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Single cell analysis in head and neck cancer
reveals potential immune evasion mechan-
isms during early metastasis

Hong Sheng Quah 1,2,14, Elaine Yiqun Cao3,14, Lisda Suteja1,4, Constance H. Li1,2,
Hui Sun Leong1, Fui Teen Chong1, Shilpi Gupta5, Camille Arcinas 1,2,
John F. Ouyang 3, Vivian Ang5, Teja Celhar 6, Yunqian Zhao6, Hui Chen Tay6,
Jerry Chan7, Takeshi Takahashi8, Daniel S. W. Tan 1,2,9, Subhra K. Biswas5,
Owen J. L. Rackham 3,10,11 & N. Gopalakrishna Iyer 1,2,12,13

Profiling tumors at single-cell resolution provides an opportunity to under-
stand complexities underpinning lymph-node metastases in head and neck
squamous-cell carcinoma. Single-cell RNAseq (scRNAseq) analysis of cancer-
cell trajectories identifies a subpopulation of pre-metastatic cells, driven by
actionable pathways including AXL and AURK. Blocking these two proteins
blunts tumor invasion in patient-derived cultures. Furthermore, scRNAseq
analyses of tumor-infiltrating CD8 + T-lymphocytes show two distinct trajec-
tories to T-cell dysfunction, corroborated by their clonal architecture based on
single-cell T-cell receptor sequencing. By determining keymodulators of these
trajectories, followed by validation using external datasets and functional
experiments, we uncover a role for SOX4 in mediating T-cell exhaustion.
Finally, interactome analyses between pre-metastatic tumor cells and CD8 + T-
lymphocytes uncover a putative role for the Midkine pathway in immune-
modulation and this is confirmed by scRNAseq of tumors from humanized
mice. Aside from specific findings, this study demonstrates the importance of
tumor heterogeneity analyses in identifying key vulnerabilities during early
metastasis.

In most solid tumors, development of lymph-node metastasis por-
tends poor outcomes, pre-dating distant metastasis1–3. In head and
neck squamous-cell cancers (HNSCC), these patients are treated with
curative intent by surgery and radiation therapy with the prime
objective of eradicating existing and future diseases by depleting

clones with a metastatic potential4, 5. Metastasis is a continuum of
phenotypes ranging from pre-metastatic features (local invasion,
increased motility), circulating tumor cells/emboli, microscopic
lymph-node deposits, gross nodal involvement and adjacent soft-
tissue invasion, oligo-metastasis and finally, distant metastasis6. Most
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studies focus on the terminal event, highlighting the role of definitive
epithelial–mesenchymal transition (EMT); however, bulk analyses in
HNSCC suggests that EMT does not appear to be a pre-requisite for
lymph-node dissemination7–11. Recent studies have also highlighted
that EMT itself exists as a spectrum, and tumor cells exhibit a sig-
nificant amount of plasticity which may account for the range of
clinical manifestations observed12, 13. One likely explanation could be
insufficient resolution of traditional methods in identifying infrequent
sub-clones with true metastatic potential that would be targetable for
anti-metastatic therapy. Single-cell analyses offer ways to resolve both
issues: identification of rare clones with true metastatic potential and
identifying pathways and vulnerabilities that can be exploited in the
clinical setting to prevent further dissemination of these.

The role of the immune system during the metastatic cascade is
gaining clinical relevance with current advancements in checkpoint
blockade therapies14. This is especially pertinent in the context of
lymph-node metastasis, as lymph nodes are believed to be the main
organ for T-cell priming, expansion and trafficking15. Understanding
the mechanisms by which tumors evade immune-based killing within
lymph nodes is critical to target earlymetastases16–19. Again, this can be
addressed by single-cell analyses by defining the immune landscape,
and in-depth dissection of interactions involved during immune eva-
sion at the primary and nodal sites.

Here, we profile primary and early (nodal) metastatic HNSCC
tumors using single-cell RNAseq (scRNAseq) and TCRseq (scTCRseq),
and analyze this data by reconstructing evolutionary trajectories
focusing on cell types that are known to transit across the two subsites:
cancer cells and CD8+ T cells. The objectives are to identify pre-
metastatic tumor subpopulations and targetable vulnerabilities, and to
determine the evolutionary trajectoryof tumor-targetingT cells aswell
as dissect pathways tumors employ to evade immune destruction
during nodal dissemination.

