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Abstract

Purpose: Artificial intelligence (AI) has high diagnostic accuracy for coronary artery disease 

(CAD) from myocardial perfusion imaging (MPI). However, when trained using high-risk 

populations (such as patients with correlating invasive testing), the disease probability can be 

overestimated due to selection bias. We evaluated different strategies for training AI models to 

improve the calibration (accurate estimate of disease probability), using external testing.

Methods: Deep learning was trained using 828 patients from 3 sites, with MPI and invasive 

angiography within 6-months. Perfusion was assessed using upright (U-TPD) and supine total 

perfusion deficit (S-TPD). AI training without data augmentation (Model 1) was compared to 

training with augmentation (increased sampling) of patients without obstructive CAD (Model 

2), and patients without CAD and TPD <2% (Model 3). All models were tested in an external 

population of patients with invasive angiography within 6 months (n=332) or low likelihood of 

CAD (n=179).

Results: Model 3 achieved the best calibration (Brier score 0.104 vs 0.121, p<0.01). 

Improvement in calibration was particularly evident in women (Brier score 0.084 vs 0.124, 

p<0.01). In external testing (n=511), the area under the receiver operating characteristic curve 

(AUC) was higher for Model 3(0.930), compared to U-TPD(AUC 0.897) and S-TPD(AUC 0.900, 

p<0.01 for both).

Conclusion: Training AI models with augmentation of low-risk patients can improve calibration 

of AI models developed to identify patients with CAD, allowing more accurate assignment 

of disease probability. This is particularly important in lower-risk populations and in women, 

where overestimation of disease probability could significantly influence down-stream patient 

management.
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INTRODUCTION

Coronary artery disease (CAD) is a major cause of death among both men and women [1, 

2]. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging 

(MPI) is one of the most common imaging modalities used for assessment of ischemia 

[3]. Previously, we demonstrated improved prediction of obstructive CAD with an artificial 

intelligence (AI) deep learning from raw, extent, and quantitative polar maps from SPECT 

MPI [4, 5]. We recently enhanced the model to utilize only raw perfusion polar maps 

(removing reliance on specific software), but with additional clinical information (age, 

sex, and cardiac volumes), which can be obtained automatically from image files[6]. This 

algorithm also incorporates gradient-weighted Class Activation Mapping (Grad-CAM) [7] 

to produce a coarse localization map highlighting the important regions in the image for 

prediction, providing explainability for this AI approach[6].

However, a fundamental issue for developing any AI model is ensuring that the training 

population reflects the population where the model will ultimately be applied. This is 
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potentially problematic for models trained to predict the presence of CAD. Patients who 

have undergone both MPI and invasive coronary angiography (ICA) are typically used for 

training and testing populations but are a highly selected population with a high prevalence 

of CAD and more abnormal MPI findings compared to populations where AI will ultimately 

be applied. This could lead to an inaccurate estimate of probability particularly in lower-risk 

subgroups [8]. Calibration, a measure of how closely predicted probability reflects actual 

probability, is critical when diagnosing obstructive CAD since this probability directly 

impacts physician decision-making regarding referral for invasive testing[9]. Although poor 

calibration is potentially an issue for AI models, the impact of different methods for training 

data augmentation (expanding training data samples from the existing dataset) on model 

accuracy and calibration has not been extensively studied previously.

In this study, we evaluated the influence of different methods for enhancing training with 

data augmentation on the diagnostic accuracy and calibration of a SPECT MPI AI model for 

predicting presence of obstructive CAD. The final evaluation was performed in an external 

population, with specific attention to performance in both women and men.

MATERIALS AND METHODS

Study Population

The studied dataset was collected under NIH-sponsored REgistry of Fast Myocardial 

Perfusion Imaging with NExt generation SPECT (REFINE SPECT) [10]. The diagnostic 

registry contains MPI studies of consecutive patients without known CAD, who underwent 

clinically indicated ICA within 180 days of MPI [5]. In this study, we included patients 

who underwent imaging with a DSPECT camera system (Spectrum Dynamics, Caesarea, 

Israel) with both supine and upright image acquisitions. We have additionally included a 

random subset of patients from the prognostic registry who underwent clinically indicated 

SPECT MPI with a DSPECT camera system, without ICA but with a low-likelihood (LLK) 

of CAD, described previously[11]. This population was divided into a training population 

(n=828 from three sites) and an external testing population (n=511 from a separate site). 

