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Abstract

Background: Major depressive disorder (MDD) is a risk factor for dementia including that 

caused by Alzheimer’s Disease (AD). Both MDD and AD have a higher prevalence in women 

than men, and estrogen-related processes have been implicated in this sex difference.

Objective: To identify if enhanced oxidative stress and decreased expression of the memory 

enhancer insulin-like growth factor 2 (IGF2), each implicated separately in MDD and AD, are 

exaggerated in individuals with both AD and MDD compared to those with AD.

Methods: Expression of target genes are determined by qPCR in postmortem hippocampus (Hip) 

and anterior cingulate cortex (ACC) of individuals with dementia and autopsy confirmed AD and 

those of AD+MDD.

Results: Transcript levels of the antioxidant enzymes catalase (CAT) and superoxide dismutase 

1 (SOD1), as well as IGF2 and its receptor (IGF2R) were significantly lower in the Hip and ACC 

of individuals with both AD and MDD compared to those with AD and no MDD. Expressions 

of Progestin and AdipoQ Receptor Family Member 7 (PAQR7, alias progesterone receptor alpha, 

mPRα) and PAQR8 (mPRβ), receptors that bind neurosteroids, were also lower in the Hip and 

ACC of AD+MDD samples compared to those of AD without MDD. Correlations among these 

transcripts revealed that estrogen receptor 2 (ESR2) and mPRβ are direct or indirect regulators of 

the expression of the antioxidant enzymes and IGF2R.

Conclusion: Reduced levels of antioxidant enzymes, decreased IGF2 expression, and 

diminished estrogen or membrane progesterone receptor-dependent processes might be more 

pronounced in the subpopulation of individuals with AD and MDD than without MDD.
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INTRODUCTION

Millions of people live with dementia, and 50–70% of all late-onset dementia cases are 

caused by Alzheimer’s Disease (AD) neuropathology [1] in isolation, or accompanied by 

additional pathologies [2]. The number of AD cases is increasing, predicted to reach 12.7 

million by 2050 in the US, and 152 million worldwide. The disease process related to 

AD starts long before symptom onset and lasts approximately 15–20 years. It is widely 

believed that early detection of possible precursors and treatment of modifiable risk factors 

of AD is very important. Emotional, physical, or cellular stressors are known risk factors for 

cognitive decline and have been implicated in earlier onset and more marked progression of 

AD [3]. Stress-related disorders like depression have been linked to a state of accelerated 

biological or cellular aging [4], affecting the hippocampus and subsequently leading to 

pathological cognitive aging [5–14]. Major depressive disorder (MDD) is a risk factor for 

the development of AD [3, 15] and the MDD prevalence rate is 37% in those with dementia 

[16]. Even moderate depression increases risk of progression from cognitively healthy to 

dementia [17]. Additionally, there may be a limited overlap in the etiology of these illnesses, 

as a moderate level of polygenic overlap has also been found between MDD and AD [18].

In a recent study, we found that increased stress-reactivity and predisposition to depression-

like behavior exaggerated cognitive aging in female rats [19]. Hippocampus-dependent 

contextual fear memory in the inbred Wistar Kyoto More Immobile (WMI) females declined 

by middle age, compared to same age controls, the Wistar Kyoto Less Immobile (WLI) 

females, which do not exhibit enhanced stress responses or depressive behaviors. At a young 

age, there is no difference in memory between these nearly isogenic strains. Hippocampal 

transcript levels of the antioxidant enzymes, catalase (Cat) and superoxide dismutase1 

(Sod1) and the learning and memory-stimulant insulin-like growth factor 2 (Igf2), and its 

receptor Igf2r were lower in the middle-aged WMI hippocampus compared to the young 

of both strains [19]. These findings in the animal model promise to be relevant to human 

illnesses, as enhanced oxidative stress has been implicated in both MDD [21–23] and AD 

[20, 21]. Furthermore, attenuated levels of hippocampal IGF2 have also been proposed 

to contribute to AD pathology [22]. IGF2 binds with high affinity to the IGF2 receptor 

(IGF2R), which reduces the bioavailability of IGF2 by targeting it to lysosomes. Thus, it is 

demonstrated that the effects of IGF2 in memory enhancement and recovery of function in 

disease models are dependent on its binding to IGF2R [23–25].