Results
Single-cell transcriptional states of primary and lymph-node
metastasis in HNSCC
To delineate ‘whole-tumor’ single-cell landscapes in primary tumors
and lymph-node metastases, we developed a protocol to rapidly pro-
cess freshly resected tissue for single-cell RNA sequencing (scRNAseq)
and establishing primary cultures (Fig. 1a)20, 21. Tumors were harvested
from fourteen treatment-naïve patients with locally advanced, HPV-
negative HNSCC from primary and cervical lymph nodes (Supple-
mentary Data 1, 2). Seven pairs were processed for scRNAseq and
single-cell T-cell receptor sequencing (scTCRseq), while primary cul-
tures were successfully established for seven.

scRNAseq data for fresh tumors describes 53,459 cells
(3553–11,308 per patient) and 23,148 genes (details on quality controls
steps in “Methods” and Supplementary Fig. 1a–c). Using Seurat v3.0,
the data was normalized, pooled, and clustered (Fig. 1b, c and Sup-
plementary Fig. 1d). Canonical markers were used to broadly annotate
these populations into epithelial (KRT7, KRT17), salivary (STATH),
fibroblasts (COL1A2), endothelial (PECAM) and immune (PTPRC) cells
(Fig. 1d and Supplementary Fig. 1e). Fibroblasts were further sub-
divided into cancer-associated fibroblasts (CAFs; MMP2) and myofi-
broblasts (ACTA2), while immune cells were organized into T-(CD3E,
NKG7), NK- (NKG7, XCL2), B- (CD79A), plasma- (IGHG1), mast- (TPSAB1),
conventional (LAMP3) and plasmacytoid (LILR4) dendritic cells, as well
as macrophages/monocytes (CD163). These were well-distributed
across samples from all patients, apart from salivary cells, which
were only observed in one patient, likely due to harvest of adjacent
parotid gland tissue (HN263). However, there were differences in
composition between primary and metastatic sites (Fig. 1d), with
higher proportions of CAFs and TAMs in the primary tumor, versus
more B-cells, plasma cells and dendritic cells at the metastatic sites,
typical of a lymph-node. These were similar to cellular composition

proportions derived from bulk data from TCGA (Supplementary
Fig. 1f). Inferred copy number variant analyses on the epithelial
population showed that copy number alterations were evident in >95%
of cells, which confirmed that this subpopulation predominantly
comprised cancer cells (Fig. 1e and Supplementary Fig. 1g). Copy
number alterations (CNAs) were further analyzed using the CopyKat
algorithm22, and identified those frequently observed in HNSCC23,
including gains across chromosomes 7 and 8q and loss of 3p and 5q
(Supplementary Fig. 1h). Significant overlap of CNAs was also noted
between the primary and metastatic sites in each patient (Supple-
mentary Fig. 1i).

Tumor cells demonstrate varying degree of
epithelial–mesenchymal transition during metastasis
We next focused on tumor cells (total of 6115 cells and 17,784 genes;
1427 unique genes per cell) by extracting only the epithelial population
with copy number alterations. Using Seurat 3.0, we pooled and re-
analysed this subset, visualized as distinct clusters for each individual
patient, with varying degree of overlap across cells from primary and
nodal sites (Fig. 2a and Supplementary 2a). Tumor-cell data can be
accessed and interrogated as an interactive web application via the
following Shiny app (http://hnc.ddnetbio.com/). One of the major
objectives here was to identify pre-nodal cells, which are cancer cells
within that primary tumor that have the capacity to metastasize to the
lymph nodes, and hence we hypothesize should have similar gene
signatures to cancer cells within the lymph-node. Visualizing the
UMAP, it was evident that tumors from patients HN242 and
HN257 show significant overlap in tumor cells derived from both sites.
AlthoughpatientsHN251 (cluster 10 vs. 11 nodal), HN279 (clusters 4,3,9
vs. 5 nodal) and HN272 (clusters 0 vs. 6 nodal) show distinct sub-
clusters where nodal tumor cells appear to predominate, these were
not sufficiently robust to support the identification a distinctpre-nodal
subpopulation. Similar findings can be seen using PCA and TSNE
(Supplementary Fig. 2a). In general, comparing EMT gene markers in
primary vsnodalmetastases populations, nodal tumor cells hadhigher
EMT scores compared to the corresponding primary in all patients
except HN257 (Fig. 2b).

