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A comprehensive platform for analyzing
longitudinal multi-omics data
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Aarthi Talla1, Cara Lord1,3, Alexander T. Heubeck 1, Julian Reading 1,
Lucas T. Graybuck 1, Paul Meijer 1, Troy R. Torgerson1, Peter J. Skene1,
Thomas F. Bumol 1 & Xiao-jun Li 1

Longitudinal bulk and single-cell omics data is increasingly generated for
biological and clinical research but is challenging to analyze due to its many
intrinsic types of variations. We present PALMO (https://github.com/
aifimmunology/PALMO), a platform that contains five analytical modules to
examine longitudinal bulk and single-cell multi-omics data from multiple
perspectives, including decomposition of sources of variations within the
data, collection of stable or variable features across timepoints and partici-
pants, identification of up- or down-regulated markers across timepoints of
individual participants, and investigation on samples of same participants for
possible outlier events. We have tested PALMO performance on a complex
longitudinal multi-omics dataset of five data modalities on the same samples
and six external datasets of diverse background. Both PALMO and our long-
itudinal multi-omics dataset can be valuable resources to the scientific
community.

Applying multi-omics technologies to measure longitudinal speci-
mens of human participants provides unprecedented insights on
disease such as COVID-191–3, diabetes4 and lymphoma5. Single-cell
technologies such as single-cell ribonucleic acid sequencing (scRNA-
seq) and single-cell assay for transposase-accessible chromatin
sequencing (scATAC-seq) can offer granular details on disease
mechanisms and are increasingly utilized in biological and clinical
research6–8. It is anticipated that more and more longitudinal bulk
and single-cell omics data will be generated by the scientific
community.

Different statisticalmethods are used to analyze longitudinal data
to account for the diversities in research interest, study design, and/or
data type (continuous or categorical)9,10. Generalized linear mixed
model (GLMM) is a popular approach for analyzing continuous long-
itudinal data. It is common that the same dataset can be examined
from multiple perspectives with different methods. Complications
such as human heterogeneity, interdependency between multiple
samples of same participant, missing and/or incomplete data,

unbalanced dataset, and unexpected outlier events (e.g., severe
adverse events in clinical trials) are all intrinsic to longitudinal data.
The usage of single-cell technologies brings additional complications
such as dropout, sparseness, interdependency between cells of same
sample, andunbalanced cell counts in individual samples11,12. Advanced
methods have been applied to analyze longitudinal bulk omics data
with customized codes for specific projects4,13. Sophisticated methods
for analyzing cross-sectional single-cell omics data have also been
developed with mixed performance14–18. While software tools such as
variancePartition19 and tcR20 can be repurposed to examine long-
itudinal omics data either from a single perspective and/or collected
on a single technical platform, we are not aware of any well-accepted
software package that is specifically designed to analyze longitudinal
bulk and single-cell omics data. Instead, researchers rely on custo-
mized codes to analyze such data, which is time-consuming, error-
prone and a non-small challenge tomany people. A comprehensive yet
simple-to-use software tool to extract insightful information from
longitudinal omics data is desired.
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Here, we present PALMO (https://github.com/aifimmunology/
PALMO), a software packagedesigned to analyze longitudinal bulk and
single-cell omics data (Fig. 1a). Five analytical modules are imple-
mented in PALMO (Fig. 1b): (i) Variance decomposition analysis (VDA)
evaluates contributions of factors of interest to the total variance of
individual features (Fig. 1c). (ii) Coefficient of variation (CV) profiling
(CVP) assesses intra-participant variation over time in bulk data and
identifies consistently stable or variable features among participants
(Fig. 1d). (iii) Stability pattern evaluation across cell types (SPECT)
assesses longitudinal stability patterns of features in single-cell omics
data and identifies stable or variable features that are unique to indi-
vidual cell types but consistent amongparticipants (Fig. 1e). (iv)Outlier
detection analysis (ODA) examines the possibility of abnormal events
occurring during a longitudinal study (Fig. 1f). (v) Time course analysis
(TCA) evaluates transcriptomic changes over time based on long-
itudinal scRNA-seq data of the same participant and identifies genes
that exhibit significant temporal changes (Fig. 1g). Together these five
modules provide unique insights on longitudinal omics data from
multiple perspectives. We also developed functions to display CVs of
features of interest in circos plots (Fig. 1h). We test PALMO perfor-
mance on a complex longitudinal multi-omics dataset of five data
modalities and six external datasets of diverse background.

Results
A complex longitudinal multi-omics dataset to demonstrate
PALMO performance
To demonstrate PALMO performance, we collected sixty blood sam-
ples (plasma and peripheral blood mononuclear cells (PBMCs)) from
six healthy, non-smoking Caucasian donors (three females and three
males) between 25 to 38 years old over a 10-week period

(Supplementary Fig. 1a). Complete blood count (CBC)was collectedon
all these samples (Supplementary Data 1a). The abundance of 1,156
plasma proteins were measured on these samples as well (Supple-
mentary Data 1c), but only 1,042 (68%) proteins had reliable quantifi-
cation results (Supplementary Data 2a). High-dimensional flow
cytometry and droplet-based scRNA-seq assays were performed on a
subset of 24 PBMC samples from four donors (one female and three
males) over Week 2 to 7. A total of 27 cell types were identified from
flow cytometry data (Supplementary Fig. 2, Supplementary Data 1b).
Droplet-based scATAC-seq assay was also performed on 18 out of the
24 PBMC samples. This multi-omics dataset of five data modalities on
the same samples can be a valuable resource to the scientific com-
munity for immune health study and/or software development.

We retrieved high quality scRNA-seq data of 472,464 cells and
labeled them to 31 different cell types using Seurat level2 labelling16

(Supplementary Fig. 3a, b, Supplementary Data 3a). Among the nine-
teen overlapping cell types identified by both scRNA-seq and flow
cytometry, the corresponding cell frequencies asmeasured by the two
data modalities were highly correlated (two-sided p < 0.05 on Pearson
correlation as evaluated by R function “cor.test()”) except for those of
double negative T (dnT) cells (Supplementary Fig. 3c). Unless specified
otherwise, we filtered out low frequent cell types (average frequency
<0.5%) and kept 19 out of the 31 cell types for downstream analysis
(Supplementary Data 3b). We also kept only 11,191 genes that had an
average (across timepoints) expression of 0.1 or higher in at least one
cell type of one donor.

scATAC-seq data was analyzed using the ArchR21 package. We
observed 294,623 peaks in 135,566 cells after removing doublets. Cells
were labeled to 28 different cell types using genescore matrix as
implemented in ArchR (Supplementary Fig. 3d, e). We noticed the

Fig. 1 | Generalworkflowandanalysis schemaofPALMO.aPALMOcanworkwith
complex longitudinal data, including clinical data, bulk omics data, and single-cell
omics data. b Overview of five analytical modules implemented in PALMO.
cVariancedecomposition analysis (VDA) applies generalized linearmixedmodel to
assess contributions of factors of interest (such as disease status, sex, individual
participant, cell type, experimental batch, etc.) to the total variance of individual
features in the data. d Coefficient of variation (CV) profiling (CVP) is designed for
bulk longitudinal data, calculates CV of repeated measurements on the same par-
ticipant to assess the corresponding longitudinal stability, and compares CVs of
different participants to identify consistently stable or variable features. e Stability
pattern evaluation across cell types (SPECT) is the CVP counterpart for single-cell
omics data, analyzes stability patterns of features across different cell types and
different participants, classifies features based on how often they are stable or
variable in cell type-donor combinations, and identifies features that are unique to

individual cell types and consistent among participants. fOutlier detection analysis
(ODA) evaluates how many features in a sample are outliers when compared with
the corresponding features in other samples of same participant, assesses whether
the number of outlier features in the sample is significantly higher than expecta-
tion, and identifies possible abnormal events occurred during a longitudinal study.
g Time course analysis (TCA) uses the hurdle model to evaluate transcriptomic
changes over time based on longitudinal scRNA-seq data of same participants,
models time as a continuous variable for data with at least three timepoints, and
identifies up- or down-regulated genes over time. h PALMO uses circos plots to
display CVs of features of interest and reveal stability patterns across features,
participants, cell types, and data modalities. Adobe Illustrator (version 27.1.1;
https://www.adobe.com/products/illustrator.html) was used to draw (a), arrange
panels, and edit text. PowerPoint (version 16.69; https://www.microsoft.com/en-us/
microsoft-365/powerpoint) was used to draw (b).
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labeling scores on scATAC-seq data were much lower than the corre-
sponding scores on scRNA-seq data, likely reflecting the challenge in
cell labeling on scATAC-seq data. We filtered out low quality cells
(labeling score <0.5), removed cell types having less than 50 remaining
cells, and kept 14 out of the 28 cell types for downstream analysis
(Supplementary Data 3b). We also kept only 24,769 genes that had an
average (across timepoints) gene score of 0.1 or higher in at least one
cell type of one donor.

In addition to our own data, we also evaluated PALMO perfor-
mance against six external omics datasets of diverse complexities,
different sample types and/or different technical platforms (Supple-
mentary Fig. 1b). More examples of PALMO usage beyond those pre-
sented here can be found in PALMO vignettes (https://github.com/
aifimmunology/PALMO/blob/main/Vignette-PALMO.pdf), including
performance on unbalanced data, data with replicates, and data of a
single donor with multiple timepoints.