Prevalence of both MDD [10, 26] and dementia [27, 28] are higher in women than in 

age-matched men. Both the progression of cognitive decline and its association with MDD 

shows that females are particularly vulnerable [29, 30]. Women also show faster cognitive 

decline after a clinical diagnosis of mild cognitive impairment (MCI) or AD dementia [31]. 

Higher risks of cognitive decline and dementia and higher levels of AD neuropathology have 
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been associated with early, surgically induced menopause, indicating that menopause before 

the age of 40–45 represents a female-specific risk factor for AD dementia [32, 33].

Reduced peripheral levels of 17β-estradiol and testosterone are observed in female and 

male patients with AD, respectively, compared to appropriate matched controls [34]. Sex 

hormones have been proven to improve cognitive functions and alleviation of depression 

upon treatment with estrogens in both females and males, mainly in rodent models, but also 

in humans [see recent reviews: 35, 36]. Recently, expression of membrane progesterone 

receptors, Progestin and AdipoQ Receptor 7 and 8, respectively (PAQR7; mPRα and 

PAQR8; mPRβ), have been assessed in the blood of pregnant and postpartum women with 

varying degree of depressive symptoms [37]. It was found that blood transcript levels of both 

ESR2 and mPRβ correlated significantly, but inversely, with depression scores. Thus, lower 

levels of these receptor transcripts were associated with higher depression scores.

The hippocampus is particularly vulnerable in AD [38–40]. Studies have shown volume 

loss in the hippocampus during the progression of AD has a direct relationship with 

cognitive decline. Functional connectivity between the hippocampus and other brain regions, 

including the ventral anterior cingulate cortex, is disrupted in AD patients [41]. Furthermore, 

the anterior cingulate cortex (ACC) is a brain region with metabolic decline in aging [42]. 

ACC is a fundamental hub of the memory network and plays a major role in cognitive 

control during complex tasks [43]. Hypoactivity in the ACC is associated with depression in 

AD [44], making it a brain region of importance in this study.

Here, we aimed to determine if the hippocampal molecular deficits found in the animal 

model can be replicated in human postmortem brain samples from individuals with AD 

with, and without, a history of MDD. We hypothesized that the increased prevalence of AD 

in older women could be associated with substantially reduced estrogen and progesterone-

dependent processes, and MDD may directly affect these pathways. To answer this, we 

also examined the expression of estrogen receptors and membrane progesterone receptors in 

these brain regions.

METHODS

Samples

Postmortem tissue samples (male and female, aged 41–96 years old) were acquired from the 

Brain Bank of the Mesulam Center for Cognitive Neurology and Alzheimer Disease. Two 

populations were studied: individuals with AD dementia and neuropathologic changes of 

AD, with prior depression (n = 19) and individuals with AD dementia and neuropathologic 

changes of AD, without prior depression (n = 19). Neuropathological diagnosis of AD 

was as described using the NIA-AA guidelines [45]. Prior depression was assessed from 

health records. The hippocampus and anterior cingulate cortex (ACC) were studied given 

their association with AD dementia. Tissues for both brain regions were not available 

in some cases, making the final sample sizes for hippocampus: AD male, N=9; female, 

N=10; AD+MDD male, N=8; female, N=7, and for ACC: AD male, N=9; female, N=10; 

AD+MDD male, N=10; female, N=9. Tissues were received frozen and maintained at −80 

°C until RNA isolation.
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All participants in the Clinical Core of the Northwestern Alzheimer’s Disease Research 

Center, the source of brain donations, had provided informed consent to be evaluated 

annually during life and donated their brains at death. The parent study was approved by 

the institutional review boards of Northwestern University. Informed consent had included 

agreement to share data and tissue resources with collaborating investigators.