Therefore, in order to identify the pre-nodal metastases
subpopulation in primary tumors, we built trajectories using
Monocle 2.0 to identify primary cells that were the ‘nearest
neighbor’ to nodal epithelial cells. The trajectories were labeled
based on the origin and direction based on the ground truth of
site (i.e., primary tumor presumed to pre-date nodal disease)24, 25,
incorporating EMT-scores, and CytoTRACE (see Methods). Cyto-
TRACE is a tool to determine degrees of differentiation, assuming
de-differentiation co-occurs with the metastatic phenotype26, 27.
The same strategy was also used to re-analyze the dataset gen-
erated by Puram et al. as an external validation (with 2076 epi-
thelial cells available for analysis)12. The assumption for this
approach is that evidence of the pathway leading from pre-nodal
to nodal metastases would be evident, despite ongoing evolution
in the primary tumor. This approach identified three different
patterns (Fig. 2c, d and Supplementary Fig. 2c–u). The first, seen
in patients HN251, HN242 and HN279, pseudo-time ordering
demonstrated an ordered, progressive, stepwise transition from
primary to nodal disease, with little further evolution in the pri-
mary tumor. Nodal tumor cells largely dominate the end of the
trajectory with higher CytoTRACE scores. Major pathways over-
represented across pseudotime include epithelial de-differentia-
tion, oxidative phosphorylation and EMT (Fig. 2e). A similar pat-
tern is seen in the Puram dataset for tumors p26 and p28
(Supplementary Fig. 2l, m). The second pattern shows a trajectory
where the pathway to pre-nodal cells continues to be evident,
however, the primary tumor also shows continual evolution. This
is seen in HN272, as well as p25 in the Puram dataset
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(Supplementary Fig. 2c, n). In both these patterns, we were able
to further identify actionable genes associated with the trajectory
from primary to pre-nodal cells using the GeneSwitches
algorithm28, which identified AXL, Aurora kinase, TYMS and STAT2
at potentially critical genes in this process (Fig. 2f and Supple-
mentary Fig. 2d–f). Analysis of the validation dataset similarly

identified AXL (p25, p26, P28), STAT2 (p25, p26) and AURKB (p26,
p28) (Supplementary Fig. 2o).

The third pattern seen in patient HN257, aswell as p5 and p20was
more complicated as the primary tumor had higher EMT scores than
nodal tumor cells, and tumor trajectories were haphazard with no
directionality, and no evidence of an evolutionarily “earlier” time point
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in the primary tumor (Supplementary Fig. 2p–u). In HN257, Cyto-
TRACE showed a distinct de-differentiated sub-population in the pri-
mary tumor that had high EMT scores and expression of SNAI2 (Fig. 2g
and Supplementary Fig. 2p–r). We hypothesized that this was an
aggressive, rapidly evolving tumor subpopulation. In this subpopula-
tion, differential expression analyses identified a panel of 132 upre-
gulated involved in oxidative phosphorylation and tumormetabolism,
and 45 downregulated genes involved in immune evasion (Fig. 2h and
SupplementaryData 3). Basedon these gene sets, tumors in TCGAwith
the same signature (based on RNAseq data) had significantly poorer
outcomes (Fig. 2i and Supplementary Fig. 2s). Therefore, we postulate
that in these tumors, distinct subpopulations in the primary tumor
showed a more aggressive phenotype, that likely evolved further after
nodal dissemination had occurred.

Identifying vulnerabilities to target pre-metastatic tumor cells
We then proceeded to test whether specific targets identified in
this manner present an opportunity for therapeutic intervention.
scRNAseq using the C1 platform was performed on patient-
derived cultures (PDCs) from primary and nodal metastatic sites
(n = 7 pairs). The data was processed using Seurat 3.0 and
PAGODA (pathway and geneset overdispersion analysis) (Fig. 3a
and Supplementary Fig. 3a, b). We derived scRNAseq data for a
total of 1317 cells and 55,216 genes. Similar to above, tumor-cell
clusters were based on individual patients. However, PDCs
demonstrated distinct separation between primary and meta-
static cells, with EMT as one of the major differentiating principal
component pathways (Fig. 3b and Supplementary Fig. 3a, b).
Here, pre-nodal cells in HN137, HN159 and HN220 were identified
as small primary subpopulations that clustered with meta-
static cells.

Differential expression analyses for these pre-nodal populations
identifiedAXL (inHN137) andAURKB (inHN159andHN220) as putative
actionable targets (Fig. 3c and Supplementary Data 4–6). Expression of
these genes was validated using immunohistochemistry or immuno-
fluorescence staining in both PDCs and respective tumor tissue (Fig. 3d
and Supplementary Fig. 3c, d), and this was recapitulated on flow
cytometry for AXL (HN137) and AURKB (HN159 and HN220) (Supple-
mentary Fig. 3e, f, j, k). In HN137, expression of protein and transcript
AXL was detected in a majority of metastatic cells compared with only
a small sub-population of primary cells. For HN159, but unexpectedly
not forHN220, AURKBprotein expressionwas lower inmetastatic cells
when compared to primary cells. We focused on AXL and AURKB
because both have specific inhibitors: BGB324 targeting cells with high
AXL expression, and barasertib (pan-AURK inhibitor) targeting cells
with limiting AURKA/AURKB levels. There were no differences in clo-
nogenicity between primary and metastatic cultures from patient
HN137 treated with BGB324, nor HN159 and HN220 treated with bar-
asertib (Supplementary Fig. 3g–i). In contrast, all threemetastatic lines
HN137, HN159 and HN220 (treated with their respective drugs)
demonstrated lower cell migration/invasion compared to untreated
cultures, measured by scratch and Boyden chamber invasion assays
(Fig. 3e–g). AXL-inhibition significantly reduced invasive potential of
both primary and metastatic cells of HN137 (Fig. 3e) while AURK-
inhibition significantly reduced the invasive potential of only meta-
static cells of HN159 and HN220 (Fig. 3f, g). As AXL is a surface