Application of VDA to assess sources of variations
We applied VDA to evaluate inter- and intra-donor variations in our
bulk data (CBC, PBMC frequencies from flow cytometry, and plasma
proteomics data), using donor and week (timepoint) as factors of
interest. CBCmeasurements showed strong inter-donor variations and
minuscule intra-donor variations (Supplementary Fig. 4a, b). PBMC
frequencies from flow cytometry showed very strong inter-donor
variations (Supplementary Fig. 4c, d) with intra-class correlation (ICC)
ranging from51% (IgDCD27− B cells) to 98% (CD4Temra: CD4+ effector
memoryT cells re-expressingCD45RA). In comparison, the highest ICC
on intra-donor variations was 19% (cDC1: conventional type 1 dendritic
cells). Plasma proteins followed a similar trend with some exceptions
(Supplementary Fig. 4e, f, Supplementary Data 2a). Inter-donor varia-
tions of 621 (60%) out of the 1042 quantified proteins contributed
more than 50% to the corresponding total variance. Only 75 proteins
(7%) had more intra-donor variation than inter-donor variation, but
none contributed more than 50% to the total. A previous study22

identified 155 proteins having high inter-donor variations, 81% (126) of
which overlapped with the 621 inter-donor variable proteins.

We added cell type as a factor of interest in the VDA of our
scRNA-seq and scATAC-seq data. Inter-cell-type variations weremore
prominent than inter- and intra-donor variations in both single-cell
data modalities. Based on our scRNA-seq data, 10, 0, and 4384 genes
had more than 50% of total variance from inter-donor, intra-donor,
and inter-cell-type variations, respectively (Fig. 2a, Supplementary
Data 3c). Nine of the top ten inter-cell-type variable genes (ICC:
98–99%, Fig. 2b) have known immune functions (Supplementary
Data 3d). The top gene, LILRA4, is predominantly expressed in
plasmacytoid dendritic cells (pDCs) and prevents pDCs from over-
blown reaction to viral infections23. Six of the top ten inter-donor
variable genes (ICC: 53–94%, Fig. 2c) are linked to the X or Y chro-
mosome and seven of them showed differential expression between
ovary and prostate/testis, reflecting the sex difference between male
and female donors. Contributions from intra-donor variations to the
total variance were small (ICC ≤ 3%, Fig. 2d), indicating the immune
systems of the four healthy donors were quite stable over the study
period.

The VDA results on our scATAC-seq data, using genescorematrix,
showed similar trends as thatonour scRNA-seqdata (Fig. 2e). A total of
33, 0, and 7847 genes had more than 50% of total variance from inter-
donor, intra-donor, and inter-cell-type variations, respectively (Sup-
plementary Data 3e). All the top ten inter-cell-type variable genes (ICC:
95–97%, Fig. 2f) have known immune functions (Supplementary
Data 3f). The top gene, SPIB, is an enhancer regulating pDC
development24. Among the top ten inter-donor variable genes (ICC:
58–89%, Fig. 2g), XIST, ZNF705D, GTF2IRD2, and USP32P2 have dif-
ferential expressionbetween ovary andprostate/testis; RHDencodes a
key protein in the Rh blood group system; and GSTM1 belongs to a

highly polymorphic supergene family and affects heterogeneous
response to toxicity25. These genes appeared to capture more diverse
types of differences among donors than their counterparts from
scRNA-seq data. The ICCs of the top five intra-donor variable genes
(ICC: 32–34%, Fig. 2h) were about 10-fold higher than that of the cor-
responding top gene, JUN, by scRNA-seq data, suggesting chromatin
accessibility might be more sensitive to biological changes than gene
expression.

variancePartition19 was previously developed to study variations
in gene expression data and can be applied to longitudinal omics data
for the same purpose. VDA generated almost identical results as var-
iancePartition on two tested datasets after removing missing values
(Supplementary Fig. 5), which was needed to run variancePartition but
not VDA.

VDA can be used to study T-cell receptor (TCR) repertoires. Pre-
viously sorted CD4+ and CD8+ non-naïve T cells were isolated from
PBMC samples of four systemic sclerosis (SSc) donors and analyzed to
obtain sequencing data of TCR β-chains26. The data was originally
analyzed using tcR20, which was developed specifically for TCR data
with functions either providing sample-level views on the whole
repertories or treating clonotype data as binary (present or absent).
We downloaded the TCRβ data (GSE156980) and calculated the fre-
quency of unique clonotypes from both CD4+ and CD8+ T cells. A total
of 288,597 unique clonotypes were obtained from CD4+ T cells and
11,739 fromCD8+ T cells, respectively.We treated the clonotypedata as
continuous and used donor, time, and subtype (limited SSc versus
diffuse SSc) as factors of interest in VDA. We identified from
CD4+ T cells 6,625, 3, and 41 clonotypes having more than 50% of total
variance from inter-donor, intra-donor, and inter-subtype variations,
respectively (Supplementary Fig. 6a–d, Supplementary Data 4a). The
corresponding counts from CD8+ T cells were 650, 0, and 1 (Supple-
mentary Fig. 6e–h, Supplementary Data 4b). As illustrated in Supple-
mentary Fig. 6b, f, many inter-donor variable clonotypes were donor-
specific and stable over time, making them potential candidates
responsible for SSc pathogenesis. The identification of inter-subtype
variable clonotypes (Supplementary Fig. 6d, h) is interesting since
some of them might be specific to either limited SSc or diffuse SSc.
VDA provided additional insights on the TCR data beyond the original
study26.

Application of CVP to evaluate longitudinal stability
We applied CVP to identify longitudinally stable and variable proteins
from our proteomics data (Fig. 3a). The distribution of median CV
(among donors) peaked near 5% (Supplementary Fig. 7a), which we
used as a cut-off to separate variable (median CV> 5%) and stable
(median CV < 5%) proteins (Supplementary Data 2b–d). A total of 413
proteins were longitudinally variable, among which SNAP23, GRAP2,
ARG1, AIFM1, and MESD had the highest median CV (24.6-27.7%,
Fig. 3b). SuchmoderateCV values are consistentwith the observed low
intra-donor variations by VDA. A total of 629 proteins were long-
itudinally stable, among which SOD2, NRP2, OSCAR, NRCAM, andMIA
had the lowest median CV (0.6–0.8%, Fig. 3c). These stable proteins
may be interesting biomarker candidates if they change under some
disease conditions. They can also be used to bridge proteomics data of
different experimental batches.

Application of ODA to discover a possible abnormal event
We noticed that proteomics data of donor PTID3 exhibited higher CV
values than those of other donors (Fig. 3a) and weaker intra-donor
correlations atweek 6 thanatotherweeks (Supplementary Fig. 7b).We
applied ODA to check whether donor PTID3 had an abnormal event at
week 6. We selected ∣z∣>2:5 as the criterion for outliers so that just
above 1% of all quantifiable proteins are expected to be outliers. More
accurately, we expected 1.24% of proteins, i.e., 19 proteins per donor
per time point, to be outliers by chance (Methods). A total of 71 outlier
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proteins were identified at Week 6 on donor PTID3 (adjusted
p = 2.7 × 10−26, Fig. 3d, e, SupplementaryData 2e, f). Eight of the top ten
proteins having the highest z scores (2.84–2.85) play important roles in
immune response and immunity (Supplementary Data 2g). Gene set
enrichment analysis (GSEA) revealed the outlier proteins were enri-
ched in immunological processes such as adaptive immune responses,
antigen processing and presentation via major histocompatibility
complex (MHC) class II, T cell activation, etc. (Supplementary Fig. 7c).
Single-sample GSEA (ssGSEA)27 on all PTID3 samples identifiedWeek 6
as an outlier and revealed increased activity at Week 6 in important
immune processes (Supplementary Fig. 7d), includingMYC targets (v1
and v2)28, interferon-alpha and gamma responses29, androgen
response30, pancreas beta cells31, and peroxisome32. Although further
validation is required, these results suggest the possible occurrence of
an immunological perturbation event (such as infection) experienced
by PTID3 at week 6. Such outlier phenotypes can be obscured by
analyses focusing on differences between sample groups.

Application of SPECT to reveal diverse gene stability patterns
We applied SPECT to analyze our scRNA-seq data. Noticing the two
well-known housekeeping genes, ACTB and GAPDH, had CVs (across
timepoints) just above 10% in some cell types (Supplementary Fig. 8),
we used a CV cut-off of 10% to separate longitudinally variable
(CV > 10%) or stable (CV < 10%) genes in individual cell types of
individual donors. We then counted how many times individual
genes were variable and/or stable in the 76 combinations between
donor (n = 4) and cell type (n = 19). A gene was denoted as super
variable (SUV) or super stable (SUS) if it was variable or stable in at
least 40 donor-cell type combinations. A gene was denoted as vari-
able across time in cell-types (VATIC) or stable across time in cell-
types (STATIC) if it was variable or stable in at least one cell type
across all donors but in less than 40 donor-cell type combinations.
We identified a total of 700 SUV genes (Supplementary Fig. 9a), 2129
SUS genes (Supplementary Fig. 9b), 5750 VATIC genes, and 4004
STATIC genes from the dataset. Since a gene can be consistently
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Fig. 2 | Variance decompositionon longitudinal single-cell omics data. aOverall
distributions of variance explained by inter-donor variations (Donor), longitudinal
intra-donor variations (Week), variations among cell types (Celltype), or residual
variations (Residual) based on scRNA-seq data. The scRNA-seq data was collected
on 24 independent peripheral blood mononuclear cell (PBMC) samples from n = 4
healthy participants with each participant contributing one sample a week for
6 weeks. The distributions were evaluated based on pseudo-bulk intensities of
n = 11,191 genes in 19 cell types. b, c Examples of genes whose total expression
variance was most explained by inter-cell-type variations (b) or inter-donor varia-
tions (c). d Examples of genes that had the most but still minuscular intra-donor
variations in expression.b–d Pseudo-bulk intensities of the corresponding genes in
19 cell types were displayed in boxplots. e Same as (a) but based on scATAC-seq

data from n = 18 out of the 24 PBMC samples with 2 participants contributing
6 samples while other 2 participants contributing 3 samples. The distributions were
evaluated based on gene scores of n = 24,769 genes in 14 cell types. f, g The top list
of genes whose inter-cell-type (f) or inter-donor (g) variations contributed most to
the total variance in scATAC-seq data. h The top list of genes that had the most
intra-donor variations in scATAC-seq data. a–e Each boxplot displays the median
(centerline), the first and third quartiles (the lower and upper bound of the box),
and the 1.5x interquartile range (whiskers) of the data. ICC: intra-class correlation.
Adobe Illustrator (version 27.1.1; https://www.adobe.com/products/illustrator.
html) was used to arrange panels and edit text. Source data are provided as a
Source Data file.
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variable in one cell type and consistently stable in another, VATIC
and STATIC genes are not mutually exclusive (Supplemen-
tary Fig. 9c).

