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Abstract

In this study, we attempt to anticipate annual rice production in Bangladesh (1961–2020)

using both the Autoregressive Integrated Moving Average (ARIMA) and the eXtreme Gradi-

ent Boosting (XGBoost) methods and compare their respective performances. On the basis

of the lowest Corrected Akaike Information Criteria (AICc) values, a significant ARIMA (0, 1,

1) model with drift was chosen based on the findings. The drift parameter value shows that

the production of rice positively trends upward. Thus, the ARIMA (0, 1, 1) model with drift

was found to be significant. On the other hand, the XGBoost model for time series data was

developed by changing the tunning parameters frequently with the greatest result. The four

prominent error measures, such as mean absolute error (MAE), mean percentage error

(MPE), root mean square error (RMSE), and mean absolute percentage error (MAPE),

were used to assess the predictive performance of each model. We found that the error

measures of the XGBoost model in the test set were comparatively lower than those of the

ARIMA model. Comparatively, the MAPE value of the test set of the XGBoost model

(5.38%) was lower than that of the ARIMA model (7.23%), indicating that XGBoost performs

better than ARIMA at predicting the annual rice production in Bangladesh. Hence, the

XGBoost model performs better than the ARIMA model in predicting the annual rice produc-

tion in Bangladesh. Therefore, based on the better performance, the study forecasted the

annual rice production for the next 10 years using the XGBoost model. According to our pre-

dictions, the annual rice production in Bangladesh will vary from 57,850,318 tons in 2021 to

82,256,944 tons in 2030. The forecast indicated that the amount of rice produced annually

in Bangladesh will increase in the years to come.

Introduction

There has been a fast expansion in the world population, which has put a strain on the agricul-

tural sector [1]. Rice is considered the world’s third most common major crop, with more than
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50% of the world’s population eating it as a staple diet [2, 3]. As one of the most nutrient-dense

grains, rice is an excellent source of carbohydrate as well as vitamins (B, E, thiamine) and min-

erals (Ca, Mg, Fe) [4]. About 160 million Bangladeshis rely on rice as a basic meal for their

daily diets and survival [5]. Bangladesh’s economy is heavily dependent on rice production,

which means that the price of rice has a considerable impact on GDP growth, inflation, wages,

employment, food security, and poverty [6]. The rice industry employs over 48% of the rural

population, provides two-thirds of all caloric intake, and accounts for half of the average per-

son’s protein intake [7]. For agricultural GDP and national income, the rice subsector alone

contributes about 4.5% to the GDP [8]. Nearly all farming households in Bangladesh cultivate

rice. It is produced on about 10.5 million hectares of land, which occupies about 75 and 80% of

the total cropped and irrigated areas, respectively [9].

Accurate and timely estimates of crop production before harvest are essential for food secu-

rity and administrative planning, especially in the current, ever-changing global environment

and international scenario [10, 11]. Rice yield forecasting has been extensively examined using

various methods all around the world. In order to forecast rice yield, Kumar and Kumar

(2012) added fuzzy values to the time series [12]. Alam et al. (2018) applied two hybrid

approaches including ARIMAX-ANN and ARIMAX-SVM for estimating rice yield in India

[13]. Jing-feng (2011) used NOAA/AVHRR data to predict rice production in Zhejiang Prov-

ince through ratio models and regression models [14]. Using a crop growth model, Yun

(2003) forecasted regional rice production in South Korea [15]. Koide et al. (2013) employed

precipitation hindcasts from one uncoupled general circulation model (GCM) and two cou-

pled GCMs to examine the predictive abilities of retrospective seasonal climate forecasts (hind-

casts) customized to Philippine rice production data [16]. A satellite remote sensing technique

was used by Noureldin et al. (2013) to forecast the production of rice in Egypt [17]. However,

to reveal the growth pattern and make the most accurate prediction of rice production in Ban-

gladesh, it is necessary to use a suitable approach that can successfully describe the observed

data. Different techniques have been taken to accurately estimate yield, and each method has

its own strengths and limitations [18]. For example, Rahman (2010), Mahmud (2018), Rahman

et al. (2016), and Sulatana and Khanam 2020 applied the autoregressive integrated moving

average (ARIMA) and artificial neural network (ANN) for predicting rice production in Ban-

gladesh [19–22].