The primary endpoint for the study was prediction of obstructive CAD. To the extent 

allowed by data sharing agreements and institutional review board protocols, the data from 

this manuscript will be shared upon written request. The study protocol complied with 

the Declaration of Helsinki and was approved by the institutional review boards at each 

participating institution, and the overall study was approved by the institutional review board 

at Cedars-Sinai Medical Center.

Training population

The training population included MPI images from 828 patients from three sites who 

underwent upright and supine SPECT MPI between 2008 and 2015. We additionally 

included patients with LLK of CAD (n = 186) from the same sites, which was assumed 

to be equivalent to no obstructive CAD, for augmentation. The criteria for LLK included: 

pre-test probability of CAD <0.10 [12], no history of CAD [13], no diabetes or peripheral 

vascular disease, left ventricular ejection fraction ≥50% and MPI interpreted visually as 

normal.
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External Testing population

Testing population included 511 patients from a separate site which either underwent ICA 

within 180 days (n=332) or had a LLK of CAD (n=179). The external site was selected 

randomly while ensuring a population of LLK cases could be identified.

Stress and Acquisition Protocols

SPECT MPI was performed using Tc-99m sestamibi on D-SPECT (Spectrum-Dynamics, 

Israel) scanners [14]. Patients underwent either symptom-limited Bruce protocol treadmill 

exercise testing stress or pharmacologic stress, with radiotracer injection at peak exercise 

or during maximal hyperemia, respectively. Upright and supine stress imaging began 15–60 

min after stress, with acquisitions occurring over 4–6 minutes. No attenuation, scatter, or 

motion correction was applied.

Coronary Angiography

ICA was performed according to standard clinical protocols. All coronary angiograms were 

visually interpreted by an on-site cardiologist. Obstructive CAD was defined as luminal 

diameter narrowing of 50% or greater in the left main artery, or 70% or greater in the left 

anterior descending artery (LAD), left circumflex artery (LCx), or right coronary artery 

(RCA).

Visual Perfusion Assessment

Summed stress score (SSS), using a 17-segment model [15, 16], was assessed during clinical 

reporting by experienced board-certified nuclear cardiologists at each site with knowledge 

of all available data, including quantitative perfusion (supine, and upright), gated functional 

data, and all clinical information according to routine local protocols.

Automated Image Quantification

Myocardial contours were generated automatically with quantitative perfusion SPECT 

(QPS)/Quantitative Gated SPECT (QGS) software (Cedars-Sinai Medical Center, Los 

Angeles, CA, USA) and when necessary, contours were adjusted by an experienced core 

laboratory technologist [10]. Total perfusion deficit (TPD) was automatically generated as 

previously described [17]. TPD was derived from stress acquisition in the upright position 

(U-TPD), and supine position (S-TPD). TPD was generated by automated processing with 

sex-specific normal limits. Ejection fraction, end-systolic and end-diastolic volume at stress 

and rest were derived using QGS software. For comparison of false positive rates, S-TPD ≥ 

3% was used as the threshold for abnormal [18].

Deep Learning and Grad-CAM Implementation

The AI model was a convolutional neural network which incorporated supine and upright 

raw perfusion maps as the inputs in polar coordinates and is therefore not reliant on any 

specific software package. Age and sex were extracted automatically from Digital Imaging 

and Communications in Medicine (DICOM) image headers. Cardiac volumes (stress end-

diastolic and end-systolic volumes) were quantified automatically from rest and stress gated 

images (Figure 1). The output of the AI model is a 1×4 probability vector of per vessel 
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(for LAD, LCx and RCA) and per-patient obstructive CAD prediction. Grad-CAM[7] was 

incorporated to highlight regions of polar maps contributing to the prediction and presented 

as an attention map, which highlights the polar map areas contributing to predictions, as well 

as a CAD probability map which shows segments contributing to predictions and per-vessel 

probability of CAD. A case example is shown in Supplemental Figure 1. The model was 

implemented using Python 3.7.3 and Tensorflow 1.14. The training was performed using 

Titan RTX graphics card (Nvidia, Santa Clara CA). Further details about data pre-processing 

and model architecture are provided in Supplemental Material.