The SUV genes were enriched in 57 pathways, many of which are
associated with cellular proliferation and activity (Supplementary
Data 3g). Eight of the top ten SUV genes (Supplementary Data 3h)
have distinct roles in gene regulation, including four transcription
factors (FOS, FOSB, JUN, and KLF9), two phosphatases (DUSP1 and
PPP1R15A), one regulator of mTOR pathway (DDIT4)33, and one
inhibitor of NF-κB pathway (TNFAIP3)34. In comparison, the SUS
genes were enriched in 501 pathways of rather diverse, basic cellular
processes (Supplementary Data 3i). Among the top ten SUS genes
(Supplementary Data 3j), five (RPS12, RPL10, RPL13, RPLP1, and
RPL41) encode ribosomal proteins and two (FTL and FTH1) encode
ferritin for iron storage. Many SUS genes are more stable than ACTB
and GAPDH andmay be good candidates for estimating batch effects
in scRNA-seq data35.

STATICgenes aspotential biomarkers for cell typesorbiological
conditions
We collected up to 25 top STATIC genes from each cell type and
obtained 220 unique genes (Fig. 4a, Supplementary Data 5a). These 220
STATIC genes are enriched in pathways such as innate (adjusted
p= 1.43 × 10−9) and adaptive (adjusted p= 1.33 × 10−9) immune response,
allograft rejection (adjusted p=3.06× 10−16), lymphocyte mediated
immunity (adjusted p=3.72 × 10−8), myeloid mediated immunity (adjus-
ted p=2.71 × 10−5), B/T-cell proliferation (adjusted p< 1.46× 10−3), acute
inflammatory response (adjusted p=7.48 × 10−3), hematopoietic cell
lineage (adjusted p=2.44× 10−4), etc. (Supplementary Data 5b). Exam-
ples of top STATIC genes for major cell types were shown in Fig. 4b,
including: GIMAP7, LEF1, CD27, CCR7, and TSHZ2 for T cells; CD79A,
MS4A1, TCL1A, CD79B, andTNFRSF13C for B cells; PRF1, FGFBP2, SPON2,
CST7, and KLRD1 for natural killer (NK) cells; CD14, FCN1, MNDA,
SEPINA1, and SPI1 for monocytes; and LILRA4, IRF7, FCER1A, SERPINF1,
and SPIB for dendritic cells (DCs). All these genes demonstrated cell
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Fig. 3 | Longitudinal stability of plasma proteome. a Scatter plots of coefficient
of variation (CV) versus mean of normalized protein expression (NPX) over 10
timepoints in n = 6 participants. One plasma sample per week was collected from
n = 6 participants over 10 weeks. The evaluation for each participant was based on
measurements on 1042 proteins in the corresponding 10 plasma samples. The
longitudinal stable and variable proteins are represented in blue and red, respec-
tively. b, c Heatmap of CV of top 50 longitudinally variable (b CV > 5%) or stable
(c CV< 5%) plasma proteins. d Top panel: Number of proteins with z>2:5 (red) or
z<� 2:5 (blue) in individual samples, where z = ðNPX � NPX Þ=SD with NPX and SD

being themean and the standard deviation, respectively, ofNPX across samples of
the same participant. Bottom panel: �log10ðpÞ for individual samples being possi-
ble outliers, where p is calculated based on a binomial test (two-sided). e Protein
examples clearly demonstrate that Week 6 of participant PTID3 was an outlier.
b, c, e Each boxplot displays the median (centerline), the first and third quartiles
(the lower and upper bound of the box), and the 1.5x interquartile range (whiskers)
of the data. Adobe Illustrator (version 27.1.1; https://www.adobe.com/products/
illustrator.html) was used to arrange panels and edit text. Source data are provided
as a Source Data file.
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type-specific stability patterns and have well-documented roles in the
corresponding cell types (Supplementary Data 5c).

We used the 220 STATIC genes as input features and projected
PBMCs in our scRNA-seq data onto a two-dimensional Uniform

Manifold Approximation and Projection11 (UMAP; Fig. 4c), which we
refer to as sUMAP from now on. We also generated sUMAPs using the
same 220 STATIC genes on three independent scRNA-seq datasets2,3,16

of PBMCs (Fig. 4d–f) in which cells were labeled as in the original

a                                                                                                      c                                                  d
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Fig. 4 | Properties of 220 STATIC genes of PBMC. a Heatmap of coefficient of
variation (CV) evaluated on 93 out of the 220 stable across time in cell-types (STA-
TIC) genes that were identified from 19 cell types in the longitudinal scRNA-seq data
of n=4 healthy participants. The CVs for each of the n=4 participants were eval-
uated based on pseudo-bulk intensities in the corresponding 6 independent per-
ipheral bloodmononuclear cell (PBMC) samples. The 93 STATIC genes include up to
ten top STATIC genes from individual cell types. b Circos plots displaying CV of five
example STATIC genes identified from each of five major cell types: T cells, B cells,
natural killer (NK) cells, monocytes (Mono), and dendritic cells (DCs). c Uniform
Manifold Approximation and Projection (UMAP) using only the 220 STATIC genes as
input features (sUMAP) on the same longitudinal scRNA-seq data. d–f sUMAP using
the same 220 STATIC genes on three external PBMC datasets ((d) CNP00011023, (e)
GSE1496892, (f) GSE16437816), where cells are labeled as in the original studies.

gDistributions of Pearson correlation coefficient between gene expression (pseudo-
bulk intensity) in scRNA-seq data and gene score in scATAC-seq data, one for the 220
STATIC genes (median correlation 0.70), one for the top 500 highly variable genes
(HVGs, median correlation 0.40), one for the 10,608 reliable genes (average
expression ≥0.1,median correlation 0.21), and one for randomgenepairs (95%upper
confidence bound at 0.399). The correlations were calculated across 14 cell types in
18 PBMC samples (n= 252 data points). h, i Venn diagrams showing the overlaps
between the 220 STATIC genes and biomarkers distinguishing either healthy con-
trols (Normal) versus participants infected with influenza (FLU, left panel) or Normal
versus participants infected with SARS-CoV-2 (COVID19, right panel). The bio-
markers were identified from either (h) CNP00011023 or (i) GSE1496892. Adobe
Illustrator (version 27.1.1; https://www.adobe.com/products/illustrator.html) was
used to arrange panels and edit text. Source data are provided as a Source Data file.
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studies. In all four cases, the 220 STATIC genes separated major cell
types and most of their subtypes very well, suggesting that some
STATIC genes are potentially good markers for cell types.

Gene scores are routinely computed from scATAC-seq data to
infer expression of the corresponding genes and used to label cells in
scATAC-seq data based on a scRNA-seq reference21. We calculated the
Pearson correlation between expression in scRNA-seq data and gene
score in scATAC-seq data of the same genes across cell types and
samples. Due to data sparseness, incomplete reference assembly, non-
coding RNAs, and uncharacterized sequences, Pearson correlation
could be calculated only on 10,608 (94.7%) of the 11,191 reliable genes
(Fig. 4g). Interestingly, among genes with strong correlations (Sup-
plementary Fig. 10), the correlation was mainly influenced by differ-
ences between cell types, which partially justifies the use of gene score
for cell labeling on scATAC-seq data. Within individual cell types, the
correlation however appeared to be poor across different samples,
likely reflecting the complexity of gene regulation. Pearson correlation
was obtained on 206 (93.6%) of the 220 STATIC genes with a median
value of 0.70. In comparison, Pearson correlationwas obtained on 403
(80%) of the top 500 highly variable genes (HVGs), which are widely
used in dimension reduction on scRNA-seq data11, with a significantly
lower median value of 0.40 (p = 1.98 × 10−13, Mann–Whiney test; Sup-
plementary Data 5d). We randomly paired unrelated genes, calculated
the corresponding correlations between expression and gene score,
and found that the obtained distribution had a 95% upper confidence
bound at R0 =0.399 (Methods). Thus, any correlations below R0 were
not statistically better than those between random, unrelated gene
pairs. A total of 7252 (68%) out of the 10,608 reliable genes and 201
(49.8%) out of the 403HVGs had a correlation belowR0, in comparison
with 40 (19%) out of the 206 STATIC genes. To properly label cells in
scATAC-seq data based on gene score approach, one should only use
genes whose expression versus gene score correlations are above R0.
Some STATIC genes might be good candidates for this purpose.

We further investigated how the 220 STATIC genes fared as
potential disease biomarkers. Previously, two studies2,3 applied scRNA-
seq to analyze PBMCs of healthy controls (Normal) and of patients
infected with either influenza (FLU) or SARS-CoV-2 (COVID19). We
reanalyzed the data using methods described in the original studies
and identified differential expression genes (DEGs) distinguishing
Normal versus FLU or Normal versus COVID19. For simplicity, DEGs
from individual cell typeswerecombinedwhen comparedwith the 220
STATIC genes. Out of the 18,824 genes measured in the first study
(CNP0001102)3, 681 and 632 DEGs were identified for distinguishing
Normal versus FLU and Normal versus COVID19, respectively. The
corresponding overlap with the STATIC genes was 49 for Normal
versus FLU (one-side hypergeometricp = 4.8 × 10−26) and 50 forNormal
versus COVID19 (one-side hypergeometric p = 1.7 × 10−28, Fig. 4h). A
total of 33,538 genes were measured in the second study
(GSE149689)2. A total of 126 STATIC genes (one-side hypergeometric
p = 4.8 × 10−74) overlapped with the 3040 DEGs for Normal versus FLU
while 86 STATIC genes (one-side hypergeometric p = 2.1 × 10−61) over-
lapped with the 1396 DEGs for Normal versus COVID19 (Fig. 4i). In all
cases, the 220 STATIC genes were significantly enriched as DEGs,
suggesting their potential for monitoring some disease conditions.

