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Abstract

Infancy is a critical period for the human brain development, and brain age is one of the indices 

for the brain development status associated with neuroimaging data. The difference between the 

predicted age based on neuroimaging and the chronological age can provide an important early 

indicator of deviation from the normal developmental trajectory. In this study, we utilize the 

Graph Convolutional Network (GCN) to predict the infant brain age based on resting-state fMRI 

data. The brain connectivity obtained from rs-fMRI can be represented as a graph with brain 

regions as nodes and functional connections as edges. However, since the brain connectivity is 

a fully connected graph with features on edges, current GCN cannot be directly used for it is a 

node-based method for sparse graphs. Hence, we propose an edge-based Graph Path Convolution 

(GPC) method, which aggregates the information from different paths and can be naturally applied 

on dense graphs. We refer the whole model as Brain Connectivity Graph Convolutional Networks 

(BC-GCN). Further, two upgraded network structures are proposed by including the residual 

and attention modules, referred as BC-GCN-Res and BC-GCN-SE to emphasize the information 

of the original data and enhance influential channels. Moreover, we design a two-stage coarse-

to-fine framework, which determines the age group first and then predicts the age using group-

specific BC-GCN-SE models. To avoid accumulated errors from the first stage, a cross-group 

training strategy is adopted for the second stage regression models. We conduct experiments on 

infant fMRI scans from 6 to 811 days of age. The coarse-to-fine framework shows significant 

improvements when being applied to several models (reducing error over 10 days). Comparing 

with state-of-the-art methods, our proposed model BC-GCN-SE with coarse-to-fine framework 

reduces the mean absolute error of the prediction from >70 days to 49.9 days. The code is now 

available at https://github.com/SCUT-Xinlab/BC-GCN.

Index Terms—

Age prediction; deep learning; Graph Convolutional Networks; infant brain; rs-fMRI

I. INTRODUCTION

Neuroimaging-based age prediction is important for brain development and aging analysis 

and brain disease diagnosis [1], [2], [3], [4], [5], [6]. In pediatric brains, the difference 

or gap between the “predicted age” and the “chronological age” can provide an important 

early indicator of deviation from the normal developmental trajectory, which may suggest 

neurodevelopmental delays or disorders, such as autism, attention-deficit/hyperactivity 

disorder (ADHD), etc. Meanwhile, the identified most contributive regions and features 

for age prediction can serve as important biomarkers of brain ages, thus helping us better 

understand the early brain development. In clinical applications, age prediction would be 

beneficial when the prediction errors in healthy subjects achieved by the trained model are 

significantly smaller than the “brain age difference” between the abnormal subjects and 

healthy subjects [1], [2], [3], [4], [5], [6].
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According to recent researches, brain resting-state functional magnetic resonances imaging 

(rs-fMRI) [7] data could be used to predict brain age [1]. The rs-fMRI is an in vivo 

brain functional imaging technique, which measures blood oxygen level-dependent (BOLD) 

signals [8], [9] when scanning subjects in natural rest without any explicit task engagement 

[10]. Based on fMRI time series, brain functional connectivity is defined as the temporal 

correlation of neuronal activities among anatomically determined brain regions [11], [12], 

[13]. It has advanced our understanding of the human brain and its development [14], [13]. 

Dynamic functional connectivity (DFC) is related to a variety of different neurological 

disorders, and has been suggested to be a more accurate representation of functional brain 

networks.

In the past few years, several statistical methods and machine learning methods have been 

used to predict brain age using rs-fMRI and brain functional connectivity. For instance, 

Monti et al. [15] proposed a method that used the Principal Component Analysis (PCA) to 

extract features from the brain connectivity. In [16], researchers adopted the Support Vector 

Machine (SVM) or Support Vector Regression (SVR) directly on the functional connectivity 

matrix. In [17], a Gaussian Processes Regression (GPR) machine was trained to recognize 

patterns of data that matched a given age label. Liem et al. [18] combined SVR with 

Random Forest (RF) through an ensemble learning method to improve the performance of 

age prediction. Although encouraging, there are still major limitations in these methods, 

especially under complicated scenarios like large age span, dynamic early brain development 

and limited datasets.

With the emergence and development of deep learning, effective tools have been developed 

to identify embedded and high-level features from data, such as multi-layer perceptron 

(MLP) for vector quantity, Convolutional Neural Networks (CNN) [19], [20] for images 

and Recurrent Neural Networks (RNN) [21], [22] for sequences. They demonstrate more 

powerful feature extraction capabilities than traditional machine learning methods. Among 

these deep learning methods, CNN and its extensions have superior capabilities to extract 

features from data with regular structures, and have achieved great success in the image-

based classification and regression problems. They have been applied to predict the age 

given different types and modalities of image data, such as face images [23] and brain MR 

images [1]. Unfortunately, the brain connectivity is a graph-like data, which is essentially 

different from regular grid-like image data. It is thus difficult to utilize CNN directly on 

rs-fMRI data. Forcibly applying CNN on the connectivity matrix cannot extract meaningful 

features, resulting in task failure [24].

Besides CNN, there were several studies analyzing brain connectivity through other deep 

learning frameworks. In [25], the similarities of connectivity between different people were 

analyzed, and some regions of high correlation were chosen to predict fluid intelligence 

by MLP. He et al. [26] constructed a model in the order of encoder-decoder, MLP and 

SVM to predict cognitive deficits in infants. Takagi et al. [27] extracted feature of each 

region from connectivity and multiplied them with a learnable matrix to predict intelligence 

and cognitive outcomes. In [28], a deep encoder-decoder model was trained and then the 

encoded time series of regions were used to diagnose Mild Cognitive Impairment. All these 

methods regard brain connectivity as a general matrix or independent vector, without taking 
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the specific spatial structure of brain network prior into account, thus limiting their abilities 

of extracting features and classification and regression tasks.