Expression analyses

Total RNA was isolated using the Direct-zol™ RNA MiniPrep kit (Zymo Research, Orange, 

CA, USA) and was reverse transcribed with SuperScript VILO™ Master Mix (Invitrogen, 

Carlsbad, CA, USA). Quantitative PCR (qPCR) was carried out as described previously 

[19]. Briefly, 5 ng of cDNA was amplified with SYBR Green Master Mix (Applied 

Biosystems, Foster City, CA, USA) and primer sequences specific to various genes of 

interest. The primer sequences are shown in Supplemental Table 1. Target transcript levels 

were normalized relative to GAPDH, a housekeeping gene previously demonstrated to show 

similar expression across various conditions. Relative quantification (RQ) was determined 

using transcript levels from one human female (75-year-old) hippocampal and ACC sample 

with no AD and no MDD diagnosis as the calibrator, using the 2−(ΔΔCT) method. Please note 

that using the ΔCT method, the same results were obtained, of course inversely to RQ. Data 

are presented in RQ to provide an easier interpretation of the results.

Technical outliers were defined as samples where either the target or the housekeeping gene 

showed abnormal amplification or melting curve characteristics. Therefore, these outliers 

(n=1–3 in the different qPCR runs) were removed.

Statistical analysis

All statistical analyses were performed using GraphPad Prism v9.3.1 (GraphPad Software, 

La Jolla, CA). Statistical significance for gene expression differences was determined by 

two-way ANOVA (sex and comorbidity), followed by False Discovery Rate (FDR) corrected 

post-hoc analyses. Post hoc significances are marked in the figures as q<0.05 or <0.01, when 

controlled for multiple comparisons, or p < 0.05 as individual p values. When there were no 

significant main effects for sex or comorbidity in the two-way ANOVA, we combined male 

and female expression data to test the hypothesis that the presence of MDD diagnosis altered 

the gene expression. This analysis was conducted by Student’s t-test. Data are presented as 

mean ± standard error of mean. Pearson correlations across transcript levels were carried 

out using the GraphPad Prism v9.3.1. software and significance values were corrected for 

multiple comparisons. The modified Kolmogorov-Smirnov “goodness to fit” test was used to 

verify normal distribution with the GraphPad software.

RESULTS

Table 1 shows descriptive data of the participants. There were no significant differences 

between the female or male groups of AD and no MDD vs. AD + MDD in age or 

postmortem interval (PMI). Females AD vs. AD + MDD, age: 81.7 +/− 1.7 vs. 71.7 +/− 

6.3; PMI: 12.4 +/− 2.8 vs. 16.1 +/ 2.7 Males AD vs. AD + MDD, age: 76.2 +/− 3.3 vs. 

74.2 +/− 4.2; PMI: 14.6 +/− 2.7 vs. 14.0 +/ 2.4. Although AD+MDD females were slightly 
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younger, including two individuals under 50 years of age, the age distribution was still 

normal in all groups confirmed by the Kolmogorov-Smirnov test.

Expression of Superoxide Dismutase 1 and Catalase in the Hippocampus and the Anterior 
Cingulate Cortex

Compared to individuals with AD and no prior depression, individuals with AD and 

prior depression show reduced hippocampal expression of antioxidants as indicated by 

two-way ANOVA (comorbidity: SOD1, F[1,29]=6.3, p=0.018; CAT, F[1,27]=5.8, p=0.023). 

No significant main effects of sex, or sex by comorbidity interactions were found for the 

expression of either gene (sex, SOD1, F[1,29]=0.49, NS; CAT, F[1,27]=0.44, NS). However, 

post-hoc analyses indicated that hippocampal SOD1 expression was significantly (q<0.05) 

lower in females with AD + MDD compared to AD (Figure 1A). Similarly, post-hoc 

comparison showed that hippocampal CAT expression was also lower in females of the AD 

+ MDD group compared to those of AD at the individual p value (<0.05) level.