membrane protein, primary cells were sorted into AXL low-, medium-
and high-expressing cells. As predicted, BGB324 specifically inhibited
invasion only in the AXL-high primary subpopulation compared to
AXL-low cells (Fig. 3h, i, Supplementary Fig. 3j, k). We further analyzed
bulk-RNAseq data for primary HNSCC tumors in the TCGA dataset to
determine the correlation between AXL or AURKB with EMT (as a
proxy for metastatic potential). The results demonstrated that AXL
expression is significantly correlatedwith increasing EMT score, even if
this analysis was limited to patients with no nodal metastasis (Sup-
plementary Fig. 3l, m). Conversely, our analyses suggests that AURKB
had the opposite trend, even in N0 tumors, although the association is
less robust. These, data indicate AXL and AURKB play major roles in
invasion and provide an opportunity for specific anti-metastatic
therapy.

Evolution of CD8+ T cells derived from analysis of primary
tumor and lymph-node metastasis
CD3+ T cells formone of themajor subpopulations sequenced at both
primary and nodal sites. Data from 10,168 cells (covering 13,729 genes)
were pooled, analyzed using Seurat, and visualized as ten distinct
T-cell clusters (Fig. 4a). The identity of each cluster was delineated
based on differential gene expression of known T-cell markers (Fig. 4b
and Supplementary Fig. 4a, b). Some were distinct for CD4+ cells
(Tregs and Tfh) and CD8 + cells (Pre-dysfunctional, Dysfunctional,
Proliferative), while others comprise both CD4+ and CD8+ lineages
(Naïve-like and Transitional). Majority of naïve-like cells were derived
from nodal tissue while the remaining clusters appear to have equal
representation from the primary and nodal metastatic sites (Fig. 4b
and Supplementary Fig. 4c).

CD8+ T cells (total of 3387 cells, 11,847 genes) were extracted
from this pooled T-cell dataset and re-analyzed after regression
for cell cycle-driven artefacts to identify lineage-based clusters.
CD8+ T-cell data can be accessed and interrogated as an inter-
active web application using the following Shiny app (http://hnc.
ddnetbio.com/). Six distinct clusters were labeled as naïve, tran-
sitional, tissue-resident memory, pre-dysfunctional, proliferative
and late dysfunctional based on canonical markers (Fig. 4c, d and
Supplementary Fig. 4d, e). Using Slingshot, we performed tra-
jectory analyses on the CD8+ T cells using the CXCL13-high, LAYN-
high exhausted/senescent population as the end-point29, and this
identified two convergent trajectories (Fig. 4e). Expression plots
across Trajectory 1 showed a progressive loss of naïve markers,
gradual gain of dysfunctional (and senescent) markers and an
intervening proliferative ‘burst’, that likely reflects expanding
clones of tumor-targeting CD8+ cells (Fig. 4f). Specifically, this
lineage suggests a scenario where naïve CD8+ T cells from lymph
nodes or circulation were trafficking into the primary tumor with
loss of circulating markers KLF2, SELL and CCR7, gain of tissue-
resident marker CD103/ITGAE, progressive decline in the expres-
sion of naïve genes TCF7, IL7R, CCR7, and gradual gain of dys-
functional markers (TIM3, CTLA4, TIGIT, CXCL13, LAYN) with an
intermediary proliferative burst with high levels of MKI67, TOP2A,
TYMS (Fig. 4b, e, f). This is also reflected by progressive increase
from GZMK to GZMB, PRF1, and IFNG in pre-dysfunctional to
dysfunctional cells. In contrast, the trajectory of tissue-resident
memory (TRM) to dysfunctional cells (Trajectory 2) shows fewer

Fig. 1 | Tumor samples for single-cell RNAseq. aWorkflow of sample acquisition,
processing, and analyses for single-cell transcriptome and TCR clonality of tumors
(andpatient-derived cultures) fromprimary andmetastatic lymphnodes of HNSCC
patients. Diagram was created with BioRender.com. b Uniform manifold approx-
imation and projection (UMAP) of scRNAseq from all 53,459 cells separated by
primary tumors andmetastatic lymph nodes from 7 patients. cUMAP of scRNAseq
data of all cells from 7 patients with clusters denoted by colors and labeled
according to inferred cell types. Violin plots show the expression of selected genes

used to define the inferred cell types. d Distribution of different cell types (color),
categorized by CD45+ or CD45−, for each patient sample (upper) and comparing
primary and metastatic samples (lower) as indicated on the y-axis. e Chromosomal
gains and losses prediction for malignant epithelial cells by inferCNV using non-
malignant cells from respective samples as controls. Cyan indicates primary
malignant epithelial; yellow indicates lymph-node malignant epithelial; sample
identities on the y-axis, chromosome numbers on the x-axis.