Mathematically, brain functional connectivity can be represented as a fully connected graph, 

in which the brain regions are defined as nodes and the correlation between regional signals 

is regarded as the weight of the edge [29]. There are two noteworthy characteristics of the 

graph formed by brain functional connectivity. First, all pairs of nodes are connected by 

edges, that is, it is a fully connected dense graph. Second, information is contained in all 

the edges, while the nodes carry nothing. These characteristics of brain connectivity graph 

make it different from other general sparse graphs, and require us to design a special deep 

learning method. BrainNetCNN [30] was a promising attempt to migrate CNN to the brain 

connectivity graph. It treated the graph connection as a pixel in the image, and adopted 

the CNN-like kernel to calculate the convolution of the connections. It was an effective 

method for fMRI data. However, its CNN-based operations cannot capture and characterize 

graph topology information, which limits its feature extraction ability and increases its 

computational complexity.

Recently, there are lots of work focusing on the Graph Convolutional Networks (GCN), 

which combines the deep neural networks and graph models [31], [32], [33]. GCN extracts 

features considering both raw input and topology, making it efficient for analyzing graph 

data. By computing the eigen-decomposition of the graph Laplacian, the graph convolution 

operation can be defined in the spectral domain. Defferr et al. [33] used Chebyshev 

polynomial to approximate the eigenvalue matrix of graph Laplacian. Kipf et al. [31] further 

simplified calculation and developd layer-wise convolution structure, which makes GCN 

easy to be implemented by matrix multiplication. Parisot et al. [34] proposed a population 

graph and adopted GCN for the prediction of Autism and Alzheimer. In this method, 

individuals were considered as nodes with rs-fMRI data and personal data as features, 

and the social relationship was the edge connecting people. The population graph was a 

social relationship defined sparse node-based graph, which is different from rs-fMRI data 

defined dense edge-based brain connectivity graph. Current GCN-based algorithms mostly 

focus on node-based graphs, which learn message passing from nodes to nodes [24]. It is 

more suitable for the sparse graph with representative features on nodes, because too many 

edges would bring noise and hurt neighborhood aggregation as well as the performance of 

GCN [35]. However, the rs-fMRI based brain connectivity graph is a fully connected graph 

with edge-based features. Although we can make the brain connectivity sparse by using a 

threshold-based method, it will inevitably lose information. Hence, GCN and its variations 

are not very suitable to our graphs.

Therefore, it is imperative to develop edge-based graph learning algorithms to analyze 

large fully-connected graph data. Edges of brain connectivity graph represent the strength 

of functional connections between brain regions, which have great practical significance 

in communication between brain regions. Besides directly connected edges, the indirect 

connections between brain regions (through other brain regions) also play an import role 

in brain communication [36]. All these directly and indirectly connected edges are defined 

as paths in graph theory, and we develop a novel Graph Path Convolution (GPC) method 

to extract features from different graph paths. After GPC, Edge Pooling (E-P) and Node 
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Pooling (N-P) are adopted to downsample the data from edges and nodes. Thus, the GPC, 

E-P and N-P are basic components of our proposed model, i.e., Brain Connectivity Graph 

Convolutional Network (BC-GCN). Inspired by ResNet [37] and Squeeze-and-Excitation 

Network (SE Net) [38], we further propose to combine Res block and SE block with 

GPC layer to emphasize the characteristics of data and enhance influential channels. 

The model with GPC-Res layers or GPC-SE layers is called BC-GCN-Res or BC-GCN-

SE, respectively. While applying a single model to predict infant age, we also found a 

noteworthy phenomenon: the prediction error is generally lower in the middle age group 

than the ones in young and old groups. This indicates that during infancy, the brain develops 

so rapidly that a single pattern is hard to describe the feature in different age periods [39]. So 

we design a two-stage coarse-to-fine framework to first coarsely divide subjects into three 

age groups and then finely predict an accurate age through the group-specific model.

By employing BC-GCN-SE as the basic model for the classification and prediction tasks 

in the coarse-to-fine framework, we can greatly improve the performance. Furthermore, 

we propose a specific backtracking method for our proposed graph deep learning model. 

It employs gradients to automatically calculate the importance of features, so that the 

relationship between brain functional connection and infant development can be revealed.

In general, our contributions are in three aspects. First, to aggregate the information of direct 

and indirect connections between brain regions, we design a new Graph Path Convolution 

(GPC) method and develop a Brain Connectivity Graph Convolutional Networks (BC-GCN) 

as a base model. Second, we propose two extended models BC-GCN-Res and BC-GCN-SE, 

including Res block and SE block, which further improve the performance of the base 

model. Third, to solve the unbalanced error distributions among different age groups, we 

design a two-stage coarse-to-fine framework that determines age group and predicts age in 

sequence. By testing on infant rs-fMRI scans from 6 to 811 days of age, our proposed model 

significantly outperforms the state-of-the-art by a mean average error (MAE) of 49.9 days. 

Furthermore, predictive functional connections can be discovered by a specifically-designed 

backtracking method, which contributes to better understand infant brain development. It is 

worth noting that, our proposed BC-GCN series models can be applied to many rs-fMRI 

based tasks, as they are very generic.

II. DATA AND PRE-PROCESSING

We use a public dataset including 612 (256 males and 356 females) rs-fMRI scans from 

248 typically-developing infant subjects with age ranged from 6 to 811 days [40]. The 

subject demographics is shown in Table I. Images were acquired on 3T Siemens Prisma 

MRI scanners using a 32-channel head coil. T1-weighted MR images were obtained 

with TR/TE/TI = 2400/2.24/1600 ms, flip angle = 8, acquisition matrix = 320×320, and 

resolution = 0.8×0.8×0.8 mm3. T2-weighted MR images with TR/TE = 3200/564 ms, 

acquisition matrix = 320×320, and resolution = 0.8×0.8×0.8 mm3. For the same cohort, 

rs-fMRI scans were acquired with TR = 800 ms, TE = 37 ms, flip angle = 80°, FOV = 208 

mm, resolution = 2×2×2 mm3, total volume = 420 (5 min 47 sec).
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All functional MRI scans were preprocessed following an infant specific procedure [41], 

[42], including the following major steps: (1) head motion and spatial distortion correction; 

(2) alignment of fMRI scans onto their structural MRI scans based on tissue boundary maps 

[43]; (3) one-time resampling of fMRI data in each subject’s native space by concatenation 

of the above transformations to avoid interpolation and smoothing of functional signals 

for multiple times; (4) removing linear trends in fMRI data using a conservative high-pass 

filtering; (5) decomposing each fMRI into 150 components using individual independent 

component analysis; and (6) removing noisy components based on a deep-learning model 

[44]. Scans with large head motion were excluded for further analysis. After preprocessing, 

the fMRI time series were aligned into the individual’s physical space (T1w) to establish 

the correspondence between the structure image and the functional image. We partitioned 

the brain volume into 112 regions of interest (ROIs) by wrapping a brain atlas [45] onto 

each scan based on tissue maps. For each ROI, the average time series was used as the 

representative time series of this ROI for network construction.

