, alcohol drinking, diabetes mellitus, hyperten-
sion, atrial fibrillation, hyperlipidemia, and homocyste-
ine were encoded using a one-hot method. The NIHSS 
was encoded into a one-dimensional vector. Finally, a 
total of the 10-dimensional vector was extracted.

F I G U R E  1   The demographic data of the cohorts
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All DWI and PWI images of AIS patients were derived 
from DICOM format and then converted all DICOM for-
mat into NII format by using MRIcron software (https://
www.nitrc.org/proje​cts/mricron). The high-intensity sig-
nal infarction area on DWI and abnormal perfusion area 
on CBF, CBV, MTT, and TTP were drawn as volumes 
of interest (VOIs) manually using ITK-SNAP software 
(http://www.itksn​ap.org/pmwik​i/pmwiki.php). All VOIs 
were performed in consensus by two board-certified 
neuroradiologists (LJ, 9 years of experience in neurora-
diology, H-YC, 8 years of experience in neuroradiology) 
who were blinded to the clinical data. We developed and 
evaluated the HT prediction model in two forms. First, 
the VOIs of DWI, CBF, CBV, MTT, and TTP were an-
alyzed as labels individually or together (VOI data set). 
Then, the axial images of VOIs (DWI, CBF, CBV, MTT, 
and TTP) were analyzed as labels individually or to-
gether (slice data set).

2.4  |  Deep neural network architecture and 
experiments

2.4.1  |  Single parameter model

For detecting the clinical features in predicting HT in AIS 
patients after EVT, the clinical model was built, which 
involved three fully connected layers and one sigmoid 
layer. The network used in our study of radiomics model 
was the Inception V3 [21], which offers compact end-
to-end CNN structures that maintain high-resolution 
multiscale features. The schematic diagram of the basic 
CNN model was shown in Figure 3. The feature vectors 
(1024 × 1 × N) extracted from all the images (N means 
the number of images of one patient) of a given single 
parameter were merged into a one-dimensional vector 
(1024  ×  1) to form the input tensor of the patient-level 
model with a Max pooling layer. This layer was used to 

F I G U R E  2   The flowchart of the study. (1) Data acquisition: all patients suspected of acute stroke underwent head CT examination to 
exclude hemorrhage. Clinical data were collected and normalized by min–max normalization method. Patients who met the criteria for 
intravenous thrombolysis (IVT) therapy received IVT after CT scanning, and MRI examination was followed scanned immediately. Then 
patients who met the criteria for endovascular thrombectomy (EVT) therapy performed EVT immediately. All patients underwent CT after 
EVT within 24 h. According to the follow-up CT, the patients were divided into hemorrhagic transformation (HT) group and the no HT group. 
(2) Model training: data set 1 was split into training (75%) and testing (25%) subsets by stratified random sampling, and data set 2 was used for 
validating. The labels of two forms (VOI data sets and slice data sets) were trained and validated. Then the final result was evaluated [Colour 
figure can be viewed at wileyonlinelibrary.com]

https://www.nitrc.org/projects/mricron
https://www.nitrc.org/projects/mricron
http://www.itksnap.org/pmwiki/pmwiki.php
https://onlinelibrary.wiley.com/
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uniform the different image sequence lengths. At the 
end of the model, two FC layers (the first layer had 1024 
nodes, and the second layer had two nodes for HT and 
no HT) were added, and the prediction of the HT risk 
used the Softmax function.