Article https://doi.org/10.1038/s41467-023-37379-y

Nature Communications |         (2023) 14:1680 4

http://hnc.ddnetbio.com/
http://hnc.ddnetbio.com/


genes being activated as the expression level of many of the
tissue-resident (ITGAE), dysfunctional (CTLA4) and granzymes
(GZMs) genes were already upregulated (Fig. 4b). The Genes-
witches algorithm was applied to Trajectory 1 (naïve-to-dysfunc-
tion) to predict key gene expression changes across pseudotime
and identify factors that could account for these (Fig. 4g)28. Our
results indicate the major nodes appear to be an early loss of

KLF2, intermediate increase in NKG7 and late increase in SOX4,
DUSP4 and RBPJ (Fig. 4g, h).

Modulating genes driving tumor-targeting cells dysfunction/
exhaustion
Based on the data above, expression of SOX4,DUSP4 and RBPJ appears
to coincide with the transition between dysfunction and exhaustion,

1

−2

−1

0

1

−4 −2 0 2
Component 1

C
om

po
ne

nt
 2

MetastaticPrimary

1

−2

−1

0

1

−4 −2 0 2
Component 1

C
om

po
ne

nt
 2

1

−2

−1

0

1

−4 −2 0 2
Component 1

C
om

po
ne

nt
 2

Pseudotime

−0.1

0.0

0.1

0.2

State
EM

T 
Sc

or
es

C
om

po
ne

nt
 2

1

−4

−2

0

2

4

6

−5 0 5
Component 1

C
om

po
ne

nt
 2

State 1 2 3 CytoTRACE

CytoTRACE

1

−4

−2

0

2

4

6

−5 0 5
Component 1

C
om

po
ne

nt
 2

Pseudotime

−3
−2
−1
0
1

−5 0 5
Dim1

D
im

2

AXL
HN279 Pri

INNATE_IMMUNE_RESPONSE

DEFENSE_RESPONSE
_TO_OTHER_ORGANISM

ADAPTIVE_IMMUNE_SYSTEM

CYTOKINE_MEDIATED
_SIGNALING_PATHWAY

DEFENSE_RESPONSE

RESPONSE_TO_CYTOKINE

ORGANELLE_INNER_MEMBRANE

GENERATION_OF_PRECURSOR
_METABOLITES_AND_ENERGY

OXIDATIVE_PHOSPHORYLATION

−2 0 2

Normalized Enrichment Score

GSEA−Biological Processes

−20

−10

0

10

20

−15 −10 −5 0 5 10
Component 1

C
om

po
ne

nt
 2

CytoTRACE

−20

−10

0

10

20

−15 −10 −5 0 5 10
Component 1

C
om

po
ne

nt
 2

SNAI2

0.0

0.4

0.8

1.2

a b

c

1

−4

−2

0

2

4

6

−5 0 5
Component 1

d

e

Dim1

−0.5

0.0

0.5

1.0

−4 −2 0 2

D
im

2

0.0

0.5

1.0

STAT2
HN251 Prif

g
h

i

7

0

2

1

8

3

1012

59

11

4

6

−10

−5

0

5

−5 0 5
UMAP_1

U
M

AP
_2

0
1
2

3
4
5

6
7
8

9
10
11

12

HN237

HN242

HN251

HN257

HN263

HN272

HN279

−10

−5

0

5

−5 0 5
UMAP_1

U
M

AP
_2

HN237 HN251
HN257HN242

HN263
HN272

HN279

−10

−5

0

5

−5 0 5
UMAP_1

U
M

AP
_2

MetastaticPrimary

HN257

1 2 3
Component 1

C
om

po
ne

nt
 2

-4

1

-2 0 2

0

-2

-1

−0.1

0.0

0.1

0.2

State

EM
T 

Sc
or

es

3 1 2

6

4

-4

-2

0

2

50-5

C
om

po
ne

nt
 2

Component 1

−0.5

0.0

0.5

1.0

−4 −2 0 2
Dim1

D
im

2

0.00
0.25
0.50
0.75
1.00

RXRA
HN251 Pri

−3
−2
−1

0
1

−5 0 5
Dim1

D
im

2

REL
HN279 Pri

++

+++++

++++++++++++++++ ++++ ++ ++++++++++++ ++ ++++++++ + +

++
++

+++++++ +++ ++++++ ++++++ +++++ ++++
+ +

60%

80%

100%

0 500 1000 1500

Su
rv

iv
al

 p
ro

ba
bi

lit
y

High features Low features

p-value = 0.003

Days

Regulation
down up

Pseudo−timeline

HN251 Pri

HN279 Pri

TNFa signalling via NFKB(19/200)
Epithelial cell differentiation(31/495)