Similarly, SOD1 levels were significantly lower in AD + MDD in the ACC brain region, but 

that of CAT expression did not reach significance by two-way ANOVA (comorbidity, SOD1, 

F[1,32]=7.33, p=0.011; CAT, F[1,32]=1.63, NS; Figure 1B). While there were no significant 

main effects for sex (SOD1, F[1,32]=1.77, NS; CAT, F[1,32]=1.63, NS), there was a sex by 

comorbidity interaction for SOD1 (F[1,32]=4.8, p=0.036). Post-hoc analysis indicated that 

SOD1 expression is significantly (q <0.05) lower in the female AD + MDD ACC, compared 

to that of AD and no depression (Figure 1B). For hypothesis testing, and because there were 

no sex differences in CAT expression in the ACC, we combined the sexes and carried out a 

Student’s t- test. This sex-combined expression of CAT was significantly lower in the ACC 

of the AD + MDD group compared to those of AD alone (t=2.27, df=32, p=0.030).

Furthermore, the cumulative reduction in SOD1 and CAT in individuals with AD and MDD 

compared with individuals with AD and no MDD was 57.1% in male hippocampi, while it 

was 85.7% in female hippocampi. The reduction was 18.5% in males and 65.4% in females 

in the ACC.

Expression of Insulin-like Growth Factor and its Receptor in the Hippocampus and the 
Anterior Cingulate Cortex

Individuals with AD and no MDD did not show significantly different hippocampal 

IGF2 transcript levels from those with AD + MDD analyzed by two-way ANOVA 

(comorbidity, F[1,22]=3.63, p=0.07; Figure 2A). There was also no significant main sex 

effect (F[1,22]=1.47, NS), or a sex by comorbidity interaction. Therefore, we combined 

the male and female data and compared it between the AD and the AD+MDD groups 

using Student’s t-test. This comparison showed a significantly lower IGF2 expression in the 

hippocampus in the AD + MDD group compared to those of AD (t=2.53, df=24, p=0.018).

In contrast to hippocampal IGF2 expression, both a significant sex difference and an 

effect of MDD comorbidity was observed in the ACC (sex, F[1,26]=4.29, p=0.048; 

comorbidity, F[1,26]=4.44, p=0.045) without any significant interaction effect. Specifically, 

IGF2 expression in the AD no MDD female ACC was higher at the individual p level 
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(p<0.05) in comparison to IGF2 expression in the ACC of females in the AD + MDD group 

(Figure 2B).

No significant main effects of comorbidity or sex were found for the hippocampal IGF2R 
expression between the groups. IGF2R transcript levels did not differ between the sexes 

in the ACC (sex, F[1,30]=0.93, NS), but were significantly lower in the AD + MDD 

ACC compared to AD in both males and females using two-way ANOVA (comorbidity, 

F[1,30]=9.03, p=0.005). These differences were significant at the level of q=0.05 for both 

males and females at the post-hoc comparisons (Figure 2B).

Expression of estrogen receptors and membrane progesterone receptors in the 
hippocampus and the anterior cingulate cortex

Hippocampal expression of estrogen receptor 1 and 2 (ESR1 and ESR2) showed 

significantly higher expression in females compared to males in the two-way ANOVA (sex, 

ESR1, F[1,20]=11.45, p=0.003; ESR2, F[1,20]=11.94, p=0.003; Supplemental Figure 1A). 

No main effect of comorbidity was found for the expression of either estrogen receptors 

(comorbidity, ESR1, F[1,20]=0.07, NS; ESR2, F[1,20]=0.05, NS). Sex differences reached 

significance (q=0.004) in ESR1 expression between males and females in the AD no MDD 

group, but not in the AD + MDD group (Supplemental Figure 1A). However, sex differences 

reached significance in both groups for ESR2 expression (q<0.01 for AD no MDD and 

q<0.05 for AD + MDD).

Estrogen receptor levels were significantly different in the ACC by sex and comorbidity. 