2.4.2  |  Multiparameters model

Based on the single parameter models (DWI, CBF, CBV, 
MTT, and TTP), the multiparameter model was further 
established by considering the patient's multiparameter 

image features synthetically (Figure 4A). The multipa-
rameter models were an ensemble of single parameter 
models and included four kinds of multiparameters: 
multiparameter PWI model (combining two PWI param-
eters of the best prediction efficiency); clinical + PWI pa-
rameters model (combining clinical data and the above 
two PWI parameters); DWI  +  PWI parameters model 
(combining DWI parameter and the above two PWI pa-
rameters); and clinical + MRI parameters model (com-
bining clinical data, DWI parameter, and the above 
two PWI parameters). The methods are as follows: first, 
these separated single-sequence models were trained 

TA B L E  1   Overview of bleeding events, categorized with HBC and the ECASS classification, according to anatomical, descriptive, and 
clinical features

HBC ECASS
Patients with HT (data set 
1; n = 88)

Patients with HT (data set 
2; n = 15) Description

1a HI1 4 (4.55%) 0 Scattered small petechia, no mass effect

1b HI2 7 (7.95%) 1 (6.67%) Confluent petechia, no mass effect

1c PH1 13 (14.77%) 2 (13.33%) Hematoma within infarcted tissue, occupying 
<30%, no substansive mass effect

2 PH2 34 (38.64%) 6 (40.00%) Hematoma occupying >30% or more of the 
infarcted tissue, with obvious mass effect

3a – 2 (2.27%) 0 Parenchymal hematoma remote from infarcted 
brain tissue

3b – 0 0 Intraventricular hemorrhage

3c – 27 (30.68%) 6 (40.00%) Subarachnoid hemorrhage

3d – 1 (1.14%) 0 Subdural hemorrhage

Abbreviations: ECASS, European Collaborative Acute Stroke Study; HBC, Heidelberg Bleeding classification; HI, hemorrhagic infarction; HT, hemorrhagic 
transformation; PH, parenchymatous hematoma.

TA B L E  2   Comparison of no HT and HT group in acute stroke patients after EVT

Data set 1 Data set 2

No HT (n = 250) HT (n = 88) p value No HT (n = 39) HT (n = 15) p value

Gender (male), n (%) 165 (66.00%) 48 (55.55%) 0.072 23 (58.97%) 8 (53.33%) 0.765

Age (years), mean ± SD 65.78 ± 9.68 70.93 ± 11.29 <0.001 64.22 ± 8.57 71.38 ± 10.19 <0.001

Time from MRI to onset (min), 
mean ± SD

202.72 ± 77.36 218.17 ± 114.19 0.159 217.19 ± 89.39 220.03 ± 102.41 0.211

Time from EVT to onset (min), 
mean ± SD

285.25 ± 137.27 314.47 ± 104.56 0.070 301.36 ± 124.71 319.07 ± 128.11 0.127

Smoking, n (%) 57 (22.80%) 16 (18.18%) 0.452 7 (17.95%) 2 (13.33%) 1.000

Alcohol drinking, n (%) 25 (10.00%) 15 (17.05%) 0.086 4 (10.26%) 2 (13.33%) 1.000

Diabetes mellitus, n (%) 60 (24.00%) 25 (28.41%) 0.475 8 (20.51%) 4 (26.67%) 0.719

Hypertension, n (%) 197 (78.80%) 72 (81.82%) 0.645 31 (79.49%) 12 (80.00%) 1.000

Atrial fibrillation, n (%) 102 (40.80%) 46 (52.27%) 0.080 14 (35.90%) 7 (46.67%) 0.541

Hyperlipidemia, n (%) 22 (8.80%) 9 (10.23%) 0.672 3 (7.69%) 2 (13.33%) 0.610

Homocysteine, n (%) 18 (7.20%) 7(7.95%) 0.815 3 (7.69%) 2 (13.33%) 0.610

NIHSS on admission, n (%) 10.91 ± 3.87 13.90 ± 2.46 <0.001 11.26 ± 4.41 14.79 ± 6.65 <0.001

Reperfusion therapy, n (%) 0.362 1.000

EVT 195 (78.00%) 73 (82.95%) 30 (76.92%) 12 (80.00%)

IVT + EVT 55 (22.00%) 15 (17.05%) 9 (23.08%) 3 (20.00%)