Sensor technologies, big data, the Internet of Things, artificial intelligence (AI), and

machine learning approaches have recently shown great potential to advance precision agricul-

ture and obtain accurate predictions [23]. According to the aforementioned literature and to

the best of the author’s knowledge, XGBoost is a machine learning algorithm that has not been

widely deployed. The eXtreme Gradient Boosting (XGBoost) model is a supervised machine

learning technique and an emerging machine learning method for time series forecasting in

recent years [24, 25]. It is a novel gradient tree-boosting algorithm that offers efficient out-of-

core learning and sparsity awareness. XGBoost is a supervised learning technique that ought to

be particularly good for the problem of claim prediction with both big training data and miss-

ing values, even if the commonly used methods such as random forest and neural networks

can handle missing values [26, 27]. The robustness of XGBoost results in increased usage of

the method in many other applications. As an example, Aler et al. utilize XGBoost in the field

of direct-diffuse solar radiation separation by creating two models [28]. Moreover, in infec-

tious disease prediction such as COVID-19, the XGBoost achieved greater prediction accuracy

[29, 30].

In contrast, the Autoregressive Integrated Moving Average (ARIMA) model developed by

Box and Jenkins (1990) is most widely used for forecasting time series data because of its

capacity to handle non-stationary data [31]. The ARIMA model is a suitable forecasting
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method in agriculture for different crops and has been extensively used in the fields of eco-

nomics and finance [31–33]. Therefore, this study aimed to (a) compare the predictive accu-

racy of the autoregressive integrated moving average (ARIMA) and eXtreme gradient boosting

(XGBoost) for accurate modeling the annual rice production data in Bangladesh; and (b) carry

out the best model to forecast rice production for the next 10 years (Fig 1). Finally, the findings

of this study will help government officials and development practitioners make more accurate

short-term predictions of future rice production to boost administrative planning and ensure

food security.

Materials and methods

Data source

The annual rice production data from 1961 to 2020 (60 years) used in this study were collected

from the website of FAOSTAT [34]. The data were divided into training and test sets. The pro-

portion of training and testing data was 90% and 10%, respectively. The ARIMA and XGBoost

models were built using the training data sets. The test data were used to evaluate the predic-

tive ability of the developed models. The data set does not contain any missing values.

ARIMA model

The autoregressive integrated moving average (ARIMA) is a technique for analyzing and pre-

dicting time series data that was initially introduced by Box and Jenkins in 1976 [35]. An

ARIMA (p, d, q) time series model consists of its three components. The letters p of the

ARIMA model denote the autoregressive (AR) order, d denotes the differencing order, and q

denotes the moving average order (MA) [36, 37]. The autoregressive order AR(p) describes

the linear combination of the observations that are p times earlier with the random shock

term, which can be mathematically defined as

Yt ¼ C þ ;1Yt� 1 þ ;2Yt� 2 þ ;3Yt� 3 þ ;4Yt� 4 . . . ::;pYt� p þ εt ð1Þ

Where, Yt and εt represent the observed value and the random shock terms at time t, ;i

(i = 1,2,3,4. . ..) indicates the model parameters, and c is the constant term. On the other hand,

the moving average order MA(q) explains the dependent variable for previous random shock

terms, which can be defined as

Yt ¼ mþ y1εt� 1 þ y2εt� 2 þ y3εt� 3 þ y4εt� 4 þ � � � þ yqεt� q þ εt ð2Þ

where, μ represents the mean of the series, θj (j = 1, 2, 3. . . q) denotes the model parameters,

Fig 1. Theoretical framework for the study.

https://doi.org/10.1371/journal.pone.0283452.g001
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and q indicates the model’s order [38]. According to the above explanation, the ARMA (p, q)

model can be defined mathematically as follows:

Yt ¼ C þ mþ ;1Yt� 1 þ ;2Yt� 2 þ ;3Yt� 3 þ ;4Yt� 4 . . . ::þ ;pYt� p þ y1εt� 1 þ y2εt� 2 þ y3εt� 3

þ y4εt� 4 þ � � � þ yqεt� q þ εt ð3Þ

The general form of the ARIMA (p, d, q) model with the differenced series may be defined

mathematically as follows:

y0t ¼ cþ ;1y
0

t� 1
þ ;2y

0

t� 2
þ . . .þ ;py

0

t� p þ y1εt� 1 þ y2εt� 2 þ . . .þ yqεt� q þ εt ð4Þ

Where y0t explains the difference between the series (the number of differences can be

greater than 1);; ;1, ;2. . .;p indicate the coefficients of AR(p) terms and θ1, θ2. . .θq show the

coefficients of the moving average, MA(q) term. More information regarding ARIMA model

can be found in the literature [30, 39].