Specifically, ESR1 transcript levels were significantly higher in female AD samples 

compared to those of males, and the presence of MDD symptoms in female AD 

subjects reduced this expression significantly (sex, F[1,20]=29.59, p<0.001; comorbidity, 

F[1,20]=23.45, p<0.001; sex x comorbidity, F[1,20]=28.76, p<0.00; Supplemental Figure 

1B). The comorbidity difference in ESR1 expression was clearly significant in females 

(q<0.0001), as shown by the post-hoc comparison. Interestingly, ESR2 expression showed 

a very similar profile (sex, F[1,20]=28.36, p<0.001; comorbidity, F[1,20]=15.60, p<0.001; 

sex x comorbidity, F[1,20]=28.78, p<0.001). ESR2 expression in the ACC was significantly 

different (q<0.0001) between females in the AD and AD + MDD groups also (Supplemental 

Figure 1B).

Hippocampal expression of the Progestin and AdipoQ Receptor Family Member 7 (PAQR7), 

also named as membrane progesterone receptor alpha (mPRa), did not differ between males 

and females, but was significantly lower in the AD + MDD hippocampus compared to 

those of AD without MDD (sex, F[1,24]=0.04, NS; comorbidity, F[1,24]=8.11, p=0.009). 

Specifically, mPRa expression in the AD + MDD male hippocampus was significantly 

lower (q<0.05) in comparison to mPRa expression in the AD no MDD males (Figure 3A). 

Hippocampal PAQR8 (mPRb) expression did not differ significantly between male and 

female individuals, but showed a significant main effect of comorbidity (sex, F[1,24]=3.14, 

NS; comorbidity, F[1,24]=4.56, p=0.043). mPRb expression in the hippocampus was also 

significantly lower (q<0.01) in the AD + MDD males compared to AD no MDD males 

(Figure 3A).
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In contrast to the hippocampal expression, mPRa expression in the ACC was higher in males 

than females in general, but lower in individuals with AD + MDD compared to AD no MDD 

(sex, F[1,26]=13.14, p=0.001; comorbidity, F[1,26]=5.07, p=0.033). Post-hoc comparison 

identified that mPRa transcript levels were lower in the AD+MDD males at the individual 

p value level (p<0.05) compared to AD no MDD males (Figure 3B). There were no main 

sex effects in mPRb expression in the ACC, but the main effect of comorbidity was highly 

significant (sex, F[1,26]=0.58, NS; comorbidity, F[1,26]=9.96, p=0.004). The expression of 

mPRb was significantly lower in female individuals with AD + MDD compared to those 

with AD no MDD (q<0.01; Figure 3B).

Correlations

Correlations between the variables revealed that all measured hippocampal transcript levels 

correlated significantly with ESR2 expression, except mPRα (Table 2). Similarly, mPRβ 
significantly correlated with all measures except that of IGF2 in the hippocampus. In 

contrast, ESR2 only correlated with IGF2 and ESR1 expression in the ACC, and mPRβ 
did not show a significant correlation with ESR1 and ESR2 in the ACC (Table 3).

DISCUSSION

The novel findings of this study are the biochemical worsening of many molecular processes 

in the brain in participants with autopsy-confirmed AD and depressive symptoms. These 

include the decreased expression of antioxidant enzymes in the hippocampus and ACC of 

individuals with AD + MDD compared to those with AD. The other major result is the sex 

specificity of decreased antioxidant enzyme expression, where expression was significantly 

decreased in female AD + MDD samples. Furthermore, the brain region- and sex differences 

observed for mPRβ transcript levels between subjects with AD no depression compared to 

those with AD + MDD suggest that neurosteroids and their receptors may play a significant 

role in MDD being a risk factor for AD.

The observed decrease in SOD1 expression in both the hippocampus and the ACC of female 

subjects with AD + MDD is novel. The significance of this finding is strengthened by the 

decreased expression of CAT enzyme in the same group. There is a substantial body of 

literature suggesting vulnerability to oxidative damage particularly at an early stage of AD 

pathology [46, 47]. Blood-based redox alterations have also been found in AD, including 

decreased levels of SOD [48]. In contrast, a metanalysis found no changes in the expression 

of SOD1 or CAT in AD brain regions [49].