III. PROPOSED METHOD

The flowchart of our proposed coarse-to-fine framework is illustrated in Fig. 1, including 

(Step A) the computation of slice-based dynamic functional connectivity matrices, (Step B) 

the age group classification, and (Step C) the group-specific age prediction. Specifically, 

in Step A, the input is brain region-based sequential rs-fMRI data, the blood oxygen level-

dependent (BOLD) signal, and we utilize a sliding window with a constant stride to cut the 

sequence into several small slices along the time axis. For each slice, we adopt the FSLNets1 

to compute the Pearson’s correlation matrix, which characterizes the connectivity properties 

between brain regions. These matrices, also referred as dynamic functional connectivity 

(DFC) matrices, define the short-time functional graph of brain regions, and are also the 

inputs of the following Steps B and C. Steps B and C are the coarse stage and the fine 

stage, respectively. Within these two stages, the core model is our proposed novel Graph 

Path Convolution (GPC) method, which aggregates the information of direct and indirect 

connections between brain regions, and Brain Connectivity Graph Convolutional Networks 

(BC-GCN) are designed accordingly. Then, we incorporate Res block and SE block for two 

extended models, i.e., BC-GCN-Res and BC-GCN-SE, to emphasize the characteristics of 

data and enhance influential channels. We use BC-GCN-SE in Steps B and C. Step B is 

the coarse stage, where subjects are divided into three age groups: young, middle and old. 

The BC-GCN-SE based classification model returns the classification result of every slice. 

Then, by averaging the classification scores of all belonging matrices, each subject can be 

classified into a specific age group. It determines the model selected in Step C, which is the 

fine stage. Given the age group, we choose the group-specific model to predict the age of 

every slice-wise correlation matrix, and obtain the final prediction of subjects by averaging.

In the following section, we will first introduce the proposed Brain Connectivity Graph 

Convolutional Networks (BC-GCN) and its extended versions BC-GCN-Res and BC-GCN-

SE, then expound the strategy of our two-stage coarse-to-fine framework, and finally derive 

a backtracking formula for the proposed algorithm.

1 http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets 
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A. Brain Connectivity Graph Convolutional Networks (BC-GCN)

1) Graph Structure of Brain Connectivity: A graph can be represented as G = (N, 

E), where N is the set of nodes and E is the set of edges. By considering brain regions as 

nodes and their connections as edges, the brain connectivity can be regarded as a graph. 

In general, for the sparse graph, only few nodes are connected by edges. But in brain 

connectivity, nodes are fully connected. If we set n as the number of nodes, then the number 

of edges is n2, that is, |N | = n and |E | = n2. As mentioned above, Graph Convolutional 

Networks (GCN) is a node-based deep learning method that learns the message passing from 

nodes to nodes. GCN pays more attention on nodes and their features, and is mainly used 

for sparse graph [24], while the brain connectivity is essentially a fully connected graph with 

edge-related features. Therefore, GCN is unsuitable for the brain connectivity.

Hence, we design an edge-based graph network algorithm dedicated for the fully connected 

brain connectivity, called Brain Connectivity Graph Convolutional Networks (BC-GCN). 

BC-GCN model is consist of three basic layers, i.e., Graph Path Convolution (GPC), Edge 

Pooling (E-P) and Node Pooling (N-P). GPC is adopted to extract features from edges. 

After GPC, E-P and N-P are used to downsample data from edges and nodes to get the 

output feature. Besides these three basic layers, two structures Res block and SE block 

are proposed, which can extend GPC layer to GPC-Res or GPC-SE and will be detailed 

in section III-B. Fig. 2 shows the illustration of BC-GCN-SE, an advanced version of 

BC-GCN, in which GPC layers are replaced by GPC-SE layers.

2) Graph Path Convolution (GPC): In the human brain, the relationships between 

brain regions are complex and multilevel. The direct contact and indirect contact between 

brain regions both play important roles in brain communication. For example, the 

communication between brain region i and brain region j not only has connection i – j, but 

also has the indirect connection, e.g., the connection i – k – j through another brain region 

k. Although the direct connection between brain regions i and j might be weak, they can still 

relate to each other through the route i – k – j. All these direct and indirect connections are 

basics of communication between brain regions [36].

The route i – j or i – k – j is defined as a “path” in graph theory, which represents the 

direct or indirect connection between two nodes. As shown in Fig. 3(a), we define the direct 

connection as a 0-order path, the indirect connection through only one other node as 1-order 

path, and so on for 2-order path and 3-order path. The abbreviation for these paths are 

P i, j
0 , P i, j

1 , P i, j
2  and P i, j

3 . Actually, P i, j
*  is a scalar equal to the sum of its compositional edges, 

for example, P i, j
0  is the edge Ei,j, and P i, j

1  is the sum of Ei,k and Ek,j. As analyzed before, 

these paths may include important information about the relation between brain regions. To 

aggregate multi-order information from these paths, we propose Graph Path Convolution 

(GPC):

GP i, j = ∑
s = 0

S
∑
k = 1

P i, j
s, *

P i, j
s, kws, k θs, (1)
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where P i, j
s, k represents the kth s-order path between node i and node j, and GPi,j is the 

aggregation of all the paths between i and j. S limits the highest order of paths, and P i, j
s, *  is 

the number of s-order paths. ws,k and θs are learnable parameters, i.e., ws,k is the weight for 

kth s-order path and θs is for order s. GPC can aggregates data form 0-order paths to S-order 

paths and extracts meaningful features from these paths.