XGBoost model

The eXtreme Gradient Boosting (XGBoost) is a type of boosting application that combines

several learning applications to produce higher prediction accuracy than any of the individual

learning applications used in several fields [24]. It is a decision tree-based ensemble machine

learning approach that is frequently employed in data science. After utilizing an internal

approach that aggregates the outcomes from several individual trees, precise forecasts can be

obtained [29]. XGBoost was first introduced by Chen Tianqi and Carlos in 2011, and since

then several researchers have refined and enhanced it for the follow-up study [40]. The

XGBoost model aims to execute a gradient descent optimization approach so that the loss

function can be reduced [41]. Boosting is an ensemble technique that can assemble thousands

of forecasting models with lower performance into a strong, high-performance model by

repeatedly merging the models within permissible parameter values [40, 42]. The objective

function can be written as follows:

objðyÞ ¼
X

i
Lðŷi; yiÞ þ

X

k
OðfkÞ ð5Þ

As mentioned above, the objective function (5) consists of a loss function denoted by L and

a regularization term O(fk), that reduces the new tree’s output variation. ŷi denotes the pre-

dicted value and yi represents the observed value. A detailed information regarding the

XGBoost model can be found in the literature [24, 39].

Evaluation parameter of models

One of the major criteria of model evaluation is the calculation of model accuracy. The accu-

racy of a model describes how the actual and predicted values are close to each other. Model

accuracy can be calculated by using several measures [43]. This study used the four widely

used model accuracy measures, such as mean absolute percentage error (MAPE), mean per-

centage error (MPE), mean absolute error (MAE), and root mean square error (RMSE). These

measures can be defined mathematically as follows:

MAE ¼
1

n

Xn

i¼1
jŷi � yij ð6Þ

MPE ¼
1

n

Xn

i¼1

ŷi � yi
yi

� �

� 100% ð7Þ
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðŷi � yiÞ

2

r

ð8Þ

MAPE ¼
1

n

Xn

i¼1
j
ŷi � yi
yi
j � 100% ð9Þ

Where n indicates the number of samples, ŷi denotes the predicted value and yi represents

the observed value, and ŷi � yi indicates the error value. The MAPE measurement provides

the percentage result of the errors. Better fitting results are achieved with less errors [41].

Statistical analyses

ARIMA and XGBoost predictive models and several statistical analyses were carried out using

RStudio (Version 4.2.1) [44]. The ARIMA model was fitted using the "forecast" package [45].

The XGBoost model was constructed with the "forecastxgb" package. The "ggplot2" package

was used for graphical visualization. All necessary codes and data are available at https://

github.com/Arman-Hossain-Chowdhury/Rice-production.

Results

The highest amount of rice produced in Bangladesh was 54,905,891 tons in 2020, and the low-

est was 13,304,520 tons in 1962. The average amount of rice produced annually in Bangladesh

is 29,960,847.08 tons. And the boxplot indicates that the data have no outliers (Fig 2).

We plotted the time series of the annual rice production data from 1961 to 2020 in Bangla-

desh. The data vary considerably and show a linear pattern. The Augmented Dickey Fuller

(ADF) test confirmed that the data are not smooth (Fig 3).

Fig 2. Boxplot of the annual rice production data in Bangladesh from 1961 to 2020.

https://doi.org/10.1371/journal.pone.0283452.g002
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To reduce variation and stabilize the actual data, Box & Cox (1964) presented a parametric

power transformation technique [46]. We applied this technique to make the data stable and

exhibit less variation (Fig 4) [47].

Fig 3. A time series plot for rice production in Bangladesh from 1961 to 2020.

https://doi.org/10.1371/journal.pone.0283452.g003

Fig 4. A comparison between the Box-Cox transformed sequence and the original sequence of annual rice

production in Bangladesh.

https://doi.org/10.1371/journal.pone.0283452.g004
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We performed the ADF test to see the stationarity of the data and found the data non-sta-

tionary (p-value = 0.57) at level. To compensate for the trend shift observed in (Fig 4), we used

first-order differencing of the transformed sequence (Fig 5). The differenced time series was

found stationary using the ADF test (p-value = 0.01). So, the parameter (d) of the ARIMA

model was 1.

In the ACF diagram, there was an evident peak at lag 1 indicating that the MA may become

1 and an evident spike at lags 0 in the PACF diagram, suggesting that the AR may become 0

(Fig 6). Therefore, the maximum p and q values are 0 and 1, respectively.

The ARIMA model was built with the "auto.arima" function to list all possible models and

then selected the model ARIMA (0,1,1) with drift on the basis of the lowest Corrected Akaikes

Information Criteria (AICc) value. The drift parameter value indicates that the rice production

drifts upward positively (Table 1).

After that, the residual diagram, the ACF diagram of the residual, and the residual histo-

gram were drawn, indicating a normal distribution (Fig 7). Hence, the ARIMA (0, 1,1) with

drift model proved significant.