There are also conflicting results for SOD1 and CAT in the literature of MDD [50–53], 

although malfunctioning antioxidant defense has been repeatedly implicated in depressive 

disorders [54–56]. In animal studies, reduced hippocampal Cat and Sod activity has been 

reported in parallel with stress-induced depression-like behavior [54, 57], similar to our 

findings in the genetically stress-reactive middle-aged WMI animals [19].

The overall trend of IGF2 and IGF2R expression showed a decrease in the brain regions 

of individuals with AD + MDD compared to those with AD and no MDD. Decreased 

IGF2 expression has been shown previously in some brain regions of individuals with AD 
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[58, 59]. Whether the decreased IGF2 expression in AD + MDD is the result of MDD 

exaggerating the decrease of IGF2 expression in AD brains cannot be determined in the 

present study. However, exogenous Igf2 administration can enhance cognitive function [60, 

61], and fluoxetine and metformin treatment can enhance Igf2 expression and decrease 

depression-like behavior at the same time in animal studies [62]. Thus, increasing Igf2 levels 

could be a potential mechanism to ameliorate both cognitive dysfunction and depression, 

and interestingly it has been suggested that increasing Igf2 levels would attenuate oxidative 

damage in the brain [63].

Aging and female gender are the most common risk factors of AD, leading to increased 

prevalence in women compared to men [64]. Estrogen and progesterone show protective 

activity on brain functions, and thus loss of these steroid hormones at menopause 

is an important risk factor for AD progression in females [65]. Furthermore, women 

with AD have reduced levels of brain estrogen [66]. As estradiol can increase choline 

acetyltransferase activity [67], and major depletion of this enzyme is a hallmark of AD 

[68], this potential mechanism adds to the list of sex difference etiologies in AD. Sex 

steroids, via androgen and estrogen receptors, have been identified as drivers of disrupted 

homeostatic processes in AD neurons [69, 70]. The present findings of reduced transcript 

levels of ESRs in the ACC of AD + MDD cases compared to those with AD and no MDD 

suggest that MDD affects the abundance of ESRs. Since selective ESR2 agonists can reduce 

depression-like behaviors [71], ESR2 may participate in the molecular processes of MDD 

becoming a risk factor for AD.

Hippocampal ESR2 expression was positively correlated with transcript levels of antioxidant 

enzymes, and those of mPRβ. Estrogen receptor beta (ESR2) and mitochondria are co-

localized in the female brain, but in AD, both the expression of ERβ and its association 

with the mitochondria are reduced [72]. The reduction of ERβ expression in mitochondria 

is accompanied by decreases in mitochondrial function, which could have resulted from 

oxidative damage to mitochondrial DNA. The authors suggest that females with AD could 

have exaggerated accumulation of oxidative stress because of the mitochondrial defect, 

compared to controls. Thus, it is feasible that estrogen-regulated processes contribute to the 

female vulnerability to AD.

Progesterone is known to have neuroprotective effects via different receptors including 

those of mPRs [73, 74]. mPRβ is expressed in higher levels in the rat brain than mPRα, 

similarly to the higher prevalence of mPRβ in the human brain [75, 76]. The neurosteroid 

allopregnanolone, metabolized from progesterone, binds to mPRs and affects anti-apoptotic 

actions [77]. Thus, decreased transcript levels of mPRβ in the hippocampus of male, and 

in the ACC of female AD + MDD cases, could suggest increased apoptotic processes. 

In addition, allopregnanolone concentration is reduced in the AD brain [78, 79] and in 

depression [80], suggesting a potential double hit of reduced levels and reduced receptors for 

this neurosteroid in AD that is further exaggerated in AD + MDD.