Abbreviations: EVT, endovascular thrombectomy; HT, hemorrhagic transformation; IVT, intravenous thrombolysis; NIHSS, National Institutes of Health Stroke 
Scale.
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and optimized, respectively. All models were CNN 
trained with the combined set of training images. We 
used Inception V3 as the convolutional neural network 
architecture that was pretrained on ImageNet. Then the 
features extracted from each pretrained single parameter 
model were concatenated to a tensor. Later, two layers of 
fully connected layer and Softmax layer after were added 
following the concatenation layer to classify HT or no 

HT. Furthermore, the compounded model was devel-
oped and validated by incorporating the multiparameter 
radiomic and clinical features (Figure 4B). The clinical 
feature tensor was got through three fully connected 
layers. The weights of each pretrained single parameter 
model and clinical model were frozen as the weight of the 
corresponding channel, and only the following fully con-
nected layers were refined during the training process. 

F I G U R E  3   The schematic diagram of the basic CNN model [Colour figure can be viewed at wileyonlinelibrary.com]

F I G U R E  4   An overview of the patient-level multiparameter model. (A) Patient-level single parameter module: first, learning intraimage 
features (1024 × 1) from one patient's N image based on image-level model (Inception V3) and concatenating features into two-dimensional 
vectors (1024 × N). And then merge the two-dimensional vectors into a one-dimensional vector by the max pooling layer. Finally, the 
interimage features are learned through two FC layers. Based on the patient-level single parameter module, the patient-level multiparameter 
module was developed and validated by considering the patient's multiparameter radiomic features. (B) Furthermore, using the concatenation 
layer to concatenate the multiparameter radiomic features and clinical characteristics, then two layers of fully connected layer and Softmax 
layer were added [Colour figure can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
https://onlinelibrary.wiley.com/
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Of note, “MT” represents the multiparameter model of 
MTT and TTP; “MTC” represents the multiparameter 
model of MTT and TTP and clinical; “DMT” represents 
the multiparameter model of DWI and MTT and TTP; 
and “DMTC” represents the multiparameter model of 
DWI and MTT and TTP and clinical.

2.4.3  |  Training details

As a result of the disequilibrium of our data set, during 
the training process, the HT data set was dynamically 
oversampled on the patient level to get a balance be-
tween HT and no HT data set. The training data set was 
augmented by adding rotation (rotation range =  [−20°, 
20°]), two shifts (width shift range = [0, 0.2]), height shift 
range =  [0, 0.2]), and zoom (zoom ratio = 0.2) variants 
for each image. Volumes were randomly extracted from 
preprocessed input and label images for training. With 
sufficient data augmentation, the network could be pre-
vented from overfitting.

The stochastic gradient descent (SGD) optimizer was 
used as the optimization method for model training. The 
learning rate was 0.01, the momentum was 0.9, and the 
decay rate was 1.0 × 10−6. The mini-batch size was set to 
16. The models were trained with the iteration stopping 
criteria, when the validation loss drops <0.03% within 
10 epochs or the iteration reaches 200 epochs, the train-
ing is stopped. All models were implemented using the 
KERAS framework and all experiments were performed 
on a workstation equipped with an Intel(R) Xeon(R) 
E5-2650 v4 CPUs @ 2.20 GHz (two CPUs, 24 cores, two 
threads/core, 128 GB of memory) and an NVIDIA Tesla 
M4.

2.4.4  |  Performance assessment

Data set 1 were split into training (75%) (HT: 187 patients; 
no HT: 66 patients) and testing (25%) (HT: 63 patients; no 
HT: 22 patients) subsets by stratified random sampling, 
and we ensured that images from the same patient re-
mained in the same split to avoid training and testing 
on the same patient. Then parameters were trained and 
tested with two forms of labels (VOI and slice image), re-
spectively. Model parameter exploration was performed 
by five-fold cross-validation on the training data set. 
During the validation phase, all the metrics were cal-
culated based on the average five-fold cross-validation 
results. Then, a better model structure was chosen, the 
model was retrained with all the training data, and the 
model parameters were saved. To eliminate contingen-
cies in the test results and evaluate the performance of 
the HT classification model, the results were compared 
with neuroradiologists’ conclusions and evaluated by 
several metrics, including accuracy (ACC), SEN, SPC, 
negative predictive value (NPV), positive predictive 

value (PPV), receiver-operating characteristic (ROC) 
curves, and AUC. After the aforementioned process, a 
final model with the best performance was chosen and 
validated in the external validation set (data set 2).