Calibration of Deep Learning Analysis with Augmentation

To calibrate the AI model for real world data, we tested 3 methods of training. Model 

1, our previous training method[6], was trained without any data augmentation but with a 

weighted loss function to account for class imbalance. Model 2 was trained with augmenting 

data in patients without obstructive CAD. Model 3 was trained with augmenting “simulated 

low likelihood” data defined as patients with angiographically normal coronary arteries and 

S-TPD < 2%. Polar maps were rotated +/− 10 degrees for augmentation. Histogram and 

calibration plots as well as Brier scores for all three models were compared. Differences in 

calibration were assessed with t-tests of the squared error [19].

Model Training

To train the model, data from the 3 training sites were split in 5 folds randomly, with 2 folds 

(20% each) held out for validation and testing in each fold and the rest for training. An equal 

proportion of patients with obstructive CAD were maintained in each of the folds. This 

process was repeated 5 times, with each nonoverlapping fold used as test set, thus reducing 

variance in estimates caused by arbitrarily splitting the dataset once [20].

Our baseline model (Model 1) utilized weighted loss function to account for class imbalance 

(62.9% of patients with obstructive CAD) but did not use training data augmentation. We 

compared this method to a model trained with additional cases without significant CAD 

(Model 2) and with additional cases from simulated LLK patients (angiographically normal 

coronaries and S-TPD<2%, [Model 3]), to ensure balanced training folds (50% of patients 

with obstructive CAD).

External Testing

We used a separate site for external testing, which was not used in any way during model 

training. The model with the lowest validation loss (higher validation loss is suggestive of 

model over-fitting) during internal cross-validation was selected for external testing.

Statistical Analysis

Categorical variables are presented as number (frequency) and continuous variables as mean 

± SD or median and interquartile ranges as appropriate. Variables were compared using a 

χ2 statistic for categorical variables and a Wilcoxon rank-sum test for continuous variables. 

The diagnostic performance of SSS, stress TPD, and the AI model was evaluated using 

the receiver operating characteristic (ROC) analysis and pairwise comparisons of the area 

under the ROC curve (AUC) [21]. Thresholds were established in the training population to 
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meet 90% sensitivity, then the same values were applied in the external testing population. 

A two-tailed P-value <0.05 was considered statistically significant. STATA version 14 was 

used for all analyses (Stata Corp, College Station, TX).

RESULTS

Population Characteristics

Patient characteristics from the training and external testing populations are shown in Table 

1. Patients in the training population were older (mean age 64.0 vs 60.8, p<0.001) and the 

proportion of patients with CAD risk factors other than smoking was higher in the training 

population.

Angiographic Characteristics

In total, 521 (62.9%) patients in the training population and 197 (59.3%) patients from the 

testing population who underwent ICA had obstructive CAD. Angiographic characteristics 

of the training and testing population are shown in Table 2. There were no significant 

differences in the distribution of angiographic CAD between the two groups. Characteristics 

of patients undergoing ICA compared to LLK patients are shown in Supplemental Table 1.

Influence of Training Augmentation on Calibration

Model 3 had the best calibration (Brier score 0.104), which was significantly better 

compared to Model 1 (Brier score 0.121, p=0.003). Model 2 (Brier Score 0.108) had similar 

calibration to Model 3 (p=0.294). Calibration graphs for the overall population are shown in 

Figure 2. Model 1 tended to overestimate the probability of obstructive CAD in lower-risk 

patients (lowest 6 deciles). Correlation between predicted and actual probabilities were 

better in low-risk patients for Models 2 and 3. Model 3 demonstrated better calibration in 

women (Brier score 0.084) compared to men (Brier score 0.129) (Figure 3), while Model 

1 showed similar calibration in men (Brier score 0.121) and women (Brier score 0.124). 

There were no differences in calibration when only considering patients who underwent ICA 

(Supplemental Figure 2). The calibration for model 3 (measured using Brier score) was not 

significantly worse in patients with elevated BMI compared to patients without (0.116 vs. 