A limitation of this study includes the lack of age-matched postmortem samples from 

control subjects and those with MDD only. Future studies would need to increase the 

number of postmortem samples and include age matched MDD, and no AD no MDD 
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samples as well. Nevertheless, the current data suggest that MDD presents the background 

for a biochemical risk factor for AD, via exaggerating processes known to occur in the 

brains of individuals with AD. Given the lack of effective disease-modifying treatments 

for AD, this study highlights the need to place increased efforts on early identification 

and intervention in MDD. Effective treatment for MDD may therefore not only improve 

wellbeing in the context of depression but could attenuate the risk for Alzheimer’s Disease 

as well.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Decreased transcript levels of SOD1 and CAT in the hippocampus (A) and anterior 
cingulate cortex (B) of individuals with AD+MDD (blue), compared to AD without MDD (red).
RNA was isolated from postmortem brain regions and reverse transcribed prior to qPCR 

analysis for each brain region of study subject. Expressed as mean relative quantification 

(RQ), as described in the Methods section. The numbers included in the analyses: AD 

w/o MDD: male N=9 hippocampus, N=8 ACC; female N=10 hippocampus, N=7 ACC; 

AD+MDD: male N=8 hippocampus, N=8 ACC; female N=6 hippocampus, N=7 ACC. Data 

were analyzed by two-way ANOVA followed by two-stage linear step-up procedure of 

Benjamini, Krieger and Yekutieli. Statistically significant differences between the groups 

are indicated, where ∗q < 0.05 is post-hoc significance corrected for multiple comparisons, 

while #p < 0.05 refers to individual p value significance between the different comorbidity 

groups.
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Figure 2. A trend toward decreased transcript levels of IGF2 and IGF2R in the hippocampus (A) 
and anterior cingulate cortex (B) of individuals with AD+MDD (blue), compared to AD without 
MDD (red).
Transcript levels were measured as described in Figure 1 and Methods. The numbers 

included in the analyses: AD w/o MDD: male N=6 hippocampus, N=8 ACC; female N=10 

hippocampus, N=7 ACC; AD+MDD: male N=6 hippocampus, N=8 ACC; female N=6 

hippocampus, N=7 ACC. ∗q< 0.05; #p< 0.05 between the different comorbidity groups, and 

^p < 0.05 indicate sex difference.
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Figure 3. Decreased transcript levels of PRα and PRβ the hippocampus (A) and anterior 
cingulate cortex (B) of individuals with AD+MDD (blue), compared to AD without MDD (red).
Transcript levels were measured as described in Figure 1 and Methods. The numbers 

included in the analyses: AD w/o MDD: male N=7 hippocampus, N=8 ACC; female N=7 

hippocampus, N=8 ACC; AD+MDD: male N=7 hippocampus, N=8 ACC; female N=7 

hippocampus, N=6 ACC. ∗q < 0.05; **q <0.01; #p < 0.05 between the different comorbidity 

groups.
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Table 1.

Description of postmortem samples

Group Age Gender PMI
a

Race
b

Pathologic Diagnosis
c

AD+MDD 56 M 8 C AD (ADNC high - A3, B3, C3)

AD+MDD 60 M 30 H AD (ADNC high - A3, B3, C3)

AD+MDD 63 M 16 C AD (ADNC high - A3, B3, C3)

AD+MDD 69 M 8 C AD (ADNC high - A3, B3, C3)

AD+MDD
acc 70 M 11 C AD (ADNC high - A3, B3, C3)

AD+MDD 75 M 14 C AD (ADNC high - A3, B3, C3)

AD+MDD
acc 77 M 20 C AD (ADNC high - A3, B3, C3)

AD+MDD 86 M 9 C AD (ADNC high - A3, B3, C3)

AD+MDD 90 M 19 C AD (C, V, high)

AD+MDD 96 M 5 C AD (ADNC intermed .- A3, B2, C3)

AD+MDD 41 F 12 H AD (ADNC high - A3, B3, C3)

AD+MDD 48 F 8 H AD (ADNC high - A3, B3, C3)

AD+MDD 56 F 6 C AD (C, VI, high)