2.5  |  Statistical analysis

All statistical analyses for clinical data were con-
ducted using commercially available software (SPSS 
for Windows, version 19.0). Continuous data are shown 
as the mean ± SD and were analyzed by using an inde-
pendent samples t-test or Fisher's exact test, whereas 
categorical variables are presented as absolute and rela-
tive frequencies and were analyzed by using the χ2 test. 
p  <  0.05 was considered to be statistically significant. 
Kappa values were used to determine interrater agree-
ment. The ROC differences of the testing set and validat-
ing set were evaluated according to Delong et al. [22].

3  |   RESU LTS

3.1  |  Clinical and demographic information

Of 338 patients enrolled from data set 1, 88 patients 
(26.04%) had HT after EVT therapy. Of 54 patients en-
rolled from data set 2, 15 patients (27.78%) had HT after 
EVT therapy. The interobserver agreement for HT was 
k = 0.96 (95% CI, 0.93–0.99). Bleeding classification spe-
cifics are shown in Table 1. The clinic and demographic 
information are shown in Table 2. In both data set 1 
and data set 2, the age in HT group was older (data set 
1: 70.93  ±  11.29 vs. 65.78  ±  9.68, p  <  0.001; data set 2: 
71.38 ± 10.19 vs. 64.22 ± 8.57, p < 0.001) than that of no 
HT group, and the NIHSS on admission in HT group was 
higher (data set 1: 13.90 ± 2.46 vs. 10.91 ± 3.87, p < 0.001; 
data set 2: 14.79 ± 6.65 vs. 11.26 ± 4.41, p < 0.001) than that 
of no HT group. There were no significant differences 
in gender, smoking, alcohol drinking, diabetes mellitus, 
hypertension, atrial fibrillation, hyperlipidemia, and ho-
mocysteine between the two groups of both data set 1 
and data set 2 (p > 0.05).

3.2  |  Evaluation of single parameter model

The results are listed in Tables 3 and 4. For the single 
parameter model, the result of the single clinical model 
(AUC = 0.680) to predict HT after EVT was the lowest, 
with the ACC was 0.659. The results of the model based 
on image features were significantly better than those 
based on clinical features. The VOI data set test results of 
AUCs from MTT (AUC = 0.933) and TTP (AUC = 0.916) 
were larger than other parameters (Figure 5A), with the 
ACC was 0.843 and 0.873, respectively. The slice data set 
test results of AUCs from MTT (AUC = 0.945) and TTP 
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(AUC = 0.889) to predict HT after EVT in AIS patients 
were also larger than other parameters (Figure 5B), with 
the ACC was 0.833 and 0.818, respectively. Other met-
rics such as SEN, SPC, PPV, and NPV in Tables 3 and 
4 presented similar trends as the AUCs. For the single 
parameter model, the results of the slice data set were 
worse than the VOI data set.

3.3  |  Evaluation of multiparameter model

MTT and TTP with high prediction accuracy in the PWI 
parameters were selected for the multiparameter model, 
and the DWI was also selected for the multiparameter 
model because of the necessary sequence of AIS diagno-
sis. The evaluation of test results is depicted in Tables 3 
and 4. On the VOI data set, compared with the average 
AUC of all single parameter models (AUC = 0.845), the 
AUCs of the MT model (AUC = 0.924), and MTC model 
(AUC = 0.924) for predicting the HT after EVT in AIS 
were increased by 7.90%, with the ACCs were 0.863 and 
0.882, respectively; DMT model (AUC = 0.933) was in-
creased by 8.80% with the ACC was 0.873; DMTC model 
(AUC = 0.948) was increased by 10.30% with the ACC was 
0.892, which was the highest of all models (Figure 5C). 
On the slice data set, compared with the average AUC 
of all single parameter models (AUC = 0.752), the AUC 
of MT model (AUC = 0.896) for predicting the HT after 
EVT in AIS were increased by 13.80% with the ACC 
was 0.853; MTC (AUC = 0.913) was increased by 16.10% 
with the ACC was 0.863; DMT model (AUC = 0.921) was 
increased by 16.90% with the ACC was 0.871; DMTC 
model (AUC = 0.932) was increased by 18.00% with the 
ACC was 0.873 (Figure 6), which was also the highest of 
all models (Figure 5D). Other metrics such as SEN, SPC, 
PPV, and NPV in Tables 3 and 4 also presented similar 
trends as the AUCs.