Eq. 1 is the basic formula of GPC, and it plays a role of extracting features in the BC-GCN 

model. Deep learning methods usually stack the basic layers to enlarge receptive field and 

improve their performance. By setting the GPi,j as the 0-order path P i, j
0  for next layer, we can 

also make a layer-wise GPC and it can be repeated like basic layers. Using superscript l to 

represent the lth layer of data, the layer-wise GPC can be represented as follow:

P i, j
0, l + 1 = GP i, j

l = ∑
s = 0

S
∑
k = 1

P i, j
s, * , l

P i, j
s, k, lws, k

l θs
l

(2)

where P i, j
s, k, l means the kth s-order path between node i and node j of lth layer data, and P i, j

0, l + 1

is the 0-order path between node i and node j of (l + 1)th layer specifically. However, the 

computational complexity of the base GPC is too high with too many parameters. Hence, 

referring to the simplification ideas in [31], we set S = 1 and only consider the 0-order 

paths and 1-order paths. Although the single GPC layer’s receptive field become smaller, 

by stacking layers, we can still calculate higher-other paths and obtain larger receptive field. 

0-order paths P i, j
0  and 1-order paths P i, j

1  can be easily represented by Ei,j and Ei,k + Ek,j, and 

Ei, j
l + 1 is the (l + 1)th layer of edge data. To be specific:

Ei, j
l + 1 = P i, j

0, l + 1

= ∑
k = 1

P i, j
0, * , l

P i, j
0, k, lw0, k

l θ0
l + ∑

k = 1

P i, j
1, * , l

P i, j
1, k, lw1, k

l θ1
l

= ∑
k = 1

P i, j
0, * , l

Ei, j
l w0, k

l θ0
l + ∑

k = 1

P i, j
1, * , l , k ≠ i, j

Ei, k
l + Ek, j

l w1, k
l θ1

l

(3)

Note that, the 1-order paths Ei,k + Ek,j have a limitation that k ≠ i, j. However, if we let k 
= i (or k = j), then Ei,k + Ek,j = Ei,i + Ei,j = 0 + Ei,j = Ei,j, that is, 0-order paths can be 

represented by the same formula as 1-order paths, and they can be merged into one formula. 

Inspired by [31], setting some parameters to be consistent can reduce model complexity 

and enhance its robustness. By setting θ0
l = θ1

l and w0, k
l θ0

l = w1, k
l θ1

l = wk
l , we get the simplest 

expression:
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Ei, j
l + 1 = ∑

k = 1

P i, j
0, * , l + P i, j

1, * , l

Ei, k
l + Ek, j

l w1, k
l θ1

l

= ∑
k = 1

P i, j
0, * , l + P i, j

1, * , l

Ei, k
l + Ek, j

l wk
l

= ∑
k = 1

n
Ei, k

l + Ek, j
l wk

l,

(4)

where n is the number of nodes, and wk is the learnable parameters for 0-order and 1-order 

paths. Although we only consider 0-order and 1-order paths in this simplified process, by 

stacking several GPC layers, meaningful features from high-order paths can be learnt from 

the brain connectivity.

3) Edge Pooling (E-P) and Node Pooling (N-P): GPC can effectively extract 

features without changing the graph structure of data. Pooling is an important layer to reduce 

data size while retaining useful information. Therefore, after GPC, Edge Pooling (E-P) and 

Node Pooling (N-P) are employed to aggregate the data from edges and nodes. By taking the 

same approach as the E2N layer and N2G layer in BrainNetCNN [30], E-P aggregates data 

from edges to their central nodes (N ), as shown in Fig. 3(b), and N-P brings all node data 

together (Fig. 3(c)), generating a final single output to represent the whole graph (G). Both 

of two layers require learnable parameters in the aggregating process. Mathematically, they 

are defined as follows:

Ni
l + 1 = ∑

k = 1

n
Ei, k

l wk
l

(5)

Gl + 1 = ∑
k = 1

n
Nk

lwk
l

(6)

Note that although we utilize the same letter wk to represent the learnable parameters in 

GPC, E-P, and N-P, they are independent of each other without sharing weights. GPC, E-P 

and N-P are sequentially spliced together, as shown in Fig. 2, among them GPC can be 

repeated several times (3 times in this work). Fully connected layer is used to get the final 

output from a channel-wise dimensional vector. By changing the output dimensionality and 

activation function of the last fully connected layer, the proposed model can be either a 

classifier or a predictor.

B. Extended Structure

Inspired by CNN extend module, we propose two extended structures to emphasize the 

characteristics of data and enhance influential channels by including Res block and SE 

(Squeeze-and-Excitation) block.
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1) Res Block: ResNet[37] emphasizes the characteristics of data itself by adding residual 

structure between the convolution layers and achieves good results. In our GPC, because 

each edge can collect information from 2 × n edges (Eq. 4) of the previous layer, the 

influence of edge itself is neglected to some extent. So inspired by ResNet, we define our 

Res block:

Ri, j
l + 1 = Ei, j

l ul, (7)

where u is a learnable parameter to adaptively transform the edge itself, R represents the 

result of Res block, and its data size is the same as the edge E. The Res block is used in 

conjunction with GPC, called GPC-Res:

El + 1 = fGPC El

Rl + 1 = fRes  El

Ol + 1 = El + 1 + Rl + 1,
(8)

where fGPC and fRes are abbreviated representations of GPC layer and Res block, and O is 

the output of GPC-Res. The addition of Res block can make GPC layer more flexible, and 

the basic model BC-GCN with Res block called BC-GCN-Res.

2) SE Block: Inspired by another CNN model Squeeze-and-Excitation Network (SE Net) 

[38], we propose to extend the BC-GCN model by including a channel attention layer learnt 

by SE block, referred as BC-GCN-SE.

The SE block is designed similar with the original SE network but the convolution is 

changed as above discussed GPC. After GPC, we can get a vector of channel-number-

dimensionality by global average pooling. Then, three fully connected layers with activation 

function are used to learn an attention vector to impact the channel of data by multiplication. 

The whole channel-wise attention process is as follows:

El + 1 = fGPC El

V l + 1 = fAvg El + 1

V se
l + 1 = fSE V l + 1

Ese
l + 1 = El + 1 × V se

l + 1,

(9)

where fAvg means global average pooling and we can get a vector V through fAvg. Vse 

means the attention score learned by SE block fSE, and Ese is the output of this channel-wise 

attention process.