The XGBoost model was developed after adjusting several parameters. The adjusted param-

eters for the model were shown in S4 Table in S1 File. If a feature significantly affects the pre-

dicting performance when random noise takes its place, it is considered to be important. The

feature importance of the XGBoost model was computed to see how each feature contributed

to the prediction accuracy in the training set. And it was found that lag 5 of the training data

contribute greatly to the model (Fig 8).

The curve of actual, fitted, and forecast values of the annual rice production in Bangladesh

by ARIMA (0,1,1) with drift and the XGBoost model has been illustrated in Fig 9. The fore-

casted values of the XGBoost model were quite close to the actual values.

Fig 5. First-order differencing of the rice production of the training data set shows stationarity.

https://doi.org/10.1371/journal.pone.0283452.g005
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Model comparison

The ARIMA (0,1,1) with drift model was built using the difference of the time series data. As a

result, we lost a value in the training set; therefore, we compared the remaining 53 values. We

used a maximum of eight time-lagged variables as input features for XGBoost. Because the

maximum lag of 8 of the rice production data can contribute precisely to improve the XGBoost

model prediction accuracy. Hence, the remaining 46 values were compared for the XGBoost

model. The prediction accuracy for the ARIMA and XGBoost models is shown in Table 2.

The MAPE value of the test set of the XGBoost model was comparatively lower than the

ARIMA model, which indicates that XGBoost performs better than ARIMA in predicting the

annual rice production in Bangladesh. The detailed information regarding XGBoost model fit-

ting can be found in S1 File.

Finally, based on our preferred XGBoost model, we predicted the annual rice production

for the next 10 years (S1 File). According to our forecasts, during the next 10 years, the amount

Fig 6. The ACF and PACF diagram of rice production in Bangladesh after first order differencing. ACF,

autocorrelation function; PACF, partial autocorrelation function.

https://doi.org/10.1371/journal.pone.0283452.g006

Table 1. Estimated parameters of the ARIMA (0,1,1) with drift model.

Parameters Estimate Std. Error z value Pr(>|z|)

ma1 -0.32448 0.15445 -2.1008 0.03566�

drift 0.62942 0.14259 4.4142 0.00001���

AICc 201.54

AICc: Corrected Akaikes Information Criteria

Std. Error: Standard Error

ARIMA: Autoregressive Integrated Moving Average

Asterisk (�) indicates significant at 1% and (���) indicates significant at 0% level.

https://doi.org/10.1371/journal.pone.0283452.t001

PLOS ONE A comparative analysis between ARIMA and XGBoost prediction model

PLOS ONE | https://doi.org/10.1371/journal.pone.0283452 March 27, 2023 8 / 15

https://doi.org/10.1371/journal.pone.0283452.g006
https://doi.org/10.1371/journal.pone.0283452.t001
https://doi.org/10.1371/journal.pone.0283452


Fig 7. A time series plot of the residuals with corresponding ACF diagram, and a histogram for the ARIMA

(0,1,1) model with drift. ACF, autocorrelation function; ARIMA, autoregressive integrated moving average.

https://doi.org/10.1371/journal.pone.0283452.g007

Fig 8. Important characteristic features of the XGBoost model.

https://doi.org/10.1371/journal.pone.0283452.g008
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of rice produced annually in Bangladesh will vary between 57,850,318 and 82,256,940 tons, as

illustrated in Fig 10.

Discussion

In our study, we found a linear upward pattern in the annual rice production data in Bangla-

desh. The primary goal of this study was to compare and contrast the predictive accuracy of

the ARIMA and XGBoost forecasting models and make a short-term prediction with the best

model. In this research, we examined the annual rice production in Bangladesh as a whole

from 1961 to 2020. It is commonly known that Bangladesh has a subtropical tropical monsoon,

which is distinguished by significant seasonal changes in precipitation, high temperatures, and

humidity. In Bangladesh, there are three different seasons: a warm, humid summer from

March to June; a chilly, wet monsoon season from June to October; and a cool, dry winter

from October to March. In the past, temperatures in Bangladesh have ranged from 15˚C to

Fig 9. ARIMA and XGBoost model show the actual, fitted and forecasted data for rice production in Bangladesh. ARIMA, autoregressive integrated

moving average; XGBoost, eXtreme Gradient Boosting.

https://doi.org/10.1371/journal.pone.0283452.g009

Table 2. Evaluation of parameters for the ARIMA and XGBoost model for rice production in Bangladesh.