To illustrate that SPECT can handle scRNA-seq data of diverse
sample types, we applied it to scRNA-seq data from a mouse brain
study (GSE129788)36. In the study scRNA-seq data was collected from
brain tissues of eight young (2–3 months) and eight old
(21–23 months) mice, from which 37,069 cells of high-quality data
were labeled to 25 cell types, 14,699 genes were detected, marker
genes for each of the 25 cell types were collected, and 1113 DEGs dis-
tinguishing young versus old mouse brains were identified from a
subset of 15 cell types. The study was not longitudinal per se. We
treated data from the eight samples of each age group as repeated
measurements for the group, just like repeated measurements at

different timepoints in a longitudinal study. Since SPECT does not
utilize the ordering of timepoints, its usage to the data is justified. We
collected up to 25 STATICgenes per cell type and obtained 304unique
genes from all 25 cell types (Fig. 5a, Supplementary Data 6a). sUMAP
using these 304 STATIC genes was able to separate the cell types as
labeled in the original study very well (Fig. 5b). Out of the 304 STATIC
genes, 299 genes were identified in the original study as marker genes
for the corresponding cell types (Fig. 5c, Supplementary Data 6b).
From the 15 cell types having DEGs, we collected 234 STATIC genes
that were significantly overlappedwith the 1113 young versus old DEGs
(n = 123, one-side hypergeometric p = 6.2 × 10−77, Fig. 5d). These results
further demonstrated that some STATIC genes are good markers for
cell types or biological conditions in the mouse brain study.

Circos plots to reveal stability patterns of protein families
PALMO implements circos plots to display stability patterns from
multiple single-cell datamodalities together.Wedisplayed the stability
pattern of gene expression and gene score of six protein families that
are essential for immunity in Fig. 6, including human leukocyte anti-
gens (HLAs, Fig. 6a), interferon regulatory factors (IRFs, Fig. 6b),
interleukins (ILs, Fig. 6c), chemokine (C-X-C motif) receptor/ligand
(CXCR/L) family (Fig. 6d), Janus kinases (JAKs) and signal transducer
and activator of transcription proteins (STATs, Fig. 6e), and tumor
necrosis factor receptor superfamily (TNFRSF, Fig. 6f). All these pro-
tein families showed diverse stability patterns among members and
across cell types, with HLAs and ILs having themost striking contrasts.
The rich variety in such stability patterns suggests that different
members of same protein superfamilies may play different roles in
individual cell types. We noticed that gene expression and gene score
generally did not exhibit the same stability patterns despite the rather
strong correlations between them (Supplementary Fig. 11). It turns out
that strong correlations weremainly driven by difference between cell
types rather than difference between samples, likely reflecting the
complexity of gene regulation as mentioned before.

Application of TCA to reveal heterogenous immune responses
among COVID-19 patients
Weapplied TCA to analyze longitudinal scRNA-seq data of four COVID-
19 patients, each having data of at least three timepoints, in a previous
study3 and identified significantly up- or down-regulated genes over
time (adjusted p <0.05 and slope magnitude >0.1, Fig. 7a–d, Supple-
mentary Data 7a) and the corresponding pathways (Supplementary
Data 7b). We observed rather heterogeneous immune responses by
thesepatients during recovery (Fig. 7e),whichwas notpresented in the
original study.

Patient COV-3 had barely any significant genes except that IFI27
decreased in DCs, IFI44L decreased in naïve B cells, and IGLC3
decreased in plasma cells, suggesting possible dampening of immune
modulation.

The significant genes of patient COV-2 included eighteen upre-
gulated genes in monocytes, four genes each in memory B cells and
naïve B cells, and twelve genes split among other six cell types. Gene
enrichment analysis on the eighteen upregulated genes in monocytes
revealed only one significant pathway: myeloid leukocyte mediated
immunity (adjusted p = 0.044).

The significant genes of COV-1 included eleven upregulated and
six downregulated genes in cycling plasma cells, seven upregulated
and sixteen downregulated genes in cycling T cells, six downregulated
genes in naïve B cells, and fifteen genes split among other seven cell
types. The significant genes in cycling plasma cells were significantly
enriched in five pathways including regulation of humoral immune
response (adjusted p = 3.92 × 10−3), Fc receptor mediated stimulatory
signaling pathway (adjusted p = 3.92 × 10−3), and immunoglobulin
production (adjusted p = 0.011), indicating a predominant role of
humoral immunity in the recovery of the patient.
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Patient COV-5 had significant genes in almost all cell types except
for DCs and monocytes, including eight upregulated and eight
downregulated genes in memory B cells, six upregulated and six
downregulated genes in naïve B cells, one upregulated and ten
downregulated genes in activated CD4+ T cells, two upregulated and
eight downregulated genes in plasma cells, and 43 genes split among
other seven cell types. Seven (58%) of the twelve significant genes in
naïve B cells were also significant in memory B cells and in the same
direction of change, suggesting common responses by the two cell
types. The significant genes in memory B cells were enriched in
interferon gamma (adjusted p = 3.28 × 10−6) and alpha (adjusted
p = 4.86 × 10−5) response, antigen processing and presentation (adjus-
ted p =0.036), and antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II (adjusted p =0.044). The sig-
nificant genes in naïve B cells were enriched in interferon alpha
(adjusted p = 1.96 × 10−5) and gamma (adjusted p = 1.96 × 10−5)
response. The significant genes in plasma cells were enriched in innate
and humoral immune responses (p = 3.46 × 10−4 and p = 5.79 × 10−4,
respectively) although both with an adjusted p =0.084. These results
aligned to the patient’s disease severity and advanced age.

For comparison, we also used Seurat to analyze patient COV-5
data of activated CD4+ T cells. To satisfy Seurat’s requirement of
selecting two contrast groups,we did the analysis in two iterations, i.e.,
day 1 (D1) versusD7 +D13 andD1 +D7 versusD13.Weobtained942 and
1018 DEGs (adjusted p <0.05), respectively, with an overlap of 813
DEGs (Supplementary Fig. 12a). TCA identified 921 significantly up- or
down-regulated genes (adjusted p < 0.05), only 21 of whichoverlapped
with both Seurat results. The genes obtained fromTCA or Seurat were
quite different. We collected top ten up- and top ten down-regulated
genes from all three approaches and plotted the corresponding gene

expression in heatmaps (Supplementary Fig. 12b–d). TCA results
showed better dynamic changes over time than Seurat results in our
opinion.

Discussion
The five modules in PALMO analyze longitudinal omics data from
multiple perspectives as continuous data. VDA provides a global view
on the sources of variance within the whole dataset. TCA studies the
time series of individual participants. CVP and SPECT first examine
data of individual participants separately and then summarize the
observations across different participants. All these four methods
focus on individual features. ODA is the only method to provide a
sample-level analysis. Which module(s) to use on a specific dataset
depends on the research question of interest. Additional methods
need to be developed for research interest not covered here.

We observed that a small set of STATIC genes, 220 for PBMC and
304 formouse brain tissues, distinguished cell typeswell and captured
some biological differences. The PBMC STATIC genes showed better
correlation between gene expression in scRNA-seq data and gene
score in scATAC-seq data than HVGs. It would be interesting to see
whether these observations can be extended to scRNA-seq data of
other sample types.We selected up to 25 STATIC genes per cell type in
our analysis. It is possible that a better set of genes canbe selectedwith
a more sophisticated selection procedure.

Plasma proteins are often targeted as disease biomarkers, thus
understanding their temporal stability is of particular interest. Con-
ceptually, highly variable proteins are poor biomarker candidates
since their values likely have very high sampling variations. The rather
moderate CV values of themost variable proteins in our study suggest
sampling variations are not a big concern on these proteins. The small
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CV values of themost stable proteins, on the other hand, indicate they
do not changemuch under normal, healthy conditions. So, if they ever
change under some disease conditions, they should be closely
explored as potential biomarkers.

We condensed single-cell data into pseudo-bulk data in VDA,
SPECT and ODA. Recent literature14,17,18 revealed that many single-cell
methods fail to properly account for variations in cross-sectional
scRNA-seq data and generate many false DEGs as a result. In compar-
ison, pseudo-bulk approaches mostly generate reliable results
although they may be underpowered. Longitudinal single-cell omics
data is even more complicated than cross-sectional scRNA-seq data
and may require new statistical methods to properly handle its many
types of variations. Furthermore, memory and CPU requirements for
using GLMMs to analyze longitudinal single-cell omics data at single-
cell level may be challenging even for cloud-based computing. We
adopted the pseudo-bulk approach in VDA, SPECT and ODA as a
practical compromise. In TCAwe bypassed some of the complications
by analyzing data of individual cell types and of individual participants
separately.