SE block focuses on feature extraction, while Res block aims to emphasize the data itself, 

and they can work together:

Rl + 1 = fRes El

Ol + 1 = Ese
l + 1 + Rl + 1 (10)
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As in our BC-GCN-SE model, both SE block and Res block are combined with GPC layer, 

referred as GPC-SE and shown in Fig. 2.

C. Two-stage Coarse-to-fine Framework

In the infant age prediction, there is a noticeable phenomenon, that is, the prediction error 

is generally low in the middle age group while high in young and old age group. We plot 

the prediction error curves along the age of several different methods in Fig. 6(a), and all 

these curves follow a “high-low-high” distribution. This “high-low-high” phenomenon is 

because the infant brain develops heterogeneously and a single regression method cannot 

well represent their temporal differences and longitudinal inter-subject variations. Hence, 

inspired by [39], we propose a two-stage coarse-to-fine framework as shown in Fig. 1. By 

partitioning the age range into three age groups (i.e., young, middle, and old), the model 

first classifies the age group and then predicts the age using the prediction model of the 

corresponding group. In this way, different prediction models can capture characteristics of 

different age groups and avoid performance degradation. In our experiment, we set the data 

size of these three groups similar to balance three corresponding prediction models, i.e. the 

number of subjects in three age groups are similar.

However, age is a continuous variable, not discrete categories. The first stage classification 

error could affect the final result to some extent. Based on our experiments and observation, 

for the first stage, the subject has high probability of being mis-classfied to its neighboring 

age groups (i.e. the subjects of young age group can only be mis-classified to middle 

group, details shown in Table IV). In view of this, we adjust the training data of the three 

group-specific prediction models and make sure some data from neighboring groups can 

also be included. Hence, even if the error occurs in the first stage, the prediction model 

can still make a reasonable estimation for it has seen similar samples in its training set. 

For example, for the prediction model of the old age group, the training data includes both 

second half of the middle age group and the whole old age group subjects. The regrouping 

training strategy is illustrated in Fig. 4.

D. Backtracking

Besides accurately predicting age, it is also very important to explore the relationship 

between the age and brain regions, i.e., the output and input of the prediction model, 

because it can reveal physiological changes in the developing brain. Previous methods for 

analyzing features importance can only be applied to traditional machine learning method 

(like counting the information divergence of the Decision Tree) or CNN (like CAM [46] 

or Grad-CAM [47]) but not GCN, because they would lead to the asymmetric connective 

matrix, which violates the definition of the graph model. In other words, those backtracking 

methods cannot correctly learn the feature importance for GCN models. Hence, based on 

the proposed model, we design a new backtracking algorithm that allows us to identify the 

impact of every brain functional connection for the final result.

In the deep learning model, we have the predicted output y and the loss L (we adopt MAE as 

our loss in experiments) comparing with its ground-truth label. Then through the chain rule, 

the gradient can be computed as:
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∂L
∂xi

= ∂L
∂y

∂y
∂xi

, (11)

where xi is the ith feature of input x. ∂L
∂xi

 can be calculated through the automatic back 

propagation (BP) algorithm of deep learning framework like PyTorch. It’s worth to notice 

that ∂L
∂xi

 is the gradient to make L larger, and the inverse gradient is the significance of xi to 

y. Therefore, we have:

Δxi = − ∂L
∂xi

, (12)

where ∆xi indicates the significance of the ith feature of input x to output y.

The process is as follows. First, save a well-trained model and make prediction for each 

subject. Then, instead of using ground-truth age, the label of target age is set to a value 

larger than the predicted age and used to compute the loss with predicted age. To be specific, 

we set the label to the predicted age plus one day, so actually the computed loss of each 

output is one. Finally, we can calculate ∆x by Eq. 11 and Eq. 12, and it actually means how 

the brain connectivity would change if the subject becomes one day older.

However, the ∆x obtained from the input is asymmetric, which contradicts the symmetric 

input connectivity matrix. This is because the data in the symmetric position of the 

connectivity matrix, which means the same edge actually, have different flow directions 

when passing through GPC, E-P and N-P. For illustration, we show a simple example in 

Fig. 5, where the input graph has only three nodes i, j and k. The top box shows GPC, 

E-P and N-P layer in graph form and their specific formula representations. According to 

these formulas, we draw this process in matrix form and focus on the path that Eij and Eji 

through. Specifically, Eij enters output G by multiplying parameters wj
GPC * wk

EP * wi
NP, while 

Eji multiplies different parameters wj
GPC * wi

EP * wk
NP, which makes their gradient different.

Hence, we should regard Eij and Eji as two streams of the same edge, and these two streams 

are both meaningful and effective in the forward prediction and back propagation (BP). 

According to the multi-stream BP algorithm, the gradient accumulation of different path 

calculations can get the input gradient, which means that the sum of ∆Eij and ∆Eji is the 

real gradient of the edge, so we transpose the calculated ∆x and add to itself to get the real 

gradient:

grad(x) = Δx + ΔxT
(13)

There are four networks in our coarse-to-fine framework, one classification network in 

coarse stage and three prediction models (Young_M, Middle_M and Old_M) in fine stage 

(shown in Fig. 1). The classification network is not considered in backtracking for it is only 

a simple guide to the network behind. As for the three prediction networks, we divide the 

subjects into three groups according to the classification network, and utilize these subjects 

to calculate gradient through their corresponding networks. By averaging the gradient of 
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slice matrices of same subjects, we can get each subject’s gradient, and the gradients of 

subjects in the same group are averaged to get three final gradients to represent the three age 

groups.