0.094, p=0.133), results in Supplemental Table 2. Additionally, the prediction performance 

for obstructive CAD was not significantly different for model 3 in patients with or without 

elevated BMI (AUC 0.913 vs 0.947, p=0.148).

False positive and false negative rates for each of the models are shown in Figure 4. 

Thresholds were derived in the training population to achieve 90% sensitivity. The false 

positive rate was significantly lower for Model 3 (21.2%) compared to Model 1 (31.5%, 

p=0.012). The proportion of abnormal tests in LLK patients was lower for both Model 2 

(2.8%) and Model 3 (3.9%) compared to Model 1 (10.6%, p<0.05 for both). Model 3 had 

sensitivity of 88% and specificity 84% in the external population.

Diagnostic accuracy in the entire external population, including patients who underwent ICA 

and LLK patients, is shown in Figure 5. Model 3 had the highest diagnostic accuracy (AUC 

0.930, 95% CI 0.908 – 0.952) with no significant differences between models. Only Model 
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3 had higher prediction performance compared to S-TPD (p=0.010 in overall population, 

p=0.011 in ICA population). Diagnostic accuracy for CAD in women and men is shown in 

Supplemental Figure 3. Predictive performance of the 3 models across the 5 validation folds 

is shown in Supplemental Table 3.

Prediction Performance Compared to Standard Quantification

Diagnostic accuracy in the external testing population, including patients who underwent 

ICA and LLK patients, is shown in Supplemental Figure 4. The AUC for the AI model 

(0.930), was better compared to U-TPD (AUC 0.897) and S-TPD (AUC 0.900, p<0.01 for 

both). Overall diagnostic accuracy was lower in the subset of patients who underwent ICA. 

However, the AUC for the AI model (0.877) was still higher compared to S-TPD (AUC 

0.830, p=0.011) and U-TPD (AUC 0.829, p=0.002).

DISCUSSION

Using a large multi-center international registry, we demonstrate that training data 

augmentation has a significant impact on AI model calibration (reflecting model bias) and 

may also impact overall diagnostic accuracy. Models trained with additional cases from 

patients without obstructive CAD more closely predicted the probability of obstructive CAD 

in women and low-risk patients, which could potentially lead to less down-stream invasive 

testing. All AI models had similar diagnostic accuracy and outperformed quantitative 

analysis of perfusion when tested in an external population. Our results suggest that 

training data augmentation is critical to ensuring that AI predictions more closely reflect 

the population in which they will be applied.

AI models which are trained to predict the presence of obstructive CAD are limited by the 

use of training populations with inherent selection bias. Since the extent of CAD needs 

to be known, training populations must have undergone either ICA or coronary computed 

tomographic angiography. These populations have a higher prevalence of obstructive CAD 

and more abnormal perfusion compared to unselected populations referred for MPI. As a 

result, AI models trained on such populations tend to overestimate the probability of CAD in 

lower-risk patients. Two methods to overcome this issue are to use weighted loss functions 

or to augment training populations. With weighted loss functions, prediction errors in 

the under-represented population are assigned greater weight[22] (Model 1). Alternatively, 

training can be augmented with additional cases from the under-represented populations[23], 

as we did for Model 2 and Model 3. This allows the model to learn from additional cases 

without obstructive CAD, or in the case of Model 3, additional cases without CAD with near 

normal perfusion. These cases may better reflect the actual population of patients referred 

for MPI given the declining frequency of abnormal perfusion findings [24].

Our primary aim when assessing training data augmentation methods was to improve model 

calibration for prediction of obstructive CAD, when applied in a population which better 

reflected all patients referred for MPI. Model 1 tended to overestimate the probability 

of CAD in low-risk patients despite using a weighted loss function. Models 2 and 3 

more closely predicted the probability of CAD in these low-risk patients, with a resultant 

lower false positive rate. Importantly, improvement in calibration was most evident in 
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women which was an expected finding given the lower prevalence of obstructive CAD in 

women compared to men[25]. This result highlights the importance of assessing model 

discrimination and calibration by sex. When tested only in patients who underwent ICA, 

a population with similar selection bias as the training population, model calibration was 

similar regardless of the training method. These findings suggest that training augmentation 

is an effective way to improve model calibration without sacrificing diagnostic accuracy or 

calibration for high-risk patients.