The lack of a well-accepted software package for longitudinal
omics data makes it difficult to benchmark PALMO performance. We
compared PALMOwith variancePartition19, tcR20, and Seurat16, which is
summarized in Supplementary Fig. 1c. VDA can handle missing data
but variancePartition cannot, which is an advantage of VDA since
missing values in longitudinal omics data are almost inevitable. The
two tools generated almost identical results on two tested datasets
after removing missing values. PALMO was not developed specifically
for TCR data. When we applied VDA to the TCR data of SSc donors, we
obtained results that are potentially interesting but not reported in the
original study using tcR.Webelieve PALMOcomplements TCR specific
tools (such as tcR) on TCR data. Seurat requires users to select two
contrast groups in DEG analysis and thus is not appropriate for ana-
lyzing longitudinal data of more than two timepoints. Nevertheless,
when we applied both TCA and Seurat to the longitudinal scRNA-seq
data of activated CD4+ T cells of a COVID-19 patient, the two methods
generated rather different results on up- or down-regulated genes.
Heatmaps of the corresponding top genes revealed that TCA results
showed better dynamic changes over time than Seurat results.
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Fig. 6 | Circos plots showing stability patterns of five protein families. a Circos
plot displaying stability patterns of gene expression (outer circles) and gene score
(inner circles) of human leukocyte antigen (HLA) protein family (member: HLA-A,
HLA-B, HLA-C, HLA-DRA, HLA-DPA1, and HLA-DRB1). Samples with missing data or
cell types with low cell counts are shown in grey. b–f Same as (a) but for (b)
interferon regulatory factors (IRFs; member: IRF1, IRF2, IRF3, IRF4, IRF5, and IRF8),
(c) interleukins (ILs; member: IL32, IL7R, IL10RA, IL2RB, IL1B and IL18), (d) che-
mokine (C-X-C motif) receptor/ligand (CXCR/L) protein family (member: CXCR4,
CXCR5, CXCR6, CXCL8, CXCL10, and CXCL16), (e) Janus kinase (JAK) and signal
transducer and activator of transcription (STAT) protein family (member: JAK1,

JAK2, JAK3, STAT3, STAT4, and STAT6), and (f) tumor necrosis factor receptor
superfamily (TNFRSF; member: TNFRSF1B, TNFRSF13C, TNFRSF10B, TNFRSF25,
TNFRSF11A, and TNFRSF17). The CV of gene expression for each of n = 4 partici-
pants was calculated from pseudo-bulk intensities in the corresponding 6 inde-
pendent peripheral bloodmononuclear cell (PBMC) samples. The CV of gene score
for each participant was based on either 6 (for n = 2 participants) or 3 (for other
n = 2 participants) PBMC samples. Adobe Illustrator (version 27.1.1; https://www.
adobe.com/products/illustrator.html) was used to arrange panels and edit text.
Source data are provided as a Source Data file.
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PALMO has been published as an R package in CRAN with a
detailed reference manual and vignettes to demonstrate its usage. It
can be easily installed and executed in R or RStudio. As we demon-
strated, it can be used to analyze longitudinal bulk and single-cell
omics data generated on diverse technical platforms and/or of diverse
sample types, including but not limited to: clinical lab test results, cell
type composition, gene expression, protein abundance, bulk or single-
cell omics data, TCR sequencing data, etc. We believe it can facilitate
the analysis of some longitudinal omics data. In addition, our long-
itudinal multi-omics dataset of five data modalities on the same sam-
ples can also be a valuable resource for immune health study and
software development.

Methods
Healthy donors
Blood samples were obtained from Bloodworks Northwest (Seattle,
WA) through protocols approved by the Bloodworks Northwest insti-
tutional review board and complying with all relevant ethical regula-
tions. We enrolled n = 6 clinically healthy participants (no diagnosis of
active or chronic disease) with age between 25 to 38 years with equal
self-report sex ratio. Viable peripheral blood mononuclear cells
(PBMCs) and plasma samples were collected from each participant
over t = 10 weeks. Complete blood count (CBC) was measured to
evaluate overall health of all donors over all timepoints (n = 6, t = 10).
Minimal biometric data were collected on these participants which
were handled following the Health Insurance Portability and

Accountability Act (HIPAA) guidelines. Informed consent to partici-
pate in the study and to publish data from the research was obtained
from all participants.

Sample handling
A volume of 30mL of bloodwas drawn into BDNaHeparin vacutainer
tubes (for PBMC; BD #367874) or K2-EDTA vacutainer tubes (for
plasma; BD #367863). Upon arrival at the processing lab all NaHe-
parin tubes for each donor were pooled into a sterile plastic recep-
tacle to establish one common pool and stored at room temperature
until processing (4 h or less from draw). For PBMC isolation, at each
time point the pool of blood was gently swirled until fully mixed,
about 30 times, and a volume of blood was removed and combined
with an equivalent volume of room temperature PBS (ThermoFisher
#14190235). PBMC were isolated using one or more Leucosep tubes
(Greiner Bio-One #227290) loaded with 15mL of Ficoll Premium (GE
Healthcare #17-5442-03) to which a 3mL cushion of PBS had been
slowly added on top of the Leucosep barrier. The 24–30mL diluted
whole blood was slowly added to the tube and spun at 1000xg for
10min at 20 °C with no brake. PBMC were recovered from the Leu-
cosep tube by quickly pouring all volume above the barrier into a
sterile 50mL conical tube; 15mL cold PBS + 0.2% BSA (Sigma#A9576;
“PBS + BSA”) was added, and the cells were pelleted at 400xg for
5–10min at 4–10 °C. The supernatant was quickly decanted, the
pellet dispersed by flicking the tube, and the cells washed with
25–50mL cold PBS + BSA. Cell pellets were combined, if applicable,
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Fig. 7 | Heterogeneous immune responses by COVID19 patients during recov-
ery. a Volcano plot showing temporal expression changes of individual genes in
different cell types during the recovery of patient COV-3 (female, 41 years old, mild
symptoms, data on day D1/D4/D16), based on longitudinal scRNA-seq data in
CNP00011023. The x-axis shows the slope (coefficient) of gene expression change
as a linear function of time. The y-axis shows the corresponding adjusted p value of
the slope. b–d Same as (a) but for patients (b) COV-2 (male, 45 years old, mild
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data on D1/D7/D13). a–d Each plot contains results on up to 18,824 genes in 13 cell
types (up to 244,712 data points). e Counts of significantly upregulated (adjusted
p<0:05 and slope>0:1, red) and significantly downregulated (adjusted p<0:05 and
slope<� 0:1, blue) genes during the recovery of the four COVID-19 patients in
individual cell types. a–d The p-value for slope was calculated based on two-sided
likelihood-ratio test and adjusted byBenjamini andHochbergprocedure for testing
many genes. Adobe Illustrator (version 27.1.1; https://www.adobe.com/products/
illustrator.html) was used to arrange panels and edit text. Source data are provided
as a Source Data file.
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the cells were pelleted as before, supernatant quickly decanted, and
residual volume was carefully aspirated. The PBMC were resus-
pended in 1mL cold PBS + BSA per 15mL whole blood processed and
counted with a Cellometer Spectrum (Nexcelom) using Acridine
Orange/Propidium Iodide solution. PBMC were cryopreserved 90%
FBS (ThermoFisher #10438026)/10% DMSO (Fisher Scientific
#D12345) at 1–5 × 106 cells/mL by slow freezing in a Coolcell LX (VWR
#75779-720) overnight in a −80 °C freezer followed by transfer to
liquid nitrogen.

For plasma isolation, the K2-EDTA source tube was gently
inverted 10 times, and the appropriate volume of whole blood was
extracted using an 18-gauge needle and syringe and transferred to a
similar plastic tube with no additives (Greiner Bio-One #456085). The
blood was centrifuged at 2000xg for 15min at 20 °Cwith a brake of 1,
and 80%–90% of the plasma supernatant were removed by careful
pipetting for immediate freezing at −80 °C. Plasma was assayed after
the first freeze/thaw. Thawed PBMC of four donors over six time-
points (n = 4, t = 6) were assayed by flow cytometry, scRNA-seq and
scATAC-seq in two batches (donors PTID5 and PTID6, donors PTID2
and PTID4) by a team of operators. Plasma of all donors over all
timepoints (n = 6, t = 10) was isolated and cryopreserved by a team of
operators37.

Flow cytometry
PBMC were removed from liquid nitrogen storage and immediately
thawed in a 37 °C water bath. Cells were diluted dropwise into 37 °C
AIMVmedia (ThermoFisher Scientific #12055091) up to a final volume
of 10mL. A singlewashwas performed in 10mL of PBS + BSA, pelleting
cells at 400xg for 5–10min at 4–10 °C. PBMC were resuspended 2mL
in PBS + BSA and counted using a Cellometer Spectrum. 1–2 × 106 cells
were incubated with Human TruStain FcX (BioLegend #422302) and
Fixable Viability Stain 510 (BD #564406) prior to staining with a 25-
color cell surface panel on ice for 25min. Cells were washed and fixed
with 4% paraformaldehyde (Electron Microscopy Sciences #15713)
prior to acquisition on a BD Symphony cytometer. Raw data were
compensated and curated to remove unrepresentative events due to
instrument fluidics variability (time gating), doublets (by FSC-H and
FSC-W), and cells exhibitingmembranepermeability (live/dead gating)
prior to quantification using BD FlowJo software v10.6.1.

Proteomics
Plasma samples were submitted to Olink (Uppsala, Sweden) for assay
using the Olink Proximity Extension assay, run on the Fluidigm Bio-
mark system. Patient samples were distributed evenly across two
plates, and all time points per patient were run on the same plate, with
randomized well locations. Samples were assayed using the Olink
Discovery Assay which encompasses a total of 1156 proteins across 13
panels (Cardiometabolic [V.3603], Cardiovascular II [V.5006], Cardio-
vascular III [V.6113], Cell Regulation [V.3701], Development [V.3512],
Immune Response [V.3202], Inflammation [V.3021], Metabolism
[V.3402], Neuro Exploratory [V.3901], Neurology [V.8012], Oncology II
[V.7004], Oncology III [V.4001], Organ Damage [V.3311]). Quality
assessment, limit of detection, and normalization were performed by
Olink using the plate bridging control, twopositive controls, and three
background controls.