Desmosome(9/26)
Response to type 1 interferon(20/68)

Epithelial mesenchymal transition(47/200)
MYC targets v1(39/200)

E2F targets(50/200)

Hemidesmosome assembly(7/12)
MYC targets v1(123/200)

Oxidative phosphorylation(119/200)
Nucleoside triphosphate metabolic process(17/228)

0.0 2.5 5.0 7.5 10.0

0 5 10 15 20 0.0
0.5
1.0
1.5

0.0
0.4
0.8
1.2
1.6

0.00

0.25

0.50

0.75

HN24
2P

HN24
2M

HN25
1P

HN25
1M

HN25
7P

HN25
7M

HN26
3P

HN27
2P

HN27
2M

HN27
9P

HN27
9M

EM
T 

Sc
or

es

HN251

MetastaticPrimary
HN279

Cluster Patient Site of origin

Differentiation
Less

More

Differentiation
Less

More

0 4 8

0 10 20

State 1 2 3

Differentiation
Less

More

Article https://doi.org/10.1038/s41467-023-37379-y

Nature Communications |         (2023) 14:1680 5



but whether these genes modulate either the genes involved in dys-
function or progression to exhaustion remains untested. We attemp-
ted to validate these findings in two separate datasets. Re-analysis of
data from Puram et al. (scRNAseq from 542 CD8+ T cells) showed that
expression levels of SOX4 and RBPJ were higher in dysfunctional CD8
cell populations, while DUSP4 expression was more generalized
(Fig. 5a and Supplementary Fig. 5a–c)12. The second scRNAseq dataset
comprised T cells obtained from cutaneous squamous-cell carcinoma
patients before and after treatment with PD1-blockade (Supplemen-
tary Fig. 5d)30. Although cSCC is a completely different entity than
mucosal HNSCC, the cSCC scRNAseq data lends support to a more
general concept of these specific genes in tumor-targeting CD8+ cells,
and the effect of immune checkpoint blockade on the expression of
these transcription factors. Here, all three genes showed higher
expression in the exhausted CD8 subpopulation in this dataset (Fig. 5b
and Supplementary Fig. 5e). However, only levels of SOX4 and DUSP4
were reduced after PD1-blockade, where there is expected reactivation
of tumor-targeting clones and reduction in the exhaustion phenotype
(Fig. 5c). Combining these results, SOX4 appears to be the most likely
gene associated during the transition from pre-dysfunction to dys-
function/exhaustion, which is supported by a number of recent
publications31,32. To testwhether SOX4 as well asDUSP4played a role in
the expression of genes involved in T-cell dysfunction or modulation
of the exhaustion phenotype itself, we performed RNAi-based knock-
down on activated PBMCs. Cells were transfected with Accell pooled
siRNA against SOX4, DUSP4 or non-targeting siRNA as controls, acti-
vated with anti-CD3/CD28 microbeads to induce the upregulation of
selected T cell exhaustion-related markers and harvested for flow
cytometry. Remarkably, SOX4 knockdown resulted in a reduction in
senescent CD57+, and dysfunctional PD1+ and CD39+ populations
(Fig. 5d and Supplementary Fig. 5f, g). Given these results, we pro-
ceeded to knockdown SOX4 using the same system, in a panel of
expanded tumor-infiltrating lymphocytes (TILs) cultures derived from
HNSCCprimary tumors from four patients. In theseTILs, siRNA against
SOX4 consistently reduced the frequency of PD1 +CD8 + cells, with no
effect on the CD57+ population (Supplementary Fig. 5h, i). This was
more evident when we focused our analyses on the putative tumor-
targeting CD8+CD39+ subpopulations33, 34, where SOX4 knockdown
resulted in a reduction in the PD1+CD39+CD8+ TILs subpopulation
(Fig. 5e and Supplementary Fig. 5j). Taken together, these data provide
functional validation for the presented approach to CD8+ T-cell tra-
jectory mapping and implicate SOX4 as a potential modulator reg-
ulating the expression of T-cell dysfunction/exhaustion markers.

Establishing clonal architecture in CD8+ T cells using single-cell
T-cell receptor sequencing
Clonal identifiers obtained by TCR analysis allows for elucidation of
CDR3 sequences as well as providing a unique dataset to infer the
lineage structure of T cells. Specifically, our current dataset can be
used to model clonal selection and amplification across the CD8 +T-
cell subpopulations and trajectories. We recovered productive TCR-
alpha and TCR-beta sequences from 1461 and 1948 cells, respectively,
and identified 1,590 unique TCR sequences (Supplementary