3.4  |  Independent external validation

The final model with the best performance (DMTC 
model) was validated in an independent external valida-
tion set. On the VOI data set, the AUC of the validation 
set was 0.939, and the accuracy, sensitivity, and specific-
ity were 0.884, 0.859, and 0.890, respectively. On the slice 
dataset, the AUC of the validation set was 0.927, and the 
accuracy, sensitivity, and specificity were 0.871, 0.820, 
and 0.865, respectively. The results are depicted in Tables 
3 and 4. There were no significant differences between 
the AUC of the testing set and the validation set (VOI 
data set: z  =  1.479, p  =  0.147; slice data set: z  =  0.346, 
p = 0.729).

4  |   DISCUSSION

Our study showed that DL was able to use information 
from clinical variables and MRI images to transform 
them into accurate predictions of HT in AIS patients 
after EVT. The DMTC model in the VOI data set and 
slice data set had a good performance and good gener-
alization ability for predicting HT of AIS patients. Thus, 
DL model using multiparameter MRI could be decisive 
in identifying patients who present with higher risks of 
HT and should not be treated with EVT therapy.

The exact pathophysiology of HT is still unclear. One 
of the possible mechanisms of HT is blood–brain bar-
rier (BBB) disruption [23]. Slevin et al. [24] found that 
Monomeric C-reactive protein (mCRP) could increase 
vascular monolayer permeability and gap junctions and 
produced hemorrhagic angiogenesis in mouse matrigel 
implants. Multiple MRI techniques, especially PWI, are 
based on this concept of disruption of the BBB. In con-
nection with this, the value of DWI for evaluating the 
degree of ischemia is well known, and previous studies 

TA B L E  3   Performance comparison of the VOI CNN methods by using different MRI parameters

Model Parameters ACC SEN SPC PPV NPV AUC

The single parameter model Clinical 0.659 0.778 0.613 0.420 0.885 0.680

DWI 0.815 0.700 0.847 0.560 0.910 0.830

CBF 0.773 0.9375 0.720 0.517 0.973 0.835

CBV 0.823 0.815 0.827 0.629 0.925 0.878

MTT 0.843 0.926 0.813 0.641 0.968 0.933

TTP 0.873 0.889 0.867 0.706 0.956 0.916

The multiparameter model MT 0.863 0.926 0.840 0.676 0.969 0.924

MTC 0.882 0.895 0.880 0.630 0.973 0.924

DMT 0.873 0.852 0.867 0.700 0.941 0.933

DMTC 0.892 0.864 0.900 0.704 0.960 0.948

DMTC* 0.884 0.859 0.890 0.703 0.955 0.939

Abbreviations: ACC, accuracy; AUC, area under the receiver-operating characteristic curve; CBF, cerebral blood flow; CBV, cerebral blood volume; CNN, 
convolutional neural network; DMT, DWI & MTT &TTP; DMTC*, DWI & MTT & TTP & clinical of external validation set; DMTC, DWI & MTT & TTP & 
Clinical; DWI, diffusion-weighted imaging; MT, MTT&TTP; MTC, MTT&TTP& Clinical; MTT, mean transit time; NPV, negative predictive value; PPV, positive 
predictive value; SEN, sensitivity; SPC, specificity; TTP, time to peak; VOI, volume of interest.
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have demonstrated that the low ADC values were associ-
ated with HT [25]. In this context, the fact that DL mod-
els can predict HT from DWI and PWI is particularly 
encouraging. For conventional MRI, T1WI and FLAIR 
could also be an indication of HT [25, 26], however, con-
ventional MRI showed lower sensitivity than advanced 
MRI. In addition, the onset time of AIS patients in our 
study is short (mean onset time: 306 min), and about 38% 
of patients did not show high signal on FLAIR in the 
acute infarction area, leading to difficulties of accurately 