Single-cell RNA-seq
Sample preparation, hashing, and pooling. Single-cell RNA-seq
libraries were generated on PBMC prepared as above using the 10x
Genomics Chromium 3’ Single Cell Gene Expression assay (#1000121)
andChromiumController Instrument according to themanufacturer’s
published protocol with modifications for cell hashing38. To block off-
target antibody binding, Blocking Solution (5 µL of Human Trustain
FcX (BioLegend #422302), and 13.7 µL of a 10% Bovine Serum Albumin
(BSA)) was added to 500,000 cells suspended in 50 µL Dulbecco’s

Phosphate Buffered Saline (DPBS; Corning Life Sciences #21-031-CM)
and incubated for 10min on ice. To stain samples, 0.5 µg (1 µL) of a
TotalSeq™-A anti-human Hashtag Antibody was suspended in 31.3 µL
DPBS/2% BSA, then added to each sample. For each batch of samples,
100,000 cells from 12 hashed samples with a distinct Hashtag Anti-
body were pooled into the hashed pool. Roughly 20,000 cells from a
Leukopak healthy control were also labeled with a distinct TotalSeq™-
A Hashtag Antibody andwere spiked into each pool to serve as a batch
control.

Droplet encapsulation and reverse transcription. From each pool,
64,000 cells were loaded into each well of a Chromium Single Cell
Chip G (10x Genomics #1000073) (8 wells per chip), targeting a
recovery of 20,000 singlets from each well. Gel Beads-in-emulsion
(GEMs) were then generated using the 10x Chromium Controller. The
resulting GEM generation products were then transferred to semi-
skirted 96-well plates and reverse transcribed on a C1000 Touch
Thermal Cycler (Bio-Rad) programmed at 53 °C for 45min, 85 °C for
5min, and a hold at 4 °C. Following reverse transcription, GEMs were
broken, and the pooled single-stranded cDNA and Hashtag Oligo
fractions were recovered using Silane magnetic beads (Dynabeads
MyOne SILANE #37002D).

Library generation and separation. Barcoded, full-length cDNA
including the Hashtag Oligos (HTOs) from the TotalSeq™-A Hashtag
Antibodies were then amplified with a C1000 Touch Thermal Cycler
programmed at 98 °C for 3min, 11 cycles of (98 °C for 15 s, 63 °C for
20 s, 72 °C for 1min), 72 °C for 1min, and a hold at 4 °C. Amplified
cDNA was purified and separated from amplified HTOs using a 0.6x
size selection via SPRIselectmagnetic bead (Beckman Coulter #22667)
and a 1:10 dilution of the resulting cDNA was run on a Fragment Ana-
lyzer (Agilent Technologies #5067-4626) to assess cDNA quality and
yield. HTO libraries were purified further with SPRIselect magnetic
bead (Beckman Coulter #22667) and amplified and indexed with a
custom HTO i7 index on a C1000 Touch Thermal Cycler programmed
at 95 °C for 3min, 10 cycles of (95 °C for 20 s, 64 °C for 30 s, 72 °C for
20 s), 72 °C for 1min, and a hold at 4 °C. The resulting HTO libraries
were purified with SPRIselect magnetic bead (Beckman Coulter
#22667) post-amplification and a 1:10 dilution of the resulting HTO
libraries were run on a Fragment Analyzer (Agilent Technologies
#5067-4626) to assess HTO quality and yield. A quarter of the cDNA
sample (10 ul) was used as input for library preparation. Amplified
cDNAwas fragmented, end-repaired, andA-tailed is a single incubation
protocol on a C1000 Touch Thermal Cycler programmed at 4 °C start,
32 °C for min, 65 °C for 30min, and a 4 °C hold. Fragmented and
A-tailed cDNA was purified by performing a dual-sided size-selection
using SPRIselect magnetic beads (Beckman Coulter #22667). A partial
TruSeq Read 2 primer sequence was ligated to the fragmented and
A-tailed endof cDNAmolecules via an incubationof 20 °C for 15minon
a C1000TouchThermal Cycler. The ligation reactionwas then cleaned
using SPRIselect magnetic beads (Beckman Coulter #22667). PCR was
then performed to amplify the library and add the P5 and indexed P7
ends (10x Genomics #1000084) on a C1000 Touch Thermal Cycler
programmed at 98 °C for 45 sec, 13 cycles of (98 °C for 20 sec, 54 °C for
30 sec, 72 °C for 20 sec), 72 °C for 1min, and a hold at 4 °C. PCR pro-
ducts were purified by performing a dual-sided size-selection using
SPRIselect magnetic beads (Beckman Coulter #22667) to produce
final, sequencing-ready libraries.

Quantification and sequencing. Final libraries were quantified using
Picogreen and their quality was assessed via capillary electrophoresis
using the Agilent Fragment Analyzer HS DNA fragment kit and/or
Agilent Bioanalyzer High Sensitivity chips. Libraries were sequenced
on the Illumina NovaSeq platform using S4 flow cells. Read lengths
were 28bp read1, 8 bp i7 index read, 91 bp read2.
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scRNA-seq data pre-processing. scRNA-seq data of four donors
were generated in two batches, each containing data of two donors.
Each batch of data was pre-processed separately37. Briefly, binary
base call (BCL) files were demultiplexed using the mkfastq function
in the 10x Cell Ranger software (version 3.1.0), producing fastq files.
Fastq files were then checked for quality (FastQC version 0.11.3) and
run through the 10x Cell Ranger alignment function (cell ranger
count) against the human reference annotation (Ensembl GRCh38).
Mapping was performed using default parameters. Upon comple-
tion, Cell Ranger produced an output directory per file that contains
the following: bam file (binary alignment file), HDF5 file (Hierarchical
Data Format) with all reads, HDF file containing just the filtered
reads, summary report (html and csv), and cloupe.cloupe (a file for
the 10x Loupe visual browser).

scRNA-seq data analysis. Individual HDF5 files (filtered) were loaded
into the R statistical programming language (version 3.6.0) using
Bioconductor (version 3.1.0) and the Seurat package (version 3.1.5)37.
For simplicity, sample nameswere captured as a list in R and iteratively
processed within a loop (refer to https://satijalab.org/seurat/ for more
information). Within the loop, samples were normalized with the
NormalizeData function followed by the FindVariableFeatures func-
tion with parameters: vst selection method and 2000 features. Label
transfer was performed using previously published procedures39 and
with the Seurat reference dataset. Labeling included the Find-
TransferAnchors and TransferData functions performed in the Seurat
package.

We merged the two batches of data using the Seurat merge
function. We calculated read depth, mitochondrial percentage, and
number of UMIs per sample. Cells were filtered with nFeature_RNA >
200 and percent.mt <10. The merged data structure was normalized
(using NormalizeData and FindVariableFeatures functions) and then
saved as an RDS for further analysis. The top 3000 variable genes were
used for PCA and UMAP based dimension-reduction maps using 30
principal components (PCs). We checked for possible batch effects
using the bridging controls but did not observe any obvious batch
effects.

Cell labels obtained from the original batches were kept. Doublets
were removed from further analysis. In total we retrieved high quality
data of 472,464 cells from 4 donors and labeled them to 31 cell types
from Seurat level 2 labelling. The cell type frequencies in each sample
were calculated and compared with flow-based cell frequencies.
Nineteen cell types (CD4_Naive, CD4_TEM, CD4_TCM, CD4_CTL,
CD8_Naive, CD8_TEM, CD8_TCM, Treg, MAIT, gdT, NK,
NK_CD56bright, B_naive, B_memory, B_intermediate, CD14_Mono,
CD16_Mono, cDC2, pDC) were selected for further analysis after fil-
tering out cell types with a low frequency (<0.5%).

Single-cell ATAC-seq
Sample preparation. Permeabilized-cell scATAC-seq was performed.
A 5%w/v digitonin stock was prepared by diluting powdered digitonin
(MP Biomedicals, 0215948082) in DMSO (Fisher Scientific, D12345),
whichwas stored in 20 µL aliquots at−20 °Cuntil use. To permeabilize,
1 × 106 cells were added to a 1.5mL low binding tube (Eppendorf,
022431021) and centrifuged (400×g for 5min at 4 °C) using a swinging
bucket rotor (Beckman Coulter Avanti J-15RIVD with JS4.750 swinging
bucket, B99516). Cells were resuspended in 100 µL cold isotonic Per-
meabilization Buffer (20mM Tris-HCl pH 7.4, 150mM NaCl, 3mM
MgCl2, 0.01% digitonin) by pipette-mixing 10 times, then incubated on
ice for 5min, after which they were diluted with 1mL of isotonic Wash
Buffer (20mMTris-HCl pH 7.4, 150mMNaCl, 3mMMgCl2) by pipette-
mixing five times. Cells were centrifuged (400 × g for 5min at 4 °C)
using a swinging bucket rotor, and the supernatant was slowly
removed using a vacuum aspirator pipette. Cells were resuspended in
a chilled TD1 buffer (Illumina, 15027866) by pipette-mixing to a target

concentration of 2300–10,000 cells per µL. Cells were filtered through
35 µm Falcon Cell Strainers (Corning, 352235) before counting on a
Cellometer Spectrum Cell Counter (Nexcelom) using ViaStain acridine
orange/propidium iodide solution (Nexcelom, C52-0106-5).