Data 7–13). Consensus sequence analysis using the GLIPH algorithm
also showedminimal sharing across patients (only 5 of the 126 clusters
with sharing across patients) (Supplementary Data 14). Clonal expan-
sion was seen in 17.39% of CD8+ cells, and clone size ranged from 2 to
60 cells per clone (Fig. 5f and Supplementary Fig. 5k, l). Clonal overlap
between the two different sites for each tumor (primary and lymph-
node) was demonstrated in six out of seven patients (Supplementary
Fig. 5m–u). There was a progressive increase in clonality across the
dysfunctional gradient, with evidence of single naïve or TRM-derived
clones subsequently primed and activated to give rise to multiple
dysfunctional clones that span these trajectories (Fig. 5g, h and Sup-
plementary Fig. 5m–u). We then proceeded to analyze CD8+ cells with
shared clonotypes in greater detail, specifically to identify those that
are “antigen-encountered” as defined as those specifically expressing
genes of T cell activation (GZMB,GZMA, PRF1, IFNG, TNFA,CD69 and/or
TNFRSF9) (Supplementary Fig. 5v). This data suggests the presence of
“antigen-encountered” CD8+ subpopulations with shared clonotypes
at both sites. Generally, the number of “activation genes” is higher in
the primary tumors than nodalmetastases in six out of seven patients,
reflecting higher tumorburden and an “earlier encounter” as expected.

There appeared to be patient-specific biases for one trajectory
over the other. For example, there are CD8+ T-cell clones in patient
HN272 that followed a naïve-dysfunction trajectory (Trajectory 1), with
numerical expansion of lymph-node-derived naïve clonotypes,
migrating to the primary site and captured there along a dysfunctional
gradient (pre-dysfunctional, proliferative and then late-dysfunction)
(Fig. 5g and Supplementary Fig. 5m, n, t). This supports a clonal
replacement model where circulation is one of the major sources of
tumor-targeting dysfunctional cells, which in this case is the regional
lymphatics draining nodal tissue30. In contrast, we also observe clonal
revival in patient HN263 and selected CD8+ T-cell clones in patient
HN272. In these tumors, the dysfunctional gradient appears to com-
prise tissue-resident memory (TRM) cells derived from the primary
tumor, which re-activated and amplified in numbers into putative
tumor-targeting clonotypes (Fig. 5g andSupplementaryFig. 5m,n, s, t).
This is consistent with a model of ongoing differentiation and pro-
liferation of dysfunctional T cells at the tumor site itself 35. It is likely
that both mechanisms contribute to the dysfunction gradient, some-
times even within the same patient. For example, lineage tracing of
CD8+ T cells in HN257 and HN272 demonstrates extensive trafficking
and interplay between the primary site and lymph-node: there is evi-
dence of lymph-node-derived naïve cells being activated, expanded
(detected in at least two cells) and migrated into the primary site as
expected, but also surprisingly TRM cells re-activating and expanding
in numbers, and subsequently migrating to the lymph-node (Fig. 5g, h
and Supplementary 5m, n, r, t). This scTCR data adds intriguing com-
plexity to concepts of clonal expansion and lineage structure in a
treatment naïve setting.

Pre-nodal cells and immune microenvironment
Our analyses identified a pre-nodal sub-population in primary tumors
with intrinsic properties of invasion and migration. However, metas-
tasis also requires acquisition of an immune evasion phenotype. To

Fig. 2 | scRNAseqanalysis ofmalignant epithelial cells and identificationofpre-
metastatic sub-population. a UMAP of 6115 malignant epithelial cells only, clus-
tered by Seurat clusters (left), patients (middle), and tissue origin (primary/meta-
static) (right). b Turkey boxplot showing epithelial–mesenchymal transition (EMT)
scores across patients and tissue origin (primary versus metastasis). N = 6115 cells.
c, d Monocle plots demonstrating the derivation of pre-metastatic populations in
HN251 (n = 304 cells) andHN279 (n = 1764 cells), (c, d) respectively, based on (from
left to right) tissue origin, monocle clusters, EMT scores, CytoTRACE scores to
derive trajectory. e Gene ontology pathways that are significantly altered across
pseudotime derived in (c, d). f Potentially actionable genes identified to be
increased in pre-metastatic population in primary tumors cells of HN251 (upper,

n = 228 cells) and HN279 (lower, n = 659 cells). g t-SNE plot of tumor cells in
HN257 showing a highly aggressive sub-population in the primary tumor with high
CytoTRACE scores and expression of SNAI2. N = 403 cells. h Geneset enrichment
analysis (GSEA) showing normalized enrichment scores, and (i) Kaplan-Meier plot
of TCGA data showing survival probability (%) over days in patients with high (red)
versus low (blue) scores or features based on genes expressed by the specific
subpopulation in (g). Shaded area shows 95% confidence interval of the centered
median survival time and p value as indicated based on log-rank test. Boxplots in
(b, c, d) centered at the median with hinges at 1st and 3rd quartiles and whiskers
drawn from hinges to the lowest and highest points within 1.5 interquartile range.
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test whether the pre-nodal cells identified above demonstrated spe-
cific immune-modulatory phenotypes, we subjected three tumors
(fromour study) and two tumors (from the Puram dataset) each with a
minimum RNAseq dataset to interactome analyses using Cellchat. To
do this, we divided primary tumor cells into two subpopulations (pri-
mary and pre-nodal) and analyzed the interactions of these two tumor
subpopulations with CD8+, CD4+ and T-reg lymphocytes and TAMs.
For HN251, HN272 and HN279, the analysis showed similar trends in
primary to pre-nodal malignant cells, with increasing interactions
between the pre-nodal subpopulation and T-lymphocytes, specifically

with CD8+ cells (Fig. 6a). The analyses implicated a number of path-
ways that were differentially modulated by primary versus pre-nodal
populations on T-lymphocytes (Supplementary Fig. 6a–c). In parti-
cular, the interaction betweenMidkine (MDK, secreted by tumor cells)
and a number of MDK-receptors (ITGA4, ITGA6, ITGB1, NCL, LRP1) on
CD8+ T cells appears to be a recurrent immunosuppressive pathway
seen across all three patients (Fig. 6b). Applying the same approach to
the external dataset also implicated the MDK pathway as being dif-
ferentially activated by the pre-nodal population in one (p17) out of
two tumors tested (Fig. 6b and Supplementary Fig. 6d, e).
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Recent published data suggest that MDK-driven modulation is
important for immune evasion in melanomas with activation of NFKB
signaling cascade, which in turn can promote dysfunction in CD8+
T cells and negatively affect their anti-tumor cytotoxicity36. To test this
in vitro, we treated cancer-cell suspension from tumors of three
patients (HN372, HN377, HN380) with or without MDK inhibitor
(Fig. 6c and Supplementary Fig. 6f–h). MDK inhibition reduced the
frequency of non-T cells (CD45-CD3-) in all three tumors, and
increased the percentage of CD8+ T cells in HN372, and to a lesser
extent inHN377 andHN380. The frequency of cancer-cell (panCK+), as
well as proliferating cancer cells (ki67+), was also reduced after MDK-
inhibition in HN372 and HN380 (Fig. 6c and Supplementary Fig. 6f–h).
The data suggests that in some tumors, MDK signaling suppress CD8-
mediated anti-tumor activity and blockade of the signaling reverses
this effect. Next, to investigate whether MDK-driven immune-sup-
pression dampens the effect of immune checkpoint blockade (ICB)
therapy, we developed a humanizedmousemodel engrafted with pre-
nodal cells from the tumor culture of patient HN279 and treated the
mice with PD1-blockade. We observed a slight reduction in tumor size
at about 1 week after the start of the anti-PD1 treatment, and termi-
nated the experiment one day after the final dose to examine the early
events of anti-PD1 response within tumor by single-cell RNAseq (Sup-
plementary Fig. 6i, j). As expected, the majority of HN279 cancer cells
expressedMDK (Fig. 6d and Supplementary Fig. 6j–l), together with a
number of genes associated with the pre-nodal phenotype (eg SNAI2,
AXL, STAT2) that were unaffected by ICB (Fig. 6e and Supplementary
Fig. 6m). In contrast, expressionofAURKB andTOP2A (cell cyclegenes)
in cancer cells was significantly downregulated after pembrolizumab
treatment (Fig. 6e), indicating a reduction in cancer-cell proliferation.
In turn, the suppression of cell cycle in malignant cells upon anti-PD1
treatment resulted in a reduction of epithelial (EPCAM+) cells in the
tumors, supporting the tumor size shrinkage observed on the anti-PD1
treated mice (Supplementary Fig. 6n).

Analyses of the CD8+ T-cell fraction revealed naïve, TRM, transi-
tional, proliferative anddysfunctional/exhausted subpopulations,with
an additional cytotoxic population (likely bystander) (Fig. 6f and
Supplementary Fig. 6o). CD8+ cells from mice treated with pem-
brolizumab showed reduction in naïve, dysfunctional and memory
with concomitant increase in proliferative, cytotoxic/bystander,
tissue-resident subpopulations compared to untreated mice (Fig. 6g).
These changes suggest a re-invigoration and reactivation of dysfunc-
tional and memory, respectively, into tumor-targeting cells35.
Remarkably, analyses of MDK receptor-expressing CD8 cells (ITGA4,
ITGB1, NCL) showed the opposite trend, with an increase in dysfunc-
tional and reduction in the proliferative (tumor-targeting) populations
(Fig. 6h and Supplementary Fig. 6p). These findings suggest MDK-
signaling promotes immune-suppression that abrogates re-
invigoration by PD1-blockade. Indeed, these changes were also

associated with NFKB1 activation which is significantly higher in the
dysfunctional CD8