delineating the VOI of acute infarction on FLAIR. 
Therefore, advanced MRI techniques (DWI and PWI) 
in our study were used to predict HT in AIS patients.

Recently, several studies have used ML to predict 
HT in AIS patients [26–29]. However, the diagnostic 
performance of multiparameter MRI using DL for the 
prediction of HT in AIS has not yet been systematically 
evaluated. In this study, we first trained the DL model 
based on a single parameter, and the results showed that 
the performance of DL models based on MTT and based 

TA B L E  4   Performance comparison of the Slice CNN methods by using different MRI parameters

Model Parameters ACC SEN SPC PPV NPV AUC

The single parameter model Clinical 0.659 0.778 0.613 0.420 0.885 0.680

DWI 0.667 0.579 0.690 0.333 0.860 0.609

CBF 0.742 0.625 0.78 0.476 0.867 0.689

CBV 0.667 0.929 0.58 0.417 0.967 0.702

MTT 0.833 1.000 0.78 0.592 1.000 0.945

TTP 0.818 0.875 0.80 0.583 0.952 0.889

The multi parameter model MT 0.853 0.925 0.827 0.658 0.969 0.896

MTC 0.863 0.882 0.859 0.556 0.973 0.913

DMT 0.871 0.818 0.919 0.786 0.932 0.921

DMTC 0.873 0.850 0.878 0.630 0.960 0.932

DMTC* 0.871 0.820 0.865 0.611 0.943 0.927

Abbreviations: ACC, accuracy; AUC, area under the receiver-operating characteristic curve; CBF, cerebral blood flow; CBV, cerebral blood volume; CNN, 
convolutional neural network; DMT, DWI & MTT &TTP; DMTC*, DWI & MTT & TTP & clinical of external validation set; DMTC, DWI & MTT & TTP & 
clinical; DWI, diffusion-weighted imaging; MT, MTT&TTP; MTC, MTT&TTP& Clinical; MTT, mean transit time; NPV, negative predictive value; PPV, positive 
predictive value; SEN, sensitivity; SPC, specificity; TTP, time to peak.

F I G U R E  5   The ROC results are 
based on the VOI and Slice data set. (A) 
The ROCs of VOI data set trained with 
single MRI parameters. (B) The ROCs of 
the slice data set trained with single MRI 
parameters. (C) The ROCs of the VOI data 
set were trained with clinical and multi-
MRI parameters. (D) The ROCs of Slice 
data set were trained with clinical and 
multi-MRI parameters. Note: MT: MTT & 
TTP; MTC: MTT & TTP & Clinical; DMT: 
DWI & MTT & TTP; DMTC: DWI & 
MTT & TTP & Clinical [Colour figure can 
be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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on TTP was better than those of the other MRI parame-
ters. Clinical features can reflect a few focus information 
at the pathologic level and the MRI images could obtain 
more factors affecting HT in AIS patients. Also, the 
possible reason for PWI over DWI may be that the PWI 
could reflect the blood vessel integrity damaged which 
usually causes HT, whereas the DWI change is a down-
stream effect of ischemia on neurons [11]. The MTT is 
usually used to predict vulnerable brain tissue that may 
evolve from the infarction, and the TTP describes the 
time to reach the CBF’s highest value at the target tissue 
location [30].