IV. EXPERIMENTAL RESULTS

In our functional MRI scan with 420 time points, we adopted a sliding window of 50 points 

and a stride of 37 points, cutting it into 11 slices and calculating their connectivity matrices 

respectively. These correlation matrices of all the slices were taken as input samples for 

all comparison models. In the testing, we averaged the classification or prediction result of 

each slice to get the result of this MRI scan, and a subject’s final age prediction result was 

the average of all his scans (PA, AP, or retest) at the same age. We employed the 10-fold 

cross validation strategy for model evaluation. To prevent information leakage, subjects in 

the testing set were totally different from the ones in training set. Moreover, with stratified 

cross validation, the age distributions of the training set and testing set were kept similar 

to ensure the model reliability. There are four models in our coarse-to-fine framework, 

including one coarse stage classification model and three fine stage prediction models. In 

each fold of training, we first trained the classification model with the training set. Then, 

by fixing the well-trained classification model, we further trained three prediction models 

separately according to the subject’s age group. All models were trained with the same 

settings, including SGD optimizer with momentum of 0.9, batch size of 64 and learning rate 

as 0.001. The classification model was trained 20 times with 30 epochs each time, while the 

prediction models were trained 20 times with 20 epochs each time. We used L1 as the loss 

function, and calculated mean absolute error (MAE) and Pearson’s Correlation Coefficient 

to evaluate the performance of each method.

A. BC-GCN Model Ablation Study

We first test the regression performance of our proposed BC-GCN and compare it with 

other related methods. In this experiment, the input is the connectivity matrices of sliced 

rs-fMRI data, and the output is the predicted age of each subject. BC-GCN, BC-GCN-Res 

and BC-GCN-SE have the structure as described in Section III-A1. To conduct the fair 

comparison with BrainNetCNN [30], we adopted their proposed neural network structure 

and extended it into BrainNetCNN-Res and BrainNetCNN-SE by adding Res and SE block.

Methods in this experiment include BrainNetCNN [30] series and BC-GCN series. Both 

BC-GCN, BC-GCN-Res and BC-GCN-SE have the same structure of three 16-channel GPC 

layers, one 64-channel E-P layer and one 256-channel N-P layer. Note that the GPC layers 

in BC-GCN-Res and BC-GCN-SE are GPC-Res and GPC-SE separated. BrainNetCNN is 

set to a similar structure of three 16-channel E2E layers, one 64-channel E2N layer and one 

256-channel N2G layer, and the Res blocks or SE blocks are added to the E2E layers to 

form BrainNetCNN-Res or BrainNetCNN-SE. For the fair comparison, we have carefully 

fined-tuned the BrainNetCNN and reported its results based on its best setting on our 

data set. ReLU activation function is used between any adjacent layers. The result of each 

method is shown in Table II.

Li et al. Page 13

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Beside experiments on the whole dataset, we further implemented the comparison with 

infants from birth to one year of age, because the the first year is the most important 

developmental stage in the lifespan. The experimental setting is the same as above. The 

corresponding MAE of age prediction is shown in Table III.

According to Table II and Table III, Res block and SE block can clearly improve the 

accuracy, especially in BC-GCN. Also BC-GCN series have better performance than 

BrainNetCNN series. In general, regardless of the age range of subjects, BC-GCN-SE 

performs the best. Therefore, we use BC-GCN-SE model for the following experiments.

B. Coarse-to-fine Prediction Framework

Based on experiments in the previous sub-section, we illustrate the prediction error curves 

along the age of several models, as shown in Fig. 6(a). All the models work well in the 

middle age group but badly in the young and old age group, showing a “high-low-high” 

age-error curve. It verified our assumption that brain connectivity developmental patterns 

are different in different age ranges and a single prediction model cannot model the 

heterogeneity well. As discussed in Section III-C, we set that age < 200 days as young, 

200 – 400 days as middle and age > 400 days as old, and test the coarse-to-fine framework 

for its ability to improve the prediction accuracy.

In order to verify the feasibility of classification, we utilized BC-GCN-SE, the best model in 

the prediction task, and transformed it into a classifier. To be specific, the classifier output is 

1 × 3 as the age group after a softmax function. To make the experiment more reasonable, 

we took 10% data from the training set as the validation data. The classification result is 

shown in Table IV.

As shown in Table IV, the accuracy in validation set is 85%. However, due to the lack of 

data, the model is not very robust and only reaches an accuracy of 75% in test set. But we 

can also see that all errors are between the adjacent categories, that is, the subject can only 

be mis-classified as its neighboring age groups. Therefore, as discussed in Section III-C, we 

adjust the training data of the three group-specific prediction models to make sure that some 

data from neighboring groups can also be included, as shown in Fig. 4.

Now we have one model as classifier to identify the age range and three age group specific 

models to predict infant age. In the following experiments, we adopted the same structure 

BC-GCN-SE for all four models but different parameters. These four models were trained 

respectively with different training sets. The experimental results are shown in Table V 

and Fig. 6(b). In Fig. 6(b), we show the comparison plot of prediction error. With the two-

stage coarse-to-fine prediction framework, errors of the young and old age are significantly 

reduced. The error of middle age group has increased slightly, this is because even if our 

middle predicted model is trained by the whole dataset (as shown in Fig. 4), which make it 

equivalent to the original model, but some middle age subjects may be mis-classify to young 

age or old age and be predicted by wrong model, making it worse than being predicted by 

middle model (equal to original model). However, the improvement of young and old is so 

huge that the total performance of coarse-to-fine framework is still excellent.
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In Table V, prediction errors of different age ranges and overall results are shown. 

Obviously, a single BC-GCN-SE model can not work well in all age ranges while BC-GCN-

SE with the coarse-to-fine framework strikes a balance between different age groups and 

has greatly improved the result in young group (< 200) and old group (> 400). To further 

verify the effectiveness of the coarse-to-fine model, we implemented a deeper model, BC-

GCN-SE-Deep, which has one more GPC layer. However, its results are the worst among all 

three models, indicating the deeper model cannot help.

Besides, to evaluate the effect of data imbalance among age groups, we have designed an 

additional experiment, where the data is divided equally into three groups: < 248 days (83 

subjects), 200 – 400 days (83 subjects) and > 394 days (82 subjects). We compare the age 

prediction error of these two different training data division methods and show them in 

Table VI. There is only subtle difference between their results. This indicates that slight 

data imbalance of training subject groups have very limited effects on the final result. As 

long as we employ separate models for different age groups, with the proper coarse-to-fine 

framework, the results can be clearly improved. Since the imbalanced data division strategy 

has better performance, we will use this setting in the following experiments.

Moreover, we tested the performance of the coarse-to-fine framework on BrainNetCNN 

series models and BC-GCN series model, as shown in Table VII. In all experiments, the 

coarse-to-fine framework shows significant improvements compared with the origin models 

(more than 10 days improvement for each model), which further proves its effectiveness 

and universality. We think it is a powerful method and could be used more broadly in other 

applications.