Tagmentation and fragment capture. scATAC-seq libraries were
prepared according to the Chromium Single Cell ATAC v1.1 Reagent
Kits User Guide (CG000209 Rev B) with several modifications. 19,000
cells were loaded into each tagmentation reaction. Permeabilized cells
were brought up to a volumeof 12 µl in TD1 buffer (Illumina, 15027866)
and mixed with 3 µl of Illumina TDE1 Tn5 transposase (Illumina,
15027916). Transposition was performed by incubating the prepared
reactions on a C1000 Touch thermal cycler with 96–Deep Well Reac-
tion Module (Bio-Rad, 1851197) at 37 °C for 60min, followed by a brief
hold at 4 °C. A Chromium NextGEM Chip H (10x Genomics, 2000180)
was placed in a Chromium Next GEM Secondary Holder (10x Geno-
mics, 3000332) and 50%Glycerol (Teknova, G1798)wasdispensed into
all unused wells. A master mix composed of Barcoding Reagent B (10x
Genomics, 2000194), Reducing Agent B (10x Genomics, 2000087),
and Barcoding Enzyme (10x Genomics, 2000125) was then added to
each sample well, pipette-mixed, and loaded into row 1 of the chip.
Chromium Single Cell ATAC Gel Beads v1.1 (10x Genomics, 2000210)
were vortexed for 30 s and loaded into row 2 of the chip, along with
Partitioning Oil (10x Genomics, 2000190) in row 3. A 10x Gasket (10x
Genomics, 370017) was placed over the chip and attached to the
Secondary Holder. The chip was loaded into a Chromium Single Cell
Controller instrument (10x Genomics, 120270) for GEM generation. At
the completion of the run, GEMs were collected, and linear amplifi-
cation was performed on a C1000 Touch thermal cycler with 96–Deep
Well Reaction Module: 72 °C for 5min, 98 °C for 30 sec, 12 cycles of:
98 °C for 10 sec, 59 °C for 30 sec and 72 °C for 1min.

Sequencing library preparation. GEMswere separated into a biphasic
mixture through addition of Recovery Agent (10x Genomics, 220016),
the aqueous phase was retained and removed of barcoding reagents
using Dynabead MyOne SILANE (10x Genomics, 2000048) and SPRI-
select reagent (Beckman Coulter, B23318) bead clean-ups. Sequencing
libraries were constructed by amplifying the barcoded ATAC frag-
ments in a sample indexing PCR consisting of SI-PCR Primer B (10x
Genomics, 2000128), Amp Mix (10x Genomics, 2000047) and Chro-
mium i7 Sample Index Plate N, Set A (10x Genomics, 3000262) as
described in the 10x scATACUser Guide. Amplification was performed
in a C1000 Touch thermal cycler with 96–DeepWell ReactionModule:
98 °C for 45 sec, for 11 cycles of: 98 °C for 20 sec, 67 °C for 30 sec, 72 °C
for 20 sec, with a final extension of 72 °C for 1min. Final libraries were
prepared using a dual-sided SPRIselect size-selection cleanup. SPRI-
select beads were mixed with completed PCR reactions at a ratio of
0.4x bead:sample and incubated at room temperature to bind large
DNA fragments. Reactions were incubated on a magnet, the super-
natantwas transferred andmixedwith additional SPRIselect reagent to
a final ratio of 1.2x bead:sample (ratio includes first SPRI addition) and
incubated at room temperature to bind ATAC fragments. Reactions
were incubatedon amagnet, the supernatant containingunboundPCR
primers and reagents was discarded, and DNA bound SPRI beads were
washed twice with 80% v/v ethanol. SPRI beads were resuspended in
Buffer EB (Qiagen, 1014609), incubated on a magnet, and the super-
natant was transferred resulting in final, sequencing-ready libraries.

Quantification and sequencing. Final libraries werequantified using a
Quant-iT PicoGreen dsDNA Assay Kit (Thermo Fisher Scientific, P7589)
on a SpectraMax iD3 (Molecular Devices). Library quality and average
fragment size was assessed using a Bioanalyzer (Agilent, G2939A) High
Sensitivity DNA chip (Agilent, 5067-4626). Libraries were sequenced
on the Illumina NovaSeq platformwith the following read lengths: 51nt
read 1, 8nt i7 index, 16nt i5 index, 51nt read 2.
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scATAC data pre-processing. scATAC-seq data were available for
donor PTID2 and PTID4 at week 2–7 (6 timepoints) and for PTID5 and
PTID6 at week 2, 4, and 7. scATAC-seq libraries were processed. In
brief, cellranger-atac mkfastq (10x Genomics v1.1.0) was used to
demultiplex BCL files to FASTQ. FASTQ fileswere aligned to the human
genome (10x Genomics refdata-cellranger-atac-GRCh38-1.1.0) using
cellranger-atac count (10x Genomics v1.1.0) with default settings.
scATAC fragments were submitted to the ArchR package to create the
ArchR object21. Per-cell quality control (QC) was performed using
methods as mentioned in ArchR. The QC analysis showed FRiP score
(the fraction of reads that fall into a peak) >0.25. The TSS enrichment
and log10(nFrags) data showed comparable range across all samples.
Doublets were removed using filterDoublets() function. In total we
observed 294,623 peaks in 135,566 cells.

scATAC-seq data analysis. Using plotEmbedding function in ArchR,
embedded IterativeLSI was used to perform UMAP based dimension
reduction. Unconstrained integration was used to align scATAC-seq
gene score matrix in ArchR object with the corresponding scRNA-seq
gene expression matrix, from which cells were labeled to 28 cell types
along with labeling scores to measure the quality of the cell-label
transfer. We filtered out low quality cells (labeling score <0.5),
removed cell types having less than 50 remaining cells, and kept 14
(B_intermediate, B_naive, CD14_Mono, CD16_Mono, CD4_Naive,
CD4_TCM, CD8_Naive, CD8_TEM, cDC2, gdT, MAIT, NK,
NK_CD56bright, and pDC) out of the 28 cell types for downstream
analysis. The gene score matrix was retrieved using the getGroupSE()
function in ArchR21 and used for downstream analysis by PALMO.

Reagents and resources
Critical reagents and resources used in our experiments are listed in
Supplementary Data 8.

PALMO
Overview. The current version of PALMO contains five analytical
modules to analyze longitudinal omics data from multiple perspec-
tives. It treats longitudinal omics data as continuous variables. PALMO
has been published as an R package in CRAN with a detailed reference
manual and vignettes to demonstrate its usage (https://cran.r-project.
org/web/packages/PALMO/index.html). It can be easily installed and
executed in R or RStudio.

PALMO S4 object. PALMO is a R based package that uses the setClass
function to create an S4 object oriented system. The S4 object consists
of a list of data structures with different types of elements such as
strings, numbers, vectors, embedded lists, etc. It stores input expres-
sion data, input metadata, and output results into separate data struc-
tures for easy retrieval and interpretation. More details can be found in
Section 3.9 of PALMO vignettes (https://raw.githubusercontent.com/
aifimmunology/PALMO/main/Vignette-PALMO.pdf).

Function createPALMOobject() takes two inputs (anndata and
data) to create an PALMO S4 object: anndata is a data frame con-
taining sample annotations. For longitudinal bulk data, data is a data
frame with features (such as genes or proteins) as rows, samples as
columns, and expression values as elements. For longitudinal single-
cell omics data, data is a Seurat object. For single-cell omics data
without a Seurat object, function createPALMOfromsinglecellmatrix()
first creates a Seurat object from an expression matrix or data frame
and then creates a PALMO S4 object. Function annotateMetadata()
assigns columns in the original sample annotation data to designated
variables (sample_column, donor_column, and time_column) of the
PALMO object for longitudinal analysis. Function mergePALMOdata()
cleans up the PLAMO object by filtering out data missing essential
information on sample_column, donor_column, or time_column. Func-
tion checkReplicates()first checkswhether there are replicated samples

at the same time points and of the same participants and, if yes, takes
the median values among replicated samples. Function avgExpCalc()
carries out pseudo-bulking on single-cell omics data. Function naFil-
ter() filters out data whose fraction of NAs is above na_cutoff
(default: 0.4).

Variance decomposition analysis (VDA). For variance decomposi-
tion, we want to evaluate contributions from factors of interest fFig
to the total variance of analyte Y with or without the influence of
fixed effects fXjg. Some fFig and fXjg may be the same variables. We
treat fFig as random effects in a linear mixedmodel, that is, with fixed
effects,

Y ∼ X 1 +X2 + . . . +Xm + 1∣F1

� �
+ 1∣F2

� �
+ . . . + ð1∣FnÞ: ð1Þ

Or, without fixed effects,

Y ∼ 1∣F1

� �
+ 1∣F2

� �
+ . . . + ð1∣FnÞ: ð2Þ

Using lme440, one can obtain the corresponding variance σ2
i ,

including the residual variance σ2
R. Then the total variance of Y is given

by

σ2
total = σ

2
1 + σ

2
2 + . . . + σ2

n + σ
2
R: ð3Þ

Theproportion of variance explained by factor Fi is then σ2
i =σ

2
total .

Similar approachwas used in variancePartition19 where the percentage
of variance explained was interpreted as the intra-class correlation
(ICC). VDA can be performed with the function lmeVariance(). VDA
results can be displayed with functions variancefeaturePlot() and
gene_featureplot().

Coefficient of variation (CV) profiling (CVP). CVP is designed for bulk
longitudinal data and contains two functions: (1) Function cvCalc-
BulkProfile() calculates CV of all features and generates the corre-
sponding CV profile. (2) Function cvCalcBulk() identifies consistently
stable and variable features, which has two important parameters:
Parameter cvThreshold (default: 5%) specifies the CV cutoff for distin-
guishing stable (CV < cvThreshold) or variable (CV > cvThreshold) fea-
tures. Parameter donorThreshold (default: the total number of donors)
defines theminimumnumber of donors onwhich a feature needs to be
stable or variable to be considered as consistently stable or variable.
One may choose cvThreshold as the mode of the corresponding CV
distribution.