We also trained the multiparameter model to inves-
tigate their accuracy in predicting HT after EVT. The 
results showed that the multiparameter model was bet-
ter than the single parameter model, and the AUC of the 
DMTC model was the highest (VOI data set: 0.948; slice 
data set: 0.932), which was also higher than that of Suh 
et al. (AUC: 0.85) [10]. Considering the heterogeneity in 
stroke pathophysiology, the CNN model can retain and 
process complex information, so as to find a more accu-
rate connection between the input and the output. This 
enables CNN to predict the HT after EVT more accu-
rately in an automatic and user-independent manner and 
also may be the reason that the multiple sequence model 
was better than the single sequence model or conven-
tional statistical methods. The sensitivity of our study 
(VOI data set: 0.864; slice data set: 0.850) was slightly 
lower than that of Suh et al. (AUC: 0.920) [10], probably 
because of the unbalanced data in our study, and the in-
clusion of more HT patients may improve the sensitivity 
of DL models.

In our study, we validated the DMTC model in an inde-
pendent external validation set, and comparing it with the 
training set, both the VOI data set and the slice data set 
had good performance in predicting HT, which showed 
good generalization ability. It is worth mentioning that 
the DMTC model based on the VOI data set and slice data 
set for predicting HT had similar performance. VOI data 
set is drawn by doctors manually, which needs a heavy 
workload and is easy to make boundary information loss 
because of different experiences. The slice data set was 
composed of axial MRI images selected based on the le-
sion of VOI, which has the advantages of easily choosing, 
high repeatability, and inputting full-layer image informa-
tion. Therefore, we found that the slice dataset may use for 
model training to replace the VOI data set.

Some limitations must be acknowledged. First, the 
sample size is relatively small. Although it is unclear how 
many patients are needed for the models to reach a pla-
teau in accuracy, a larger data set would likely provide an 
increase in accuracy. Second, the data used in this study 
were retrospectively acquired. To mimic a prospective 
study, we grouped the data according to the admission 
time, in which 75% of patients in the early time were 
trained and 25% of patients in later time were tested. 
Third, other MRI sequences (T1WI, T2WI, or FLAIR) 
were not included in this study. Finally, as a result of the 
sample size, patients receiving bridging therapy were 
also enrolled, Health Quality Ontario [31] demonstrated 
that EVT did not show an increased incidence of clini-
cally relevant HT in comparison with IVT. The therapy 
methods also showed no significant differences between 
the HT group and the no HT group in our study.

F I G U R E  6   Results from the predictive models for patients from the test set. Four biomarkers were used for predictions (diffusion-weighted 
imaging [DWI], mean transit time [MTT], time to peak [TTP], and Clinical data). After deep convolutional neural network (CNNdeep), the 
cutoff value of the DMTC model in predicting the hemorrhagic transformation (HT) is 0.0009681931. (A) Patient A is a 61-year-old man 
(NIHSS = 15), scanned 3.5 h after symptom onset. The predicted value is 0.0107461931, which means the patient having HT after therapy. 
Follow-up CT at 24 h showed HT, which is consistent with the model prediction. (B) Patient B is a 58-year-old man (NIHSS = 18), scanned 3 h 
after symptom onset. The predicted value is 0.00017365169, which means the patient having no HT after therapy. Follow-up CT at 24 h showed 
no HT, which is consistent with the model prediction. (C) Patient C is a 60-year-old man (NIHSS = 13), scanned 3.5 h after symptom onset. The 
predicted value is 0.00051431544, which means the patient having no HT after therapy while follow-up CT at 24 h showed HT. (D) Patient D is a 
65-year-old man (NIHSS = 16), scanned 4 h after symptom onset. The predicted value is 0.001586112, which means the patient having HT after 
therapy while follow-up CT at 24 h showed no HT. Patients C and D showed that the prediction model may give erroneous results [Colour figure 
can be viewed at wileyonlinelibrary.com]

https://onlinelibrary.wiley.com/
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5  |   CONCLUSION

The multiparameter model of DMTC had high accuracy 
and good generalization ability in predicting HT after 
EVT in AIS patients. The proposed DWI, PWI, and clin-
ical multiparameter DL model may provide a potential 
tool for predicting information before therapy to assist 
the periprocedural management in AIS patients with 
EVT.
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