In the overall population, the AI diagnostic accuracy was always higher compared to visual 

assessment or stress TPD on two positions for all models. Additionally, Model 3 had higher 

accuracy compared to S-TPD in the subset of patients with ICA. Model 3 also had higher 

prediction performance for identifying patients with obstructive CAD compared to our 

previous model incorporating upright and supine images (AUC 0.81)[26]. The present model 

also demonstrates higher AUC compared to a model integrating attenuation corrected and 

non-attenuation corrected imaging[27]. Importantly, the present model incorporates methods 

for explainable predictions, which we recently demonstrated could be used to improve the 

accuracy of physician interpretations [28]. Explainability is critical since, at least for the 

foreseeable future, AI models will be operating under physician supervision. In our study, 

there was also a trend towards higher diagnostic accuracy of Model 3 compared to S-TPD 

in both men and women. Only a few previous studies have evaluated the difference in 

the diagnostic accuracy of visual assessment for SPECT-MPI between men and women. 

A meta-analysis of 1,148 men and 1,142 women from 26 Anger SPECT studies showed 

that there was no significant difference in the sensitivity or specificity of visual perfusion 

assessment between men and women [26]. The mean sensitivity and specificity were 84.2% 

and 78.7% in women and 89.1% and 71.2% in men for the diagnosis of CAD using a 

cut-off of ≥50% stenosis [26]. In a small study of 61 women and 248 men, the accuracy 

of visual assessment of SPECT-MPI for detecting obstructive CAD with the CZT-camera 

in women was shown to be comparable to men [29]. To our knowledge, our study is the 

first to compare the diagnostic performance of AI to visual assessment and state-of-the-art 

automated quantification detected with a CZT-camera separately in men and women.

The study has some limitations. This was a retrospective analysis of patients who had 

undergone SPECT and ICA within 6 months. However, the actual interval between studies 

was relatively short (24±38 days). The degree of stenosis was visually assessed on invasive 

angiography and quantitative angiography was not performed in most sites. A stenosis ≥70% 

was used as a surrogate marker of hemodynamically significant stenosis. This study was 

performed using images from one camera system and the generalizability of our findings 

to other SPECT scanners remains to be evaluated. However, the augmentation of training 

populations was based on quantification of standard supine imaging and could potentially 

be applied more broadly. In this study, we assessed the impact of training augmentation on 

prediction performance and calibration in women and men. Future studies could evaluate 

whether these measures differ significantly by other patient features such as ethnicity or 

medical history. Additionally, while we demonstrated superior diagnostic accuracy for the 

AI model compared to expert visual interpretation and quantitative analysis of perfusion, 

prospective studies are needed to determine if this leads to a change in patient management 

and improved clinical outcomes. Lastly, we only evaluated three methods for training 
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augmentation and there are likely an endless number of variations. However, our study 

does demonstrate the potential for training augmentation to improve calibration.

CONCLUSION

Augmenting training populations can lead to improved AI model calibration, and 

consequently more accurate assignment of the probability of the disease without impacting 

overall diagnostic accuracy. In our study this led to lower false positive rates, suggesting that 

it could significantly influence down-stream patient management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

AI artificial intelligence

AUC area under the ROC curve

CAD coronary artery disease

ICA invasive coronary angiogram

LAD left anterior descending coronary artery

LCx left circumflex coronary artery

MPI myocardial perfusion imaging

QPS quantitative perfusion SPECT

RCA right coronary artery

ROC receiver operating characteristic
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SPECT single-photon emission computed tomography

TPD total perfusion deficit
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Fig. 1. 
Deep Learning Architecture. The raw polar maps are input to the network without the 

use of pre-defined coronary territories or any assumed subdivision. Patient sex, age, BMI, 

and cardiac volumes information is added to the final feature vector. The attention map 

highlights regions contributing most to the DL score for a given patient, while the CAD 

probability map shows per-vessel probability of obstructive CAD. CAD=coronary artery 

disease, Grad-CAM=Gradient-weighted Class Activation Mapping, BMI=body mass index.
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Fig. 2. 
Calibration graphs in the external patient population showing predicted probability of CAD 

compared to actual prevalence of CAD. Calibration was good for all models but was 

