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Abstract 

Depression is a common mental illness, which is related to monoamine neurotransmitters and the dysfunction of the 
cholinergic, immune, glutamatergic, and neuroendocrine systems. The hypothesis of monoamine neurotransmitters is 
one of the commonly recognized pathogenic mechanisms of depression; however, the drugs designed based on this 
hypothesis have not achieved good clinical results. A recent study demonstrated that depression and inflammation 
were strongly correlated, and the activation of alpha7 nicotinic acetylcholine receptor (α7 nAChR)-mediated cholin-
ergic anti-inflammatory pathway (CAP) in the cholinergic system exhibited good therapeutic effects against depres-
sion. Therefore, anti-inflammation might be a potential direction for the treatment of depression. Moreover, it is also 
necessary to further reveal the key role of inflammation and α7 nAChR in the pathogenesis of depression. This review 
focused on the correlations between inflammation and depression as well-discussed the crucial role of α7 nAChR in 
the CAP.
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Introduction
Depression is a common mental illness, which is clini-
cally manifested as persistent depressed mood, loss of 
interest, and cognitive dysfunction, and the disease bur-
den caused by depression ranks first among all mental 
illnesses [1, 2]. It has been predicted that by 2030, depres-
sion will surpass cardiovascular and cerebrovascular dis-
eases and become the first largest disease, causing human 
death and disability [3]. Numerous studies showed that 
the pathogenesis of depression might be related to the 
low levels of monoamine neurotransmitters and the 
dysfunction of multiple systems in the body, such as the 
cholinergic, immune, glutamatergic, and neuroendocrine 
systems [4–15]. At present, the hypothesis of monoamine 
neurotransmitters is a commonly recognized pathogenic 
mechanism of depression [4]. Therefore, the pharma-
cological effects of currently available antidepressants, 
such as fluoxetine and venlafaxine, are mainly exerted by 
blocking the reuptake of monoamine neurotransmitters 
and increasing the levels of 5-hydroxytryptamine (5-HT), 
dopamine (DA), and norepinephrine (NE) in the synap-
tic cleft. However, the results of most double-blind trials 
showed that the disadvantages of these drugs were that 
they usually showed effects after 2–4 weeks of adminis-
tration, and about 40% of patients with depression were 
non-responsive to these drugs [16, 17]. This suggested 
that the potential pathophysiology of depression was not 
well-understood, and the antidepressant therapies based 
on the hypothesis of monoamine neurotransmitters had 
certain limitations. Therefore, a more comprehensive 
elucidation of the pathogenesis of depression is urgently 
needed to develop more effective antidepressant drugs.

The cholinergic system is made up of enzymes-active 
substances (involved in manufacturing acetylcholine, 
ACh), cholinergic neurons or histiocytes (release ACh), 
and receptors (bind to ACh). The cholinergic system can 
organize into a network in the body, perform various 
complex functions [18], and take part in the regulation 
of learning, cognition, memory, and emotion [19–21]. 
As early as 1972, Davidson et  al. [22] put forward the 
cholinergic hypothesis of depression and suggested 
that the occurrence of depression was closely related 
to the enhancement of cholinergic substance activity in 
the brain. For example, studies showed that depressive 
behavior could be induced by elevating central choline 
and ACh levels or blocking the activity of acetylcholinest-
erase (AchE) [7–9]. On the contrary, increasing the AchE 
activity in the hippocampus could reverse depression- 
and anxiety-like behavior in mice caused by physostig-
mine, an AchE inhibitor [23].

The functions performed by the cholinergic system 
are mediated by the cholinergic receptors, includ-
ing the muscarinic ACh receptor and nicotinic ACh 

receptor [9]. Interestingly, in recent years, increasing 
studies have found that the activation of the CAP can 
exert an antidepressant effect, which is inconsistent 
with the above-mentioned cholinergic hypothesis for 
depression [24–26]. CAP is a neuroimmune regula-
tory pathway; when the central nervous system (CNS) 
is stimulated by immunity, it can activate the vagus 
nerve and urge the nerve endings to release ACh. The 
released ACh can activate α7 nAChR on the surface of 
various immune cells, such as macrophages and micro-
glia, down-regulate the release of related inflamma-
tory factors, and finally inhibit peripheral and central 
inflammatory reactions [27]. Therefore, the activation 
of α7 nAChR-mediated CAP might be a promising 
direction in antidepressant therapies. The correlations 
between depression and inflammation, which is medi-
ated by α7 nAChR, should be urgently explored to iden-
tify novel antidepressant drugs. This review focused on 
these correlations and the crucial role of α7 nAChR in 
the CAP.

Relationship between inflammation 
and depression
Evidence of inflammation associated with depression
The correlation between the nervous and immune sys-
tems has been widely studied [24]. Numerous recent 
studies suggested that inflammation was closely related 
to the pathogenesis of some nervous system diseases, 
such as depression [10, 11]. For instance, a meta-analysis, 
including a series of clinical data, showed a correlation 
between depression and inflammation among children, 
adolescents, and adults [28], such as the elevated levels 
of C-reactive protein and interleukin-6 (IL-6) [29–31]. 
Other studies showed that the levels of proinflammatory 
cytokines in the peripheral nervous system and CNS tis-
sue of patients with depression were higher as compared 
to those in healthy subjects [32], and the brain tissue 
obtained from the victims of depressive suicide exhibited 
elevated expression levels of interleukin-1beta (IL-1β), 
IL-6, and tumor necrosis factor (TNF) [33, 34]. In addi-
tion, the results of several clinical studies showed that 
the anti-inflammatory treatment was used to alleviate 
depression symptoms [35, 36]. For instance, the brain of 
depression animal models showed high levels of proin-
flammatory cytokines, and the intraventricular infusion 
of anti-inflammatory cytokine interleukin-4 (IL-4) might 
show antidepressant benefits by modifying central neuro-
transmitters [12, 37, 38]. With the deepening of research, 
researchers have gradually found that cerebral neuroin-
flammation is involved in the occurrence of depression, 
and peripheral immune factors serve as one of the trigger 
factors of cerebral neuroinflammation [39].
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The occurrence and development of inflammation 
in depression: from peripheral inflammation to cerebral 
neuroinflammation
Inflammation is an immune response during infection 
or trauma. It is the coordinated activation of inflamma-
tory cytokines-mediated signal cascade and is considered 
a healthy defense mechanism of the body [40–42]. Nor-
mal inflammation is necessary for the damages caused 
by infection, trauma, or neurodegenerative diseases and 
neuritis is also a method of restoring neural homeosta-
sis. However, when the inflammatory mediators fail to 
inhibit the pro-inflammatory immune response, a per-
sistent inflammatory state appears, damaging the neu-
rons and the body. Therefore, it is necessary to control 
inflammation in a certain range to prevent its excessive 
production [43]. It has been reported that the structural 
and functional abnormalities of the enteric nervous sys-
tem and the imbalance of intestinal flora can destroy the 
integrity of the intestinal barrier, which leads to the leak-
ing of intestinal contents and/or inflammatory media-
tors into the peripheral blood circulation and triggers of 
excessive immune response [39, 44].