AD+MDD 74 F 23 C AD (ADNC high - A3, B3, C3)

AD+MDD 74 F 16 C AD (ADNC high - A3, B3, C3)

AD+MDD
acc 85 F 27 AA AD (ADNC high - A3, B3, C3)

AD+MDD 87 F 16 AA AD (ADNC high - A3, B3, C3)

AD+MDD
acc 89 F 10 C AD (ADNC high - A3, B3, C3)

AD, MDD 91 F 27 C AD (ADNC high - A3, B3, C3)

AD 61 M 24 H AD (C, VI, high)

AD 68 M -- C AD (C, VI, high)

AD 71 M 12 C AD (C, VI, high)

AD 73 M 4 C AD (C, V, high)

AD 74 M 21 C AD (ADNC high - A3, B3, C3)

AD 75 M 16 C AD (ADNC high - A3, B3, C3)

AD 84 M 23 C AD (ADNC high - A3, B3, C3)

AD 87 M 7 C AD (C, VI, high)

AD 93 M 10 C AD (C, V, high)

AD 67 F 11 C AD (C, VI, high)

AD 77 F 21 C AD (C, VI, high)

AD hip 80 F 4 C AD (C, V, high)

AD 82 F 7 C AD (C, V, high)

AD 83 F 26 C AD (C, VI, high)

AD acc 84 F 13 C AD (C, VI, high)

AD 84 F 6 C AD (C, VI, high)

AD 85 F 26 C AD (C, VI, high)

AD 85 F 5 C AD (C, VI, high)
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Group Age Gender PMI
a

Race
b

Pathologic Diagnosis
c

AD 86 F 5 C AD (C, V, high)

AD 86 F -- C AD (C, V, high)

acc
Only ACC sample

hip
Only hippocampal sample

a
Postmortem Interval

b
Race C: Caucasian; H: Hispanic; AA: African American

c
Pathologic Diagnosis: A, B and C severity scores as described in Montine et al., 2016, ADNC: Alzheimer’s Disease Neuropathologic Change
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Table 2.

Pearson correlation coefficients for hippocampal gene expression.

CAT IGF2 IGF2R SOD1 ESR1 ESR2 PRalpha PRbeta

CAT 0.56 0.79 0.81 0.66 0.68 0.37 0.73

IGF2 0.56* 0.36 0.51 0.77 0.76 0.28 0.44

IGF2R 0.79** 0.36 0.59 0.40 0.47 0.45 0.67

SOD1 0.81** 0.51* 0.59** 0.63 0.61 0.21 0.47

ESR1 0.66** 0.77** 0.40 0.63** 0.98 0.25 0.47

ESR2 0.68** 0.76** 0.47* 0.61** 0.98** 0.24 0.48

PRalpha 0.37 0.28 0.45 0.21 0.25 0.24 0.82

PRbeta 0.73** 0.44 0.67** 0.47* 0.47* 0.48* 0.82**

*
p<0.05

**
p<0.01 after correction for multiple comparison
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Table 3.

Pearson correlation coefficients for gene expression in the anterior cingulate

CAT IGF2 IGF2R SOD1 ESR1 ESR2 PRalpha PRbeta

CAT 0.53 0.71 0.64 0.35 0.29 0.55 0.72

IGF2 0.53** 0.18 0.09 0.84 0.83 0.13 0.21

IGF2R 0.71** 0.18 0.87 0.01 −0.02 0.64 0.90

SOD1 0.64** 0.09 0.87** −0.02 −0.06 0.43 0.89

ESR1 0.35 0.84** 0.01 −0.02 0.97 0.08 0.08

ESR2 0.29 0.83** −0.02 −0.06 0.97* 0.04 0.08

PRalpha 0.55* 0.13 0.64** 0.43 0.08 0.04 0.47

PRbeta 0.72** 0.21 0.90** 0.89** 0.08 0.08 0.47*

*
p<0.05

**
p<0.01 after correction for multiple comparisons
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