C. Comparison with State-of-the-art Methods

Several popular machine learning methods have been applied in the brain rs-fMRI, 

e.g., Multi-layer Perceptron (MLP), Convolutional Neural Networks (CNN) and Graph 

convolutional Networks (GCN) [31]. Recently, BrainNetCNN [30], PR-GNN [48] and 

BrainGNN [49] have been specifically proposed for fMRI data and performed well on 

various tasks. These methods can also be used for the task of infant age prediction. In this 

section, we will test and compare the performance of all these methods. These models’ 

setting are as follows. 1) The MLP model has two fully connected layers with channels of 

64, 16. 2) CNN model has four convolution layers with channels of 16, 16, 64, 256. 3) GCN 

model consists of two graph convolution layers with channels of 32 and 8. 4) PR-GNN has 

two GATConv layers with channels of 64, 32, two TopK pooling layers with ratio 0.5 and 

a fully connected layer with channels of 16. 5) BrainGNN has two Ra-GConv layers with 

cluster of 8 and channels of 64, 32, two TopK pooling layers with ratio 0.5 and a fully 

connected layer with channels of 16. All comparing methods have been carefully adjusted 

and fine-tuned to reach their best performance on our dataset, including the number of 

layers, the channels of each layer and some regularization methods. Table VIII shows the 

MAE, Pearson’s correlation and numbers of parameters of these models and Fig. 7 shows 

the error bar of these models. Note that the mean MAE and std are calculated by 20 times of 

10-fold results.
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In Fig. 7, the yellow, pink, blue and green bars represent baseline methods, recent methods, 

proposed methods and proposed methods with the coarse-to-fine framework, respectively. 

Obviously, our proposed methods perform better than baseline methods and recent methods, 

and the coarse-to-fine framework can further improve the performance. As can be seen in 

Table VIII, our proposed method BC-GCN-SE with the coarse-to-fine framework reached 

the minimum MAE of 49.92 days and the maximum Pearson’s correlation 0.9512. From the 

view of parameters, MLP, CNN, GCN, PR-GNN and BrainGNN use very few parameters, 

but their results are poor. In fact, even if we increase the number of parameters in 

these models, their performance only degrades, showing their ineffectiveness. BC-GCN 

series, especially BC-GCN-SE, has the same number of parameters, but better performance 

compared with Brain-NetCNN. By combining with the coarse-to-fine framework, results of 

every BC-GCN method are significantly improved, even though it has more parameters. In 

general, our proposed BC-GCN-SE model and coarse-to-fine framework reach the state-of-

the-art result of infant age prediction using the rs-fMRI data.

D. Maps of Predictive Connections

In order to find which connections are learned by BC-GCN to be predictive for age, we 

utilized the gradient backtracking method in III-D to calculate the importance of every 

functional connection. Since we have three prediction models (Young_M, Middle_M and 

Old_M) to represent three age groups, they should be calculated independently. According 

to the results of classification network in coarse stage, all subjects were classified in one of 

the three groups. Then, the gradient of each prediction network can be calculated through 

specific subject groups. The results are shown in Fig. 8, where a thicker line means a 

gradient with a larger absolute value and indicates greater impacts on brain development.

As shown in Fig. 8, taking all three age groups into account, the left hemisphere and right 

hemisphere develop largely symmetrically during infancy, and the rapid development is 

concentrated in the brain regions associated with the primary senses like vision and hearing. 

To be specific, in the young age group (<200 days), the occipital pole shows great influence, 

and in the middle age group (200–400 days), beside the occipital pole, the temporal pole 

also develops rapidly. The occipital pole is mainly responsible for vision, while the temporal 

pole is involved in audiovisual and language functions, revealing the tendency of infant 

brain development. In the old age group (>400 days), the brain development focuses on 

the intra-calcarine cortex and cuneal cortex. Although not the primary responsible area of 

vision, the visual center of the brain is located near the intra-calcarine cortex and the area 

which controls peripheral vision located at the front of the region, making the entire area 

fairly important, as well as the cuneal cortex, which is most known for its involvement in 

basic visual processing. In general, the human brain develops so rapidly during infancy that 

the main influential brain regions are largely different among three age periods, while all 

these brain regions are closely related to vision or hearing.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed Brain Connectivity Graph Convolutional Networks (BC-GCN) 

and its extended versions, BC-GCN-Res and BC-GCN-SE, to analyze rs-fMRI based 
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functional connectivity network and applied them to predict the infant brain age. Further, 

we proposed a two-stage coarse-to-fine framework with one classification model and three 

group-specific prediction models (BC-GCN-SE with coarse-to-fine). Of note, these four 

models share the same network structure but different parameters. BC-GCN and its extended 

models show clear advantages over the competing methods. The coarse-to-fine framework 

further improved the performance, reducing the prediction error to as low as 49.9 days. In 

the future, we will apply the proposed BC-GCN and its extended models to other brain 

connectivity related problems.
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Fig. 1. 
The general flowchart of our proposed framework. Input is the blood oxygen level-

dependent (BOLD) signals of infants in natural rest without any explicit task engagement, 

and output is the predicted age of each infant. The whole process consists of three steps. 

Step A (data processing) calculates the dynamic brain connectivity matrices from each 

subject using FSLNets tool and sliding window with overlap, Step B (coarse stage) utilizes 

a classification model to determines the age group (young, middle or old) of subjects, and 

Step C (fine stage) predicts the age through the regression model (Young_M, Middle_M or 

Old_M) selected based on the classified age group in Step B. All the models in Step B and 

Step C use the connectivity matrices from Step A as input.
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Fig. 2. 
Illustration of the proposed BC-GCN-SE model. The input is a graph-like brain connectivity 

data, where nodes represent brain regions and edges represent function connections. Firstly 

three GPC-SE layers extract the features on edges, and real data changes are visualized in 

the dashed box. Then E-P pools data from edges to node, leaving only the node structure, 

and N-P pools data on edges to get a single output. Note this single output is actually a 

channel-number-dimensionality vector, and a fully connected layer is needed to make a final 

prediction.