In peripheral inflammation, Toll-like receptors (TLRs), 
present on the surface of macrophages and dendritic 
cells (DCs) of the innate immune system, are recognized 
by the pathogen-associated molecular pattern (PAMP) 
or damage-associated molecular pattern (DAMP). This 
leads to increasing the local and systemic inflammatory 
activities [45], including triggering the inflammatory sig-
nal pathways, such as nuclear factors-kappa B (NF-κB) 
and mitogen-activated protein kinase (MAPK) signal-
ing pathways, which lead to the overproduction of TNF, 
interleukin-1 (IL-1), IL-6, and interleukin-18 (IL-18) [46, 
47]. These cellular signal transduction mediators can 
also communicate with the components of the adaptive 
immune system, such as T cells and B cells [48, 49]. In 
addition, cyclooxygenase activity can be enhanced by 
inflammatory cytokines, leading to an increase in pros-
taglandins levels [48], which further increases inflam-
mation, forming a vicious circle [45]. As a result, the 
activation of the peripheral immune system can signifi-
cantly increase proinflammatory cytokine levels.

Due to the existence of blood–brain barrier (BBB), the 
brain has been traditionally considered as an immune-
privileged site; however, numerous studies have shown 
that peripheral inflammatory cytokines can enter the 
CNS via cellular, humoral, and neural pathways [46, 
50]. BBB is mainly composed of endothelial cells and 
astrocytes of the capillary wall, and the destruction or 
absence of either component can affect its function and 
increase the probability of CNS inflammation [51]. For 
example, inflammatory factors, including tumor necro-
sis factor alpha (TNF-α), IL-1β, and IL-6, could impede 

the tight junctions of endothelial cells in the BBB in the 
animal models of inflammation [52, 53], increasing the 
permeability of the BBB, and make the entry of periph-
eral inflammatory cytokines and immune cells into the 
brain easier [54]. Furthermore, TNF-α and IL-1β recep-
tors are expressed on endothelial cells, and their activa-
tion by inflammatory factors leads to the synthesis of 
nitric oxide (NO) and prostaglandins in the brain [55]; 
this further activates microglia and astrocytes, lead-
ing to neuroinflammation [50]. Microglia, known as 
resident immune cells in the CNS, controls the home-
ostasis of the CNS internal environment and can be 
divided into basal state microglia, inflammatory state 
microglia, and anti-inflammatory state microglia [56]. 
The activation of microglia induces the polarization of 
basal state microglia into inflammatory state micro-
glia, which is closely associated with the activation of 
the NF-κB signaling pathway and NOD-like receptor 
protein 3 (NLRP3) inflammasome [57–59]. Microglia 
Kv1.3 channels have a crucial role in the activation of 
NLRP3 inflammasome and neuroinflammation. Kv1.3 
is a delayed rectifier voltage-gated K channel, which 
is widely expressed in the CNS [60]. For example, Di 
Lucente et  al. showed that microglia activation and 
IL-1β production could be prevented by Kv1.3 knock-
down [61]. Moreover, in addition to microglia, astro-
cytes also play an important role in the immune system 
of the brain [62]. For example, astrocytes, a BBB com-
ponent, are involved in regulating BBB permeability, 
synaptic transmission, and secretion of brain-derived 
neurotrophic factor (BDNF) [62, 63]. In addition, the 
release of proinflammatory cytokines from microglia 
can also activate astrocytes, causing secondary inflam-
matory reactions, and producing more inflammatory 
factors, thereby aggravating neurotoxicity, impairing 
neurogenesis and synaptic plasticity, and ultimately 
triggering depression and other related psychiatric dis-
eases [57].

It is worth noting that the pathological changes of sys-
temic inflammation-induced neuroinflammation are 
usually limited and are mainly concentrated in the cor-
tex, hippocampus, amygdala, and other brain regions, 
which might be due to the diversity of neurons and glial 
cells in different brain regions [51, 64, 65]. Recently, 
Wang et al. [66] showed that the release of proinflamma-
tory cytokines was positively correlated with the degree 
of connexin (Cx) 43 ubiquitination. The gap junction 
channel of Cx facilitates the communication between 
neighboring cells, and the role of glial cells in regulat-
ing neuroinflammation is mainly based on this function 
of Cx, which is lost upon the ubiquitination of Cx [67]. 
Therefore, repairing neuroinflammatory processes might 
inhibit the ubiquitination of Cx43, which was consistent 
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with the experimental results of Huang et al. and Wang 
et al. [68, 69].

Other causes of cerebral neuroinflammation
Cerebral neuroinflammation, in addition to being associ-
ated with peripheral immunity, is also related to oxidative 
stress (OS) [70, 71], mitochondrial dysfunction [72, 73], 
energy metabolism disorders, nitroenergy system [74, 
75], eating habits [76, 77], sleep quality [78], etc., to some 
extent.

OS is a series of highly reactive cytotoxic events 
induced by reactive oxygen species (ROS) [70]. ROS 
can destroy sensitive cellular target compounds, such as 
lipids, proteins, and DNA. When OS occurs, antioxidants 
in the body deplete, such as a reduction in glutathione 
(GSH), leading to the excessive accumulation of ROS. 
Due to the rich lipid contents in the membrane of brain 
cells, excessive ROS destroys the structure and function 
of the phospholipid bilayer of brain cells through lipid 
peroxide, alters the permeability of the BBB, and ulti-
mately exacerbates neuroinflammation [71]. Therefore, 
antidepressant effects could theoretically be exerted by 
reducing OS and neuroinflammatory responses; this is in 
agreement with the reports of the study by Nouri et  al. 
[79] and Mozafari et al. [73].