Stability pattern evaluation across cell types (SPECT). SPECT is the
CVP counterpart for single-cell data and contains the following func-
tions: (1) Function cvCalcSCProfile() calculates the CVs of all features in
individual cell types and of individual donors and generates the cor-
responding CV profile. (2) Function cvSCsampleprofile() calculates the
CVs of all features of individual donors regardless of difference in cell
types and generates the corresponding CV profile. (3) Function
cvCalcSC() determines whether individual features are stable (CV <
cvThreshold) or variable (CV > cvThreshold) in individual cell types and
of individual donors. One may choose cvThreshold as the mode of the
corresponding CV distribution or a convenient value based on the CVs
of housekeeping genes. (4) Function VarFeatures() first counts how
many times individual features are variable in cell type-donor combi-
nations and then classifies variable features as follows: Features whose
counts are above parameter groupThreshold are classified as super
variable (SUV). Features whose counts are below groupThreshold but
which are consistently variable across all donors in at least one cell
type are classified as variable across time in cell-types (VATIC). The
default groupThreshold value is set to Ndonor*Ncelltype=2 whereNdonor is
the number of donors and Ncelltype is the number of cell types. (5)
Function StableFeatures() is similar to VarFeatures()but classifies stable
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features as super stable (SUS) or stable across time in cell-types
(STATIC). (6) Function dimUMAPPlot() generates a UMAP plot using a
set of selected genes as input.

Outlier detection analysis (ODA). ODA applies both graphic and
statistical methods to examine the temporal behavior of longitudinal
data. Function sample_correlation() calculates intra- and inter-donor
correlations (across analytes) and displays the results in a heatmap.
Timepoints showing obvious weaker correlations with other time-
points are potential outliers. To detect abnormal timepoints, function
outlierDetect() first calculates themeanand the standard deviation (SD)
of each analyte from samples of the same donor across all timepoints,
calculates z = value�mean

SD for the analyte at individual timepoints, and
then counts at individual timepoints how many analytes are outliers
with ∣z∣>z0, where z0 is a user selected cutoff value. Assuming z follows
a normal distribution, it is straightforward to calculate the expected
rate r of analytes having ∣z∣>z0 (two-sided) or having z>z0 or z<� z0
(one-sided). Afterwards function outlierDetectP() uses binomial tests to
evaluate the p values for the counts of outliers at individual timepoints
and applies Benjamini and Hochberg procedure to adjust the p values
since multiple timepoints are tested. A donor-specific abnormal
timepoint is identified if the corresponding adjusted p value is less
than 0.05. In this study we chose z0 = 2:5 and thus r = 1:24% for ∣z∣>2:5
or r =0:62% for z>2:5 or z<� 2:5. While the z-scoremethod described
here can handle data with only three timepoints, Dixon’s test may be a
better alternative for such a small dataset.

Time course analysis (TCA). Function sclongitudinalDEG() uses the
hurdlemodel implemented in the MAST package (https://github.com/
RGLab/MAST/) to study temporal changes in longitudinal scRNA-seq
data. The data is first split into subsets of individual cell types and
individual participants and then analyzed independently. If the data
has at least three timepoints, the function models normalized
expression of each gene as a linear function of time and evaluates the
slope of time and the corresponding p value (likelihood ratio test). If
the data has only two timepoints, the function performs DEG analysis
between the two timepoints as implemented inMAST and obtains fold
change and the corresponding p value. Potential confounding factors
(such as experimental batch, sex, age, etc.) can be specified by para-
meter adjfac which are adjusted in the analysis. Genes that are
expressed in less than a certain fractionof cells (specifiedbyparameter
mincellsexpressed, default 0.1) are filtered out from the analysis.
Obtained p-values are adjusted for multiple comparisons using the
Benjamini and Hochberg procedure. Adjusted p-value <0.05 were
considered significant in this study.

Circos plots for displaying stability patterns. PALMO has two func-
tions to show the stability patterns of single-cell omics data. Function
genecircosPlot() displays the CV values of features of interest in indi-
vidual cell types and across individual donors based on a single data
modality. FunctionmultimodalView()displays theCVvalues of features
of interest in individual cell types and across individual donors based
on two independent data modalities.

Random correlation between gene expression and gene score
To generate the distribution of random correlation between gene
expression in scRNA-seq data and gene score in scATAC-seq data, we
randomly shuffled the order of reliable genes, calculated the correla-
tions between expression of pre-shuffle genes and gene score of post-
shuffle genes at the same positions, and repeated the process 1000
times. The obtained distribution of correlations provided a good
estimate on the correlation between random, unrelated gene pairs,
which had a 95% upper confidence bound at R0 =0.399. Any correla-
tions below R0 were no better than that between random, unrelated
gene pairs and thus not statistically meaningful.

Published single cell datasets
We retrieved scRNA-seq data from published PBMC datasets
CNP00011023, GSE1496892, and GSE16437816. Datasets CNP0001102
andGSE164378were from longitudinal studies. Single-cell data objects
were created in Seurat v4.0.0 and cells were labeled as in the original
studies. Dataset CNP0001102 consists of three healthy controls (nor-
mal), two participants infected with influenza (Flu) and five partici-
pants infected with SARS-CoV-2 (COVID-19). Dataset GSE149689
consists of four normal, five Flu, and eleven COVID-19 participants.
Dataset GSE164378 dataset consists of eight participants with PBMC
samples collected at three timepoints.

Mousebrain scRNA-seq datawasobtained frompublisheddataset
GSE12978836. The dataset contains single cell RNA data from brain
tissues of eight young (2–3 months) and eight old (21–23 months)
mice. The dataset consists of a total 37,069 cells labeled to 25
cell types.

TCRß repertoire dataset
We downloaded the TCRβ sequencing data of 4 systemic sclerosis
patients from GSE15698026. First, we merged the TCR repertoire data
from the 4 patients with 3 timepoints into a single file. Second, we
calculated the frequency of each unique CDR3 peptide in each patient
sample as the ratio between the observed reads of the peptide to the
total peptide reads in the sample. Third, we termed unique CDR3
peptides as clonotypes and labeled them from 1 to the total number of
clonotypes. In total, we collected 288,597 (out of 355,024) unique
clonotypes from CD4+ T cells and 11,739 (out of 14,883) from CD8+

T cells, respectively. The frequency data matrix from CD4+ or CD8+

T cells was then submitted to PALMO as input data frame.

Differential expression gene (DEG) analysis on scRNA-seq data
DEG analysis on datasets (CNP0001102 and GSE149689) was per-
formed using the FindMarkers function from the Seurat package
(version 4.0.0). The groups were specified using “ident.1” and “ident.2”
in the function. The Benjamini and Hochberg (BH) procedure as
implemented in the Seurat package was applied to adjust p-values,
controlling the false discovery rate (FDR) in multiple testing. DEGs
were identified if the corresponding average log2-Fold change was
greater than 0.1 and the corresponding adjusted p value was less
than 0.05.

Seurat differential analysis on longitudinal scRNA-seq data of a
COVID19 patient
Seurat based differential analysis was performed on the longitudinal
scRNA-seq data of activated CD4+ T cells of patient COV-5 in dataset
CNP00011023, using the function FindMarkers() with parameters tes-
t.use = “MAST” and logfc.threshold =0. The groups were defined by
parameters ident.1 and ident.2. For example, to capture differential
genes between day 1 (D1) versus day 7 (D7) and day 13 (D13), we
selected ident.1 = D1 and ident.2 = (D7 and D13). Similar approach was
carried out for comparing D13 versus D1 and D7 (ident.1 = (D1 and D7)
and ident.2 =D13). The significant genes were identified by adjusted
p value <0.05.

Pathway enrichment analysis
Fast Gene Set Enrichment Analysis (fgsea) was performed to identify
enriched pathways among targeted genes41. A custom collection of
gene sets that included the GO v7.2, KEGG v7.2 andHallmark v7.2 from
the Molecular Signatures Database (MSigDB, v7.2) were used as the
pathway database. Genes were pre-ranked by the decreasing order of
their correlation coefficients. The running sum statistics and Normal-
ized Enrichment Scores (NES) were calculated for each comparison.
The pathway enrichment p-values were adjusted using the
Benjamini and Hochberg procedure and pathways with adjusted
p-values <0.05 were considered significantly enriched. Over
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representation analysis was performed using the Fisher test. For a
single sample GSEA (ssGSEA), we used the GSVA v1.40R package27.

Data analysis and visualization
Data analysis was performed in R, a statistical computing language
(https://www.R-project.org/). Basic data visualization was performed
using ggplot2 v3.3, ggpubr 0.4, and circular plots by circlize v0.4. The
UMAP visualization was performed using Seurat v4.0.0. Statistical tests
were performed asmentioned in each section. Multi-test correction was
applied to the p-values to control the FDR using the Benjamini and
Hochberg procedure and adjusted p<0.05 were considered significant.

Data availability
The processed scRNA-seq and scATAC-seq data of human PBMC
samples generated in this study can be downloaded from the GEO
database under accession number GSE190992. The corresponding raw
sequencing data can be downloaded via authorized access from the
dbGaP database under accession number phs003203.v1.p1. Complete
blood count (CBC) data is provided in Supplementary Data 1a. The
matching flow cytometry data of human PBMC samples is provided in
Supplementary Data 1b. The matching Olink data of human plasma
samples is provided in Supplementary Data 1c. Source data are pro-
vided with this paper. Independent datasets used for evaluation are
publicly available and summarized in Supplementary Fig. 1b. The
corresponding accession numbers are CNP0001102 (scRNA-seq data
of human PBMC samples), GSE149689 (scRNA-seq data of human
PBMC samples), GSE164378 (CITE-seq data of human PBMC samples),
GSE129788 (scRNA-seq data of mouse brain tissues), and GSE156980
(TCRβ sequencing data of CD4+ and CD8+ non-naïve T cells of systemic
sclerosis patients). Source data are provided with this paper.

Code availability
An open-source R implementation of PALMO and R codes used in this
study are available at GitHub (https://github.com/aifimmunology/
PALMO). The release includes tutorials and example vignettes. PALMO
can also be installed in R or RStudio as an R package in CRAN. Source
code can also be found at Zenodo42 [https://doi.org/10.5281/zenodo.
7549226].
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