significantly higher for Model 2 and Model 3 compared to Model 1. CAD – coronary artery 

disease.
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Fig 3. 
Calibration graphs in women and men showing predicted probability of CAD compared to 

actual prevalence of CAD. Calibration in women was best for Model 3, with both Model 2 

and Model 3 having significantly better calibration than Model 1 (both p<0.001). Calibration 

was similar for all models in men.
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Fig. 4. 
False positive rates and rates of abnormality in patients with low likelihood (LLK) of 

coronary artery disease (CAD). Model 1 was trained with no data augmentation, but with 

a weighted loss function. Training for model 2 was augmented with additional patients 

without obstructive CAD. Training for model 3 was augmented with additional patients 

without CAD and with total perfusion deficit < 2%. False positive rates and abnormality 

in LLK were significanly lower for Model 2 and 3 compared to model 1 for the overall 

population and in women (* p<0.05), but not in men. TPD – total perfusion deficit.
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Fig. 5. 
Diagnostic accuracy for obstructive coronary artery disease in the external population using 

different training augmentation methods. Left panel shows the entire population (patients 

undergoing invasive coronary angiography [ICA] and low-likelihood (LLK) patients). 

Right panel shows only patients who underwent ICA. Model 1 was trained without data 

augmentation, but using a weighted loss for training. Model 2 augments training with 

patients without obstructive CAD and model 3 augments training with patients without 

CAD and total perfusion deficit <2%. Only Model 3 had significantly higher prediction 

performance compared to supine stress total perfusion deficit (S-TPD). AUC – area under 

the receiver operating characteristic curve.

Miller et al. Page 16

Eur J Nucl Med Mol Imaging. Author manuscript; available in PMC 2023 March 27.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Miller et al. Page 17

Table 1.

Training and Testing Population Characteristics

Training Population
(n=828)

Testing Population
(n=511)

p-value

Age, years 64.0 ±11.6 60.8 ± 12.2 <0.001

BMI, kg/m2 28.7 [25.4 – 32.3] 29.9 [25.9 – 34.0] <0.001

Females 274 (33.1) 280 (54.8) <0.001

Hypertension 598 (72.2) 318 (62.2) <0.001

Diabetes 245 (29.6) 106 (20.7) <0.001

Dyslipidemia 560 (67.6) 290 (56.8) <0.001

Smoking 108 (13.0) 151 (29.6) <0.001

Typical angina 113 (13.7) 117 (22.9) <0.001

Atypical angina 337 (40.7) 103 (20.2) <0.001

Asymptomatic 324 (39.1) 149 (29.2) <0.001

Exercise stress 419 (50.6) 282 (55.2) 0.092

U-TPD (%) 7.3 [3.1 – 14.7) 2.2 [ 0.6 – 9.0) <0.001

S-TPD (%) 8.4 [3.7 – 16.3] 3.1 [ 0.9 – 10.7) <0.001

ICA – obstructive CAD 521 (62.9) 197 (38.5) <0.001

ICA – no obstructive CAD 307 (37.1) 135 (26.4) <0.001

Low likelihood of CAD 0 (0) 179 (35) <0.001

Categorical values are expressed as n (%). Continuous value is expressed as mean ± SD or median [interquartile range]. Patients who underwent 
invasive coronary angiography (ICA) were classified as having obstructive coronary artery disease (CAD) if there was any stenosis ≥70% or left 
main stenosis ≥ 50%. BMI - body mass index, CAD – coronary artery disease, TPD - total perfusion deficit.
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Table 2.

Angiographic Characteristics

Training Population
(n=828)

Testing Population
(n=332)

p-value

1 vessel disease 241 (29.1) 80 (24.1) 0.095

2 vessel disease 171 (20.7) 69 (20.8) 1.000

3 vessel disease 109 (13.2) 48 (14.5) 0.569

Left main disease 50 (6.7) 26 (7.9) 0.294

LAD disease 371 (44.8) 138 (41.6) 0.327

LCx disease 273 (33.0) 111 (33.4) 0.890

RCA disease 266 (32.1) 113 (34.0) 0.534

Value is expressed as n (%). LAD - left anterior descending artery, LCx - left circumflex coronary artery, RCA - right coronary artery.
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