A mitochondrion is a key organelle that provides 
energy for cells and body and can regulate various cellu-
lar processes [80]. Similarly, triggering OS leads to mito-
chondrial dysfunction as well as deficiency in cell energy, 
which further aggravates mitochondrial damage, forming 
a vicious circle [72]. The resulting multiple DAMP, such 
as ROS and lipid oxide, can activate inflammatory sig-
nals by activating TLRs and different mechanisms, such 
as inflammasome formation, which can also change the 
permeability of the BBB and eventually exacerbate neuro-
inflammation [73].

l-Arginine can produce NO in brain under the action 
of nitric oxide synthase (NOS). This enzyme family con-
sists of three subtypes, including inducible NOS (iNOS), 
endothelial NOS, and neuronal NOS [74]. A study by 
Beheshti et al. [75] has shown that NO is an activator of 
neuroinflammatory response. Therefore, nitrergic system 
are also related to neuroinflammation and play an anti-
depressant role by reducing the NO level in the body, 
which leads to the inhibition of NOS; this was consist-
ent with the report of a study by Lorigooini et al. [81]. In 
addition, a study by Haj-Mirzaian et al. [74] showed that 
iNOS played a more prominent role in the depression-
like behavior induced by amphetamine withdrawal.

Pathways of neuroinflammation affecting depression
As mentioned above, the overactivation of microglia 
and astrocytes in the brain results in producing a large 

number of inflammatory mediators, thereby aggravating 
neuroinflammation. These inflammatory mediators and 
downstream signaling pathways can trigger depression 
by affecting monoamine neurotransmitters, glutamic 
acid (Glu), the hypothalamus pituitary adrenal (HPA) 
axis, and neurotrophic factors (NTF) in the body (Fig. 1) 
[12, 15, 34, 37, 38, 82–87].

Effect of neuroinflammation on monoamine 
neurotransmitters
There is growing evidence, suggesting that inflammatory 
cytokines can affect the synaptic availability of monoam-
ine neurotransmitters through mechanisms, involving 
inflammatory cytokines in modulating the synthesis, 
release, reuptake, and degradation of 5-HT, DA, and NE 
[34, 82]. This section focuses on the effects of inflamma-
tion on the synaptic availability of 5-HT.

Tetrahydrobiopterin (BH4) is a crucial cofactor of tryp-
tophan (Trp), tyrosine, and phenylalanine hydroxylases, 
which are necessary for the production of 5-HT, DA, 
and NE. Inflammatory cytokines can exacerbate OS by 
promoting the formation of ROS and reactive nitrogen 
species, thereby inducing the degradation of BH4 and 
reducing the production of 5-HT, DA, and NE. 5-HT is 
a Trp metabolite, which is an essential amino acid with 
the lowest levels among the eight essential amino acids; 
therefore, Trp can easily become deficient in a malnu-
trition state [88]. Only 1% of the dietary intake of Trp is 
involved in the biosynthesis of protein, and the major-
ity of the remaining Trp is converted to some bioactive 
metabolites via the indole, 5-HT, and kynurenine (Kyn) 
signaling pathways [89]. Through the 5-HT signaling 
pathway, Trp is converted to 5-hydroxytryptophan by 
Trp hydroxylase 1 or 2 and then decarboxylated by aro-
matic acid decarboxylase, forming 5-HT. Then, 5-HT is 
metabolized by monoamine oxidase (MAO), producing 
5-hydroxyindoleacetic acid [90]. About 95% of free Trp 
is metabolized through the Kyn pathway. In this pathway, 
Trp, in a rate-limiting step, is first converted to Kyn by 
indoleamine 2,3-dioxygenase 1 and 2 (IDO1 and IDO2) 
and tryptophan 2,3-dioxygenase (TDO). Kyn has two 
major metabolic branches. (1) Kyn is preferentially con-
verted to 3-hydroxykynurenine (3‑HK) or anthranilic 
acid, catalyzed by kynurenine mono‑oxygenase and 
kynureninase (Kynu), respectively. The 3-HK is then 
converted to 3-hydroxy anthranilic acid (3-HAA) and 
xanthurenic acid by Kynu and kynurenine aminotrans-
ferase (KAT), respectively, while 3-HAA is metabolized 
into picolinic acid and quinolinic acid (QA) by α-amino-
β-carboxymuconate-ε-semialdehyde decarboxylase and 
non-enzymatic conversion, respectively. (2) The remain-
ing Kyn is metabolized by the enzymatic action of KAT 
into kynurenic acid (Kyna) [91, 92]. Studies showed 
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that inflammatory mediators, such as IL-1, TNF-α, and 
interferon-γ, could induce the hyperactivation of IDO, 
which caused more Trp metabolism through the Kyn 
pathway, thereby decreasing the 5-HT level in the brain 
[93–95]. According to studies, the Kyn pathway can pro-
duce 3-HK and QA, both of which are neurotoxic. For 
instance, QA cannot cross the BBB, acting as an agonist 
of the N-methyl-d-aspartic acid receptor (NMDAR), 
while the massive accumulation of QA in the CNS can 
promote the overactivation of NMDAR in neurons, 
including those in the striatum and hippocampus [96], 
thereby increasing the release of Glu and apoptosis rate 
of neurons [97]. In addition, Kyna can inhibit the release 
of dopamine, resulting in cognitive impairment [98, 99]. 
Interestingly, Kyna is also considered a neuroprotective 
metabolite, acting as an antagonist of α7 nAChR and 
NMDAR to reduce the release of Glu [100].

DA entry into the vesicle is mediated by monoam-
ine transporter protein 2 (VMAT2) and subsequent 
release into the synapse. Studies have shown that pro-
inflammatory cytokines can down-regulate the expres-
sion of VMAT2, thereby interfering with DA release and 

reducing the level of DA in synaptic cleft, such as IL-1β 
and TNF-α [101]. Monoamine neurotransmitter trans-
port proteins translocate monoamine neurotransmit-
ters released in the synaptic cleft back to the presynaptic 
membrane, decreasing synaptic cleft availability [102]. 
Proinflammatory mediators can regulate the expression 
and function of monoamine neurotransmitter trans-
porter proteins, thereby altering their reuptake process 
[36]. For example, proinflammatory cytokines can trig-
ger the p38MAPK signaling pathway, enhancing the 
expression and activity of 5-HT transporter proteins and 
decreasing the availability of 5-HT in the synaptic cleft. 
In addition, the activation of the MAPK signaling path-
way can also increase the activity of DA transporter pro-
teins and ultimately reduce the DA levels in the synaptic 
cleft [103]. Studies have shown that inflammation plays 
a key role in the degradation of monoamine neurotrans-
mitters by MAO. For example, after lipopolysaccharide 
administration, the low levels of NE in the hippocam-
pus and elevated levels of an NE metabolite 3-methoxy-
4-hydroxyphenylglycol might be associated with elevated 
monoamine oxidase activity [104].

Fig. 1  Role of neuroinflammation in the pathogenesis of depression. Low levels of DA can promote the inflammatory reaction, and the produced 
inflammatory cytokines can increase the probability of depression by reducing the prominent availability of neurotransmitters, increasing 
neurotoxicity, inhibiting GRs activity, and destroying neurogenesis and synaptic plasticity. ↑: upregulate; ↓: downregulate; ROS reactive oxygen 
species, RNS reactive nitrogen species, BH4 tetrahydrobiopterin, TDO tryptophan 2,3-dioxygenase, Kyn kynurenine, 5-HT 5-hydroxytryptamine, 
VMAT2 vesicle monoamine transporter 2, DA dopamine, p38MAPK p38 mitogen-activated protein kinase, MAPK mitogen-activated protein kinase, 
MAO monoamine oxidase, DRD3 dopamine receptors 3, DRD4 dopamine receptors 4, DRD5 dopamine receptors 5, SystemXc− Cystine/Glu reverse 
transporter system, Glu glutamate, EAATS excitatory amino acid reuptake transporters, HPA hypothalamus pituitary adrenal, GC glucocorticoid, GRs 
glucocorticoid receptors, NF-κB nuclear factors-kappa B, STAT5 signal transducer and activator of transcription 5, NGF nerve growth factor, BDNF 
brain-derived neurotrophic factor, TrkB tropomyosin receptor kinase B, PFC prefrontal cortex
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Notably, some monoamine neurotransmitters, such 
as dopamine, also play an essential role in regulating 
the brain’s immune responses by affecting inflammatory 
responses [105–107]. Kv1.3-induced K+ efflux can cause 
the activation of NLRP3 inflammasome and local fluc-
tuations in extracellular K+ concentration, promoting the 
release of dopamine from proximal dopaminergic neu-
rons [60]. The high levels of dopamine, ranging from 1 to 
10  μM, in  vivo binding to low-affinity dopamine recep-
tors (DRD1 and DRD2) on microglia could exert anti-
inflammatory effects by modulating the proinflammatory 
renin–angiotensin system [108, 109], and DRD1 could 
mediate the autophagic degradation of NLRP3 protein. 
The low levels of dopamine in the body, ranging from 20 
to 500  nM, could selectively stimulate the high-affinity 
dopamine receptors (DRD3, DRD4, and DRD5), thereby 
inducing inflammatory responses [110].

Effect of neuroinflammation on the glutamatergic system
Glu is one of the most prominent excitatory neurotrans-
mitters in the nervous system, acting on Glu receptors 
and transmitting excitatory signals. There are two types 
of Glu receptors: (1) ionic receptors, including NMDAR, 
α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid 
receptor, and kainic acid receptor, which mediate the 
rapid action of postsynaptic potential; and (2) metabolic 
receptor, which mediates the slow-acting neurotransmis-
sion and plays an important role in cellular metabolism 
[87, 111]. The different Glu-activated receptors can regu-
late neuronal growth, migration, apoptosis, and synap-
togenesis [112]. Therefore, the Glu system might play a 
crucial role in the pathogenesis of emotional disorders, 
such as the dysfunction of Glu neurotransmissions in the 
cerebral cortex and marginal regions, which are closely 
related to depression [83, 84].

The cystine/Glu reverse transporter system (Sys-
temXc−), a transmembrane amino acid transporter sys-
tem in CNS cells, allows the exchange of the extracellular 
cystine with intracellular Glu and regulates the extracel-
lular Glu concentration. Intracellular cystine uptake can 
be reduced to cysteine, which is an essential precursor for 
conversion to the antioxidant GSH [113–115]. The depo-
larization of presynaptic neurons and subsequent influx 
of Ca2+ can induce the release of Glu stored in vesicles 
into the synaptic cleft, where it binds to the correspond-
ing target receptors [116, 117]. On the other hand, the 
free or excessive Glu is immediately removed and detoxi-
fied by the excitatory amino acid reuptake transporters 
(EAATs), thereby preventing the “Glu spillover effect” 
[83]. In this process, EAATs are the special transporter 
proteins found on the synaptic surface of neurons and 
glial cells [118, 119]. Releasing the Glu in large amounts 
can induce the excessive activation of NMDAR both 

inside and outside the synapse, which reduces the expres-
sion of NTF, such as BDNF, causing excitotoxicity, synap-
tic damage, and neuronal degeneration [13, 14, 120, 121].

Numerous studies showed that inflammation could 
affect the release and reuptake process of Glu [116, 120, 
122]. For example, the activation of NF-κB signaling 
increased the IL-1β levels, which in turn promoted the 
expression of SystemXc− and increased the release of 
Glu to the outside of the synapse through the vesicular 
pathway [123, 124]. The inflammatory cytokines-induced 
OS could also play a similar role [120]. In addition, 
inflammatory factors can also promote the Glu release 
through other non-vesicular pathways, such as impair-
ing the expression and function of EAATs in astrocytes, 
which resulted in reducing the reuptake and clearance 
of synaptic Glu [116, 125]. Other studies indicated that 
inflammatory factors could also reverse EAATs, thereby 
further increasing the levels of Glu in the synaptic cleft 
[126, 127].

Effect of neuroinflammation on HPA axis
The HPA axis, an important component of the neuroen-
docrine system, can maintain the homeostasis of the 
stress response system and internal environment, pro-
ducing substances, such as adrenocorticotropin-releasing 
hormone (CRH), adrenocorticotropic hormone (ACTH), 
cortisol (CORT), and glucocorticoids (GC). The GC 
receptors (GRs) are widely distributed in the CNS, such 
as the hypothalamus, pituitary, adrenal gland, and cortex 
margin [128]. Under normal conditions, the binding of 
GC to GRs acts as a negative feedback inhibitor on the 
HPA axis, regulating its activation status. Under depres-
sion conditions, the expression of GRs decreases, which 
weakens the inhibition of the HPA axis, leading to the 
excessive activation of the HPA axis, thereby increasing 
the levels of CRH, ACTH, CORT, and GC in the patients 
with depression and affecting the secretion in  vivo [85, 
86].

Studies showed that sustained stress can also stimu-
late the release of CORT from the HPA axis; CORT can 
disrupt the balance of gut microbiota, causing intestinal 
permeability [129]. Furthermore, the CORT-induced 
increase in TDO enzyme activity can over-activate the 
Kyn pathway, which leads to decreasing the produc-
tion of 5-HT [130]. CORT also plays an important role 
in regulating CNS-related activities, such as learning, 
memory, and emotion; the overproduction of CORT 
might alter the function of the hippocampus, prefron-
tal cortex (PFC), etc. [131]. Under normal conditions, 
GC is a powerful anti-inflammatory molecule and sup-
presses the synthesis and efficacy of cytokines, thereby 
blocking numerous inflammatory pathways [117]. How-
ever, high GC levels can trigger microglia-induced 
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neuroinflammation and impair the integrity of neuronal 
membranes by interfering with the neuronal repair func-
tion of BDNF and promoting neurotoxicity and atrophy 
in the hippocampus [132–134].

Notably, inflammation can significantly affect the neu-
roendocrine function through the HPA axis [132]. The 
continuous production of proinflammatory cytokines, 
such as IL-6 [128], can increase the activation time of 
the HPA axis, increase GC synthesis, inhibit GRs and 
downregulate their function, cause negative feedback 
regulation disorder, and finally cause the disorder of GC 
level regulation [135]. Further studies suggested that 
proinflammatory cytokines could disrupt the signaling 
pathways, such as NF-κB, p38MAPK, and signal trans-
ducer and activator of transcription 5 signaling pathways, 
resulting in the impaired function of GRs [136, 137]. For 
example, IL-1α can inhibit the GRs-mediated gene tran-
scription by activating the p38MAPK signaling path-
way [138]. In addition, GR-β as an inactive form of GRs, 
can be activated by proinflammatory cytokines, thereby 
inhibiting the function of GRs [139].

Effect of neuroinflammation on NTF
NTF plays an important role in maintaining the function 
of the peripheral and CNS and provides relevant nutri-
tional support for regulating emotional behavior in the 
nervous system [140]. BDNF, the most common type of 
NTF, can alter synaptic plasticity, increase synaptic con-
nections, and promote long-term potentiation [141], 
which has a significant effect on neuronal morphology 
and physiology. Numerous studies showed that BDNF 
could produce antidepressant-like effects in the PFC and 
hippocampus. Interestingly, BDNF, acting on the ventral 
tegmental area (VTA)–nucleus accumbens (NAc) sign-
aling pathway, can induce a depression-like phenotype 
[142]. Numerous recent studies indicated that BDNF 
and/or tropomyosin receptor kinase B (TrkB) signaling 
pathways could play important roles in the rapid antide-
pressant effects of ketamine [143]. For example, BDNF 
might trigger a mammalian target of the rapamycin pro-
tein (mTOR) signaling pathway, causing synaptogenesis 
[144, 145]. In addition, BDNF could also bind to TrkB 
receptors, activating other signaling pathways, such as 
phosphatidylinositol 3-kinase (PI3K)/Akt and MAPK 
signaling pathways, which play a role in mood disorders 
and depression [146–148]. Furthermore, an increase in 
the serum levels of glial-derived neurotrophic factor and 
transforming growth factor-β could improve depressive 
behavior [149].

Studies suggested that several inflammatory cytokines 
could downregulate the expression levels of BDNF and 
TrkB in the PFC and hippocampus and inhibit the phos-
phorylation of TrkB, thereby blocking the BDNF/TrkB 

signaling pathway and ultimately inducing the apoptosis 
of neurons [87]. In addition, inflammatory cytokines can 
also induce the hyperactivation of IDO and promote the 
Trp metabolism through the Kyn pathway, leading to the 
production of neurotoxic metabolites, such as 3‑HK and 
QA [93–95]. Among them, the stimulation of NMDAR 
by QA can cause the excitatory toxicity of Glu and signal-
ing cascade, thereby reducing the BDNF expression and 
ultimately disrupting neurogenesis and synaptic plastic-
ity [150, 151]. Notably, inflammatory mediators can also 
affect NFT3 and nerve growth factor to varying degrees 
[152].

Correlations between depression 
and inflammation based on α7 nAChR
Overview of α7 nAChR
The α7 nAChR, belonging to the Cys-loop receptor fam-
ily, is a homopentamer ligand-gated ion channel assem-
bled from five α7 subunits [153]. The five subunits of α7 
nAChR are arranged in a pentagonal shape, forming an 
ion channel in the center, which mainly controls the flow 
of Na+, K+, and Ca2+ ions in and out of cells. Cys-loop 
receptors have three common structures, including the 
extracellular domain (ECD), transmembrane domain 
(TMD), and intracellular domain (ICD) [154]. The ECD 
contains the binding site for the agonist. The TMD has 
four hydrophobic areas designated M1, M2, M3, and 
M4, among which, M2 forms the inner lining of the ion 
channel and has an affinity for cations due to containing 
more acidic amino acid residues [155]. As compared to 
ECD and TMD, the ICD has more complex functions and 
plays important roles in the localization, transport, and 
assembly of receptors, thereby affecting the conductance 
and desensitization of channels and regulating down-
stream signaling pathways [156–158]. Consequently, 
ICD has been recognized as a potential target for drug 
design [159]. Recently, the Noviello CM team introduced 
the structure and dynamic interconversion process of α7 
nAChR in three states, including resting, activated, and 
desensitized states, and reported an ECD component, 
which might be related to the relative permeability of 
the receptor [160]. Notably, X-ray crystallography and 
freeze electron microscopy could not analyze the spe-
cific structure of ICD due to the flexibility of its structure 
[161, 162]. Bondarenko et  al. combined the experimen-
tal structure limitations of nuclear magnetic resonance 
and electron spin resonance spectroscopy with Rosetta 
calculation to determine the full-length ICD structure of 
human α7 nAChR [154].

As one of the most abundant subtypes in the human 
brain, α7 nAChR is enriched in the hippocampus, PFC, 
VTA, NAc, locus coeruleus, hypothalamus, dorsal raphe 
nucleus, and other brain regions, and is related to various 
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CNS functions and diseases [163, 164]. Numerous stud-
ies indicated that α7 nAChR was expressed in different 
locations in neuronal cells, including presynaptic mem-
brane, postsynaptic membrane, and perisynaptic [24]. In 
addition, α7 nAChR was also expressed in various non-
neuronal cells, such as macrophages/monocytes [165], 
lymphocytes, DCs [166], microglia [167], astrocytes [168, 
169], endothelial cells, bronchial epithelial cells, and vas-
cular smooth muscle cells [153].

α7 nAChR is closely related to learning, memory, neu-
roprotection, synaptic plasticity, movement, attention, 
and anxiety [56, 170–173]. The ligand-binding sites of 
α7 nAChR mainly include agonist/antagonist-binding 
sites and allosteric modulator-binding sites, which are 
activated by agonists and positive allosteric modula-
tors (PAMs), respectively. The binding of agonists to the 
extracellular ligand-binding domain of α7 nAChR can 
cause the rapid opening of central ion channels within 
milliseconds. Due to the high permeability of α7 nAChR 
to Ca2+, a large Ca2+ influx depolarizes the presynap-
tic membrane and promotes the fusion of neurotrans-
mitter-containing vesicles and presynaptic membrane, 
thereby further increasing the release of neurotransmit-
ters, such as ACh, NE, DA, Glu, and γ-aminobutyric 
acid. At the postsynaptic membrane, a large Ca2+ influx 
acts on the downstream Ca2+-sensitive kinases, which 
triggers a series of signal transduction processes [174, 
175]. Although α7 nAChR is a ligand-gated ion chan-
nel, it can also increase the intracellular cyclic adeno-
sine monophosphate (cAMP) levels through adenylate 
cyclase 1, a common signaling pathway for G protein-
coupled receptors [24]. Thus, the activated α7 nAChRs 
have ionotropic and metabotropic functions in neu-
rons and immune cells, including microglia, and are 
involved in regulating the Ca2+ influx, neurotransmitter 
release, and intercellular signal transduction [171, 176]. 
Moreover, the activated α7 nAChRs are closely related 
to autophagy, necrosis, transcription, apoptosis, and 
inflammatory processes in the body [170, 177, 178]. For 
instance, Hung et al. found that α7 nAChR could bind to 
amyloid-beta (Aβ), leading to its internalization into the 
cytoplasm and further inhibition of Aβ-induced neuro-
toxicity through autophagy. On the other hand, Lc3 and 
melatonin could enhance autophagy by increasing the 
expression of α7 nAChR, thereby showing neuroprotec-
tive effects. Further studies showed that in microglia, 
the enhanced autophagy, induced by the activation of α7 
nAChR, was mediated by activating the AMPK–mTOR–
p70S6K signaling pathway [179]. Interestingly, Hou et al. 
indicated that in cardiomyocytes, the activation of Janus 
kinase 2 (JAK2) and PI3K could mediate the α7 nAChR 
activation-induced enhanced autophagy [180]. Thus, in 
different organs or cells, α7 nAChR activation-induced 

autophagy enhancement might act through different 
signaling pathways. In addition, Hua et  al. also showed 
that the α7 nAChR agonist PNU-282987 could decrease 
the activation of caspase-3, increase the expression of 
anti-apoptotic protein B-cell lymphoma-2, and exert 
anti-apoptotic effects in microglia [181]. Numerous 
recent studies reported that activating the α7 nAChR 
could induce anti-inflammatory effects, which might be 
an effective way to treat depression, Alzheimer’s disease, 
and other CNS diseases [24].

Evidence of α7 nAChR associated with depression
Numerous studies have shown that the activated α7 
nAChR plays an essential role in the pathogenesis of 
depression. For example, the α7 nAChR disorder, such 
as the depression-like phenotype in α7 knockout mice, 
can trigger depression [142]. α7 nAChR is encoded by 
Chrna7. Pu et  al. showed that the composition of gut 
microbiota in mice with Chrna7 knocked out mice was 
abnormal, such as a decrease in the abundance of Muri-
baculum intestinale and an increase in those of Heli-
cobacter ganmani and Lactobacillus animalis, showing 
depression-like phenotype. Furthermore, as compared 
to the control mice, the fecal microbiota transplanta-
tion into Chrna7 knockout mice resulted in systemic 
inflammation, downregulation of synaptophysin, and 
depression-like phenotype in the mice treated with an 
antibiotic mixture [182]. Zhang et al. also showed that the 
α7 nAChR knockout mice did not alter the BDNF/TrkB 
signaling pathway and synapsis in the hippocampus and 
PFC but increased the BDNF/TrkB signaling pathway 
in NAc, showing a depression-like phenotype. Interest-
ingly, the bilateral infusion of TrkB antagonist ANA-12 
with NAc could restore the increase in synapses in NAc 
and rapidly exert antidepressant effects, while fluoxetine 
could not show similar effects [142]. In contrast, antide-
pressant-like effects were exhibited in animals by ago-
nism of α7 nAChR, such as α7 nAChR agonists DMXBA 
and PNU-282987 [183–186]. Further studies have shown 
that the activated α7 nAChR could mediate the release of 
DA and NE in the rat’s hippocampus and PFC [187, 188] 
but showed no effects on the uptake of 5-HT [189]. How-
ever, the α7 nAChR agonists have the disadvantages of 
insufficient selectivity, tendency to desensitize receptors, 
and lack of data related to clinical trials; these factors 
limit the application of α7 nAChR agonists in the treat-
ment of depression [24, 174].

Therefore, studying the application of α7 nAChR PAMs 
in antidepressant treatment may be a promising direc-
tion. α7 nAChR PAMs were effective only in the presence 
of endogenous agonist ACh and could further enhance 
the agonistic effects of ACh on α7 nAChR. There are 
two types of α7 nAChR PAMs; type I PAMs do not affect 
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receptors desensitization, while type II PAMs can delay 
receptors desensitization and reactivate desensitized 
receptors [190, 191]. Studies have shown that NS-1738 
(type I PAMs), PNU-120596 (type II PAMs) and PAM-2 
(type II PAMs) cannot exert significant antidepressant 
effects after 0.5  h or 1  h of administration, but can sig-
nificantly improve depressive-like behavior after 7  days 
of administration, which still has some advantages over 
traditional antidepressants [163, 192–194]. Interestingly, 
PAM-2 induced more potent and durable antidepressant-
like activity compared to NS-1738 and PNU-120596, 
indicating the importance of dosing cycle [163, 194]. In 
addition, Targowska-Duda et  al. showed that PAM did 
not have a high affinity for human 5-HT, DA, and NE 
transporter proteins (< 1 μM) [163]. Notably, α7 nAChR 
PAMs can also specifically target α7 nAChR without 
affecting the physiological functions of other recep-
tors, thereby showing fewer side effects than α7 nAChR 
agonists while exerting precise pharmacological effects. 
However, α7 nAChR PAMs also have the same disadvan-
tage of lacking sufficient relevant clinical data [195, 196]. 
Therefore, the active state of α7 nAChR is closely related 
to depression, but requires extensive experiments to con-
firm. Table 1 lists the changes in depression-like behavior 
of animals when targeting α7 nAChR.

Activation of α7 nAChR‑mediated CAP for antidepressant 
effect and its mechanism
In recent years, the activation of α7 nAChR-mediated 
CAP in anti-depression therapy has attracted research-
ers’ attention [24–26]. It is well-known that the vagus 
nerve, which connects the brain and surrounding organs, 
plays an important role in CAP. After stimulation, it can 
activate α7nAChR, which is closely related to the inhibi-
tion of NF-κB activation [56, 197, 198]. NF-κB is a tran-
scription factor, which coordinates the inflammatory 
response and regulates the expression levels of inflamma-
tory genes [199]. The NF-κB-binding inhibitors of NF-κB 
(IκB) are normally present in the cytoplasm. Studies 
have shown that vagal stimulation can upregulate the α7 
nAChR expression in hippocampal microglia and exert 
anti-inflammatory effects by inhibiting the nuclear trans-
location of NF-κB and phosphorylation of p65. However, 
the vagus nerve stimulation could not exert similar anti-
inflammatory effects after vagotomy or injection of α7 
nAChR antagonists or using α7nAChR(−/−) rats [198, 
200]. Thus, the α7 nAChR/NF-κB signaling pathway 
might play a crucial role in the CAP. However, the mech-
anism of α7 nAChR, affecting the upstream and down-
stream pathways of NF-κB, requires further investigation.

An in-depth study revealed that the activation of 
α7 nAChR exerted anti-inflammatory effects through 
the TLR4/NF-κB/NLRP3, JAK2/STAT3/NF-κB, and 

Ca2+-related signaling pathways [184, 192, 201–207]. In 
addition, activating the α7 nAChR can activate chronic 
stress-induced neuroinflammation to promote Tregs 
cell function. As a subset of CD4+ T cells, Tregs can 
protect the BBB, inhibit the infiltration of peripheral 
inflammatory cells and factors into the brain, and play 
an important role in maintaining immune homeostasis 
[208, 209]. For instance, Zhao et  al. demonstrated that 
the treatment with α7 nAChR agonist DMXBA could 
reverse the chronic stress-induced increase in Tregs cells, 
thereby limiting the inflammatory response in the brain 
and attenuating the depression-like behavior in chronic 
restraint stress (CRS) mice [184]. The specific molecu-
lar mechanisms of α7 nAChR’s anti-inflammatory effects 
around NF-κB are summarized in the following sections 
(Fig. 2).

Activation of α7 nAChR triggers TLR4/NF‑κB/NLRP3
TLRs are significant receptors on the surface of microglia 
and play important roles in neuroinflammation-mediat-
ing signaling pathways [210]. TLRs can be activated by 
recognizing PAMP or DAMP, and the activated TLR4 
can recruit the adaptor protein myeloid differentiation 
factor 88 (MyD88) [57, 58]. The stimulation by MyD88 
and cytokines, such as TNF-α, can activate the inhibitor 
of kappa B kinase, which in turn phosphorylates and sub-
sequently degrade IκB, thereby promoting the activation 
of NF-κB and its entry into the nucleus and increasing 
the transcriptional expression of inflammasome com-
ponents and pro-IL-1β [43, 211]. NLRP3 inflammasome 
is a multi-protein assembly, which consists of NLRP3 
(cytoplasmic sensor molecule), adapter protein caspase 
activation recruitment domain, and effector protein 
pro-caspase-1 [212]. Studies have shown that the activa-
tion of NLRP3 inflammasome is closely related to NF-κB 
[59] and generally requires the initiation and activation 
of two signals, including the initiation signal and activa-
tion signal. The initiation signal involves the activation 
of NF-κB induced by the activation of TLR, while in the 
activation signal, the sustained stimulation induces the 
inflammasome components to assemble into complete 
NLRP3 inflammasome and promotes the conversion of 
pro-caspase-1 into activated caspase-1, which subse-
quently cleaves the pro-IL-1β and pro-IL-18 into active 
forms, ultimately leading to an inflammatory response 
and induction of cytotoxicity [42, 212, 213]. In addition, 
studies have also shown that ROS can activate the NLRP3 
inflammasome [214, 215].

The selective α7 nAChR partial agonist DMXBA 
could alleviate chronic stress-induced activation of the 
TLR4 signaling pathway and exert antidepressant-like 
behavior in mice; however, this effect was reversed after 
pretreatment with the selective α7 nAChR antagonist 
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α-bungarotoxin (α-BGT), indicating that the protective 
effects of DMXBA were α7 nAChR-dependent. Inter-
estingly, using α-BGT at the dose (1  μg/kg/d) did not 
reverse the inhibitory effects of DMXBA on the acti-
vation of microglia [184]. Deng et  al. showed that the 
activation of α7 nAChR could significantly inhibit the 
expression of NLRP3 inflammasome; this result was con-
sistent with those of a study by Fu [201, 202]. Further-
more, activating the α7 nAChR could also attenuate OS 
[216]. Therefore, the activation of α7 nAChR might exert 
anti-neuroinflammatory effects by inhibiting the TLR4/
NF-κB/NLRP3 signaling pathway and reducing OS.

Activation of α7 nAChR triggers JAK2/STAT3/NF‑κB
JAK2 is widely distributed in the cytoplasm of somatic 
cells and is important in activating immune cells. STAT3 
is an essential transcription factor, which regulates the 
expression of downstream target genes associated with 
the differentiation and apoptosis of cells [217]. JAK2/
STAT3 is the most crucial signaling pathway in the JAK–
STAT family and is closely related to inflammation [218]. 
The recruited and phosphorylated JAK2 can activate 

STAT3 to induce the phosphorylation of STAT3, which 
then prevents the nuclear translocation of NF-κB [170]. 
In addition, the phosphorylated STAT3 can readily form 
dimers to enter the nucleus and bind to DNA, thereby 
positively regulating the transcription of suppressor of 
cytokine signaling 3, which leads to inhibiting NF-κB 
activation and reducing the production of inflammatory 
cytokines, such as TNF-α and IL-1β [170].

Numerous studies showed that the activated α7 nAChR 
could regulate other signal transduction pathways by 
promoting the JAK2/STAT3 signaling pathway and regu-
lating the gene transcription in immune cells independ-
ent of ion influx [176, 192, 203]. For example, blocking 
the JAK2 phosphorylation using AG490 attenuated the 
inflammatory regulatory effects of α7 nAChR agonists; 
inhibiting the STAT3 phosphorylation also showed a 
similar effect [205]. Zhao et al. showed that the treatment 
with the α7 nAChR agonist DMXBA could significantly 
reverse the CRS-induced downregulation of STAT3 in 
the hippocampal nucleus, thereby restoring the central 
cholinergic signaling function [184]. Therefore, the acti-
vation of α7 nAChR might attenuate the inflammatory 

Fig. 2  Molecular mechanisms of activation of α7 nAChR-mediated CAP. The activation of α7 nAChR could inhibit the expression of NF-κB 
through TLR4/NF-κB/NLRP3, JAK2/STAT3/NF-κB and Ca2+-related signaling pathways, reduce the production of inflammatory cytokines, reduce 
neuroinflammation, and finally play an antidepressant role. ↑: upregulate, ↓: downregulate, TLR4 Toll-like receptors 4, MyD88 myeloid differentiation 
factor 88, IKK inhibitor of kappa B kinase, IκB inhibitor of NF-κB, JAK2 Janus Kinase 2, STAT3 signal transduction and transcription activator 3, SOCS3 
suppressor of cytokine signaling 3, NF-κB nuclear factors-kappa B, PLC phospholipase C, IP3 inositol 1,4,5-triphosphate, PI3K phosphatidylinositol 
3-kinase, Akt protein kinase B, GSK-3 glycogen synthase kinase 3, BDNF brain-derived neurotrophic factor, TrkB tropomyosin receptor kinase B, ERK 
extracellular signal-regulated kinase, CaMKII Ca2+/calmodulin-dependent protein kinase II, CaMKIV Ca2+/calmodulin-dependent protein kinase 
IV, JNK c-Jun N-terminal kinase, Nrf2 nuclear transcription factor E2-related factor, HO-1 heme oxygenase-1, ROS reactive oxygen species, CREB 
cAMP-response element binding protein, NLRP3 NOD-like receptor protein 3, IL-1β interleukin-1β, IL-6 interleukin-6, TNF-α tumor necrosis factor-α, 
NO nitric oxide
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response by promoting the JAK2/STAT3 signaling path-
way and ultimately inhibiting the activation of NF-κB.

Activation of α7 nAChR triggers Ca2+‑related signaling 
pathway
The PI3K/Akt and extracellular signal-regulated kinase 
(ERK) signaling pathways play an important role in cell 
proliferation and maturation [219]. Ca2+/calmodulin-
dependent protein kinase II (CaMKII) is associated with 
the enhancement of learning and memory as well as 
synaptic remodeling, while CaMKIV is involved in reg-
ulating the growth of DCs in cortical and hippocampal 
neurons [220–222]. A large Ca2+ influx can activate the 
PI3K/Akt, ERK, CaMKII, and CaMKIV signaling path-
ways [223–226], thereby increasing the phosphorylation 
of cAMP-response element binding protein (CREB) at 
residue Serine-133 and its subsequent BDNF expression 
[227–229]. The phosphorylated CREB can compete with 
CREB-binding protein to bind with NF-κB; this process 
is affected by the activity of glycogen synthase kinase-
3beta (GSK-3β) and inhibits the transcription of NF-κB, 
thereby playing an anti-inflammatory role and promot-
ing adult hippocampal neurogenesis [230–233]. Among 
them, the activated PI3K/Akt signaling pathway can facil-
itate the nuclear translocation of nuclear transcription 
factor E2-related factor (Nrf2), which increases the bind-
ing of Nrf2 to electrophilic response elements (EpRE) or 
antioxidant response elements at DNA-specific sites as 
well as the expression levels of antioxidant genes, such 
as heme oxidase-1 [234], thereby inhibiting the degree 
of OS and ultimately reducing the production of the 
proinflammatory cytokines TNF-α and IL-1β. In addi-
tion, studies have shown that PI3K/Akt can inhibit the 
GSK-3 activity, while GSK-3 can inhibit the CREB signal-
ing pathway [235]. Notably, some studies indicated pos-
sible interactions between NF-κB and Nrf2; the NF-κB 
subunit p65 can negatively regulate Nrf2 and inhibit its 
interaction with EpRE [236]. Furthermore, an increase 
in the intracellular Ca2+ levels can also inhibit the acti-
vation of NF-κB and subsequent nuclear translocation by 
suppressing the phosphorylation of neuroinflammation-
associated p44/42, p38, and c-Jun N-terminal kinase 
[237, 238]. This can ultimately reduce the production of 
inflammatory mediators, such as IL-6, TNF-α, and NO 
[239, 240].

Activating the α7 nAChR can trigger a large Ca2+ influx 
[206]. Moreover, the activated α7 nAChR in mice micro-
glia can activate phospholipase C via Gαq, producing 
1,4,5-triphosphate (IP3), which can bind to the IP3 recep-
tor on the endoplasmic reticulum, inducing the release of 
Ca2+ from the endoplasmic reticulum [207]. Recently, 
Morioka et  al. proposed that activating the α7 nAChR-
mediated IP3 and Ca2+/CaMKII signaling pathways 

upregulated the expression of Glu/aspartate transporter 
protein and increased Glu uptake [24]. Therefore, the 
activation of α7 nAChR can trigger the process of mas-
sive Ca2+ influx and release from the endoplasmic reticu-
lum, which might increase intracellular Ca2+ levels and 
promote a series of signaling pathways, ultimately inhib-
iting the inflammatory response.

Conclusions and prospects
This review article summarized the relationship between 
inflammation and depression as well as several path-
ways of neuroinflammation affecting depression, such 
as neuroinflammation can affect the synaptic availabil-
ity of monoamine neurotransmitters and Glu, increase 
the activation time of the HPA axis, regulate the BDNF/
TrkB signaling pathway in various brain regions. This, in 
turn, aggravates neurotoxicity and damages neurogen-
esis and synaptic plasticity, which finally induces neu-
ronal apoptosis and triggers depression and other related 
psychiatric diseases. This review article also highlighted 
the crucial role of α7 nAChR in the CAP and suggested 
that its activation might exert anti-inflammatory effects 
by promoting Tregs function and through TLR4/NF-κB/
NLRP3, JAK2/STAT3/NF-κB, and Ca2+-related signaling 
pathways, thereby alleviating depression-like behavior.

Depression is the result of multiple mechanisms; 
the recent drugs developed based on the hypothesis of 
monoamine neurotransmitters could not achieve favora-
ble clinical outcomes. However, the importance of the 
inflammation hypothesis in the occurrence of depres-
sion has gradually been recognized, especially the acti-
vation of α7 nAChR-mediated CAP. Notably, the BBB 
should also be considered as a factor in developing the 
corresponding PAMs due to the large distribution of α7 
nAChR within and outside the CNS. Therefore, based on 
the idea of activating the α7 nAChR-mediated CAP to 
exert antidepressant effects, developing the α7 nAChR 
type II PAMs, capable of passing through the BBB, might 
be a current research direction for developing new anti-
depressant drugs. Furthermore, the results should be 
confirmed in a large number of subsequent preclinical 
and clinical trials.
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