Li et al. Page 21

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 3. 
Schematic diagram of three basic layers in BC-GCN. (a) Aggregating information from 

paths with different orders by Graph Path Convolution (GPC). (b) Data pooling from edges 

to node (Edge Pooling, E-P for short). (c) Data pooling from isolated nodes to a single 

output (Node Pooling, N-P for short).
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Fig. 4. 
Cross-group training strategy of three prediction networks. The training set covering part of 

adjacent data sets can reduce the impact of classification errors from the coarse stage on the 

prediction in the fine stage.
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Fig. 5. 
Illustration of GPC, E-P and N-P in graph form and matrix form. They show that even 

though they represent the same edge, Eij and Eji get through different path in model, which 

make their gradient different. So we should regard Eij and Eji as two streams of the edge and 

use multi-stream BP algorithm to calculate its real gradient.
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Fig. 6. 
Age-Error curves of different methods and with proposed coarse-to-fine process.
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Fig. 7. 
Error bars of state-of-the-art methods in terms of MAE with 20 times 10-fold cross 

validation experiments.
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Fig. 8. 
The predictive connections calculated from three prediction models (Young_M, Middle_M 

and Old_M), representing three age groups, respectively. The thicker edges indicate greater 

impacts on infant brain development.
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TABLE I

SUBJECT DEMOGRAPHICS (D: DAY; THE DISTRIBUTION OF AGE IS REPRESENTED BY MEAN±STANDARD DEVIATION.)

<100D 100–200D 200–300D 300–400D 400–600D >600D

Subjects (Male) 23 (7) 45 (22) 50 (20) 50 (26) 47 (17) 33 (14)

Age (days) 69±23 157±28 260±30 349±30 482±54 724±53

IEEE Trans Med Imaging. Author manuscript; available in PMC 2023 October 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Li et al. Page 29

TABLE II

PREDICTION MODEL PERFORMANCE BY DIFFERENT METHODS.

Method MAE (days) Method MAE (days)

BrainNetCNN [30] 70.57 BC-GCN 68.03

BrainNetCNN-Res 69.90 BC-GCN-Res 66.99

BrainNetCNN-SE 67.67 BC-GCN-SE 61.40
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TABLE III

PREDICTION MODEL PERFORMANCE OF SUBJECTS IN YEAR ONE.

Method MAE (days) Method MAE (days)

BrainNetCNN [30] 36.54 BC-GCN 34.95

BrainNetCNN-Res 36.71 BC-GCN-Res 32.88

BrainNetCNN-SE 35.81 BC-GCN-SE 31.62
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TABLE IV

CLASSIFICATION RESULTS OF BC-GCN-SE CLASSIFIER, INCLUDING THE ACCURACY OF VALIDATION SET AND TEST SET AND 

THE ERROR RATE FOR DIFFERENT SITUATIONS.

Classification Situation Rate

correct (validation set)
correct (test set)

85%
75%

mis-classify young to middle
mis-classify young to old

7%
0%

mis-classify middle to young
mis-classify middle to old

2%
6%

mis-classify old to young
mis-classify old to middle

0%
9%
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TABLE V

EXPERIMENTAL RESULTS (MAE) OF THREE AGE RANGES AND OVERALL RESULTS. CF: COARSE-TO-FINE FRAMEWORK.

Method
Age (days)

Overall
<200 200–400 >400

BC-GCN-SE 49.99 37.71 100.73 61.40

BC-GCN-SE-Deep 51.47 40.54 104.66 64.22

BC-GCN-SE with CF 29.38 40.33 79.35 49.92
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TABLE VI

EXPERIMENTAL RESULTS OF THREE EQUAL AND UNEQUAL AGE GROUPS IN TERMS OF MAE. CF: COARSE-TO-FINE FRAMEWORK.

Method Overall MAE (days)

Equally divided groups (days) <248 248–394 >394

Subject number 83 83 82

BC-GCN-SE 46.89 38.52 99.26 61.40

BC-GCN-SE with CF 31.37 38.90 88.09 53.33

Unequally divided groups (days) <200 200–400 >400

Subject number 68 100 80

BC-GCN-SE 49.99 37.71 100.73 61.40

BC-GCN-SE with CF 29.37 40.33 79.35 49.92
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TABLE VII

EXPERIMENTS OF THE COARSE-TO-FINE FRAMEWORK ON DIFFERENT MODELS IN TERMS OF MAE. CF: COARSE-TO-FINE 

FRAMEWORK.

Method
Age (days)

Overall
<200 200–400 >400

BrainNetCNN
–with CF

61.27
36.96

34.29
42.68

123.82
99.07

70.57
59.30

BrainNetCNN-Res
–with CF

60.50
34.21

37.09
38.27

118.89
97.69

69.90
56.32

BrainNetCNN-SE
–with CF

57.41
27.69

36.32
35.99

115.59
89.33

67.67
50.92

BC-GCN
–with CF

62.03
30.23

44.97
45.53

101.94
88.52

68.03
55.20

BC-GCN-Res
–with CF

53.77
37.61

40.65
43.37

111.16
85.50

66.99
55.38

BC-GCN-SE
–with CF

49.99
29.38

37.71
40.33

100.73
79.35

61.40
49.92
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TABLE VIII

COMPARISON WITH STATE-OF-THE-ART METHODS. CF: COARSE-TO-FINE FRAMEWORK. M = 106.

Method MAE (days) Pearson Parameters

MLP 82.16±0.46 0.8619 0.804M

CNN 89.90±1.72 0.8440 0.162M

GCN [31] 95.10±1.74 0.8390 0.004M

BrainNetCNN [30] 70.57±1.25 0.8965 2.011M

PR-GNN [48] 79.02±2.51 0.8791 0.010M

BrainGNN [49] 75.55±1.94 0.8869 0.076M

BC-GCN 68.03±1.33 0.8979 2.009M

BC-GCN-Res 66.99±1.15 0.9035 2.010M

BC-GCN-SE 61.40±1.02 0.9032 2.010M

BC-GCN with CF 55.20±1.80 0.9395 8.036M

BC-GCN-Res with CF 55.38±1.94 0.9490 8.040M

BC-GCN-SE with CF 49.92±1.00 0.9512 8.040M
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