Models Training set Test set

MAE MPE RMSE MAPE MAE MPE RMSE MAPE

ARIMA(0,1,1) 1109886 -0.30 1496325 4.55 3755137 -7.23 4093961 7.23

XGBoost 2817876 -5.91 3209634 10.39 2779742 -5.39 3195985 5.38

ARIMA: Autoregressive Integrated Moving Average

MAE: Mean Absolute Error

MPE: Mean Percentage Error

MAPE: Mean Absolute Percentage Error

RMSE: Root Mean Square Error

XGBoost: eXtreme Gradient Boosting.

https://doi.org/10.1371/journal.pone.0283452.t002
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34˚C annually, with an average temperature of roughly 26˚C [48, 49]. Food production (e.g.

rice, wheat) is particularly vulnerable to climate change because the agricultural productions

are severely impacted by the climate patterns. Several previous studies examined that mean

temperature can negatively impact the rice production [50, 51]. Precipitation had a positive

impact on rice production, which was also determined by a previous study [52]. To know the

actual pattern of the annual rice production in Bangladesh and forecast it accurately, time

series modeling is very crucial [53].

The ARIMA model for the annual rice production data was established based on the con-

cept of linear regression to forecast future data points. Without using any other explanatory

variable, the ARIMA model is capable of understanding the pattern of the historical data and

making accurate forecasts. So, it is simple to establish the ARIMA model [24]. Since ARIMA is

a well-known and most widely used time series forecasting model, this study compared the

ARIMA model with the robust XGBoost machine learning model. The ARIMA model can be

well fitted to non-stationary data after the Box-Cox transformation and differencing of the

original data [39]. But differencing can cause data lose. In order to differencing the data, this

study lost one-year data. We built the ARIMA models using the auto.arima function by adjust-

ing the power transformation parameter (lambda) and selected the appropriate model based

on the lowest AICc value. Based on the lowest AICc value, we finally selected the optimal

ARIMA (0,1,1) with the drift model.

On the other hand, we used the tree-based ensemble XGBoost supervised machine learning

technique on our data. Several previous studies used several machine learning models, such as

the artificial neural network [22], the random forest [26, 54, 55], and the support vector

machine [56, 57] to predict rice production and obtained effective predicting results. The

eXtreme gradient boosting is a robust machine learning technique for precisely modeling,

Fig 10. Ten years’ prediction of annual rice production in Bangladesh using XGBoost model. XGBoost: eXtreme Gradient Boosting.

https://doi.org/10.1371/journal.pone.0283452.g010
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analyzing, and forecasting time series data [25]. The XGBoost model provides a variety of

advantages regarding model forecasting. For example, it does not require any preprocessing of

the data. It has a rapid processing speed, robust feature selection, good fitting, greater predic-

tive performance and late scaling penalty than a typical Gradient boosting decision tree which

removes the model from the occurrences of overfitting [25, 58]. As a result, we compared the

predictive performance of the ARIMA model with the XGBoost model. From the result, it is

clear that XGBoost performs better than the ARIMA model. In the meantime, the XGBoost

model may also be utilized for cross-validation and has the ability to automatically identify sig-

nificant feature vectors. The MAPE value of the XGBoost model for the test set is compara-

tively lower than the ARIMA model, which indicates XGBoost performs better than the

ARIMA model in predicting the annual rice production in Bangladesh. Therefore, we used the

XGBoost model to make a short-term prediction for the next 10 years. The prediction reveals

that the amount of rice produced annually will grow in the following years in Bangladesh.

According to our study, the fitting and forecasting accuracy of the XGBoost model is much

better than the traditional time-series ARIMA model. Without requiring any influencing fac-

tor, our proposed model can feasibly predict the annual rice production in Bangladesh.

Limitations

In this study, we identified a model by comparing the ARIMA and XGBoost models that could

accurately predict the annual rice production in Bangladesh. There are several machine learn-

ing models such as Decision Tree, LightGBM, and so on that are more robust and might have

greater prediction accuracy. These models need to be applied in the future to find the best one.

We mainly concentrated on the effect of time on rice production, which made it simpler to

develop and predict our model. As a result, one of the limitations is that some climatic and

econometric factors like temperature, rainfall, consumption, and so on, which are well known

to affect rice production, were not taken into account in this study. These should be investi-

gated further in light of the data’s availability.

Conclusion

We built an ARIMA and XGBoost model for forecasting the annual rice production in Bangla-

desh. These models were applied to generate a short-term prediction in this study. The

XGBoost model performed better than the ARIMA model in predicting the annual rice pro-

duction in Bangladesh. Finally, the government and development practitioners can employ

XGBoost models over ARIMA to make more accurate short-term predictions of future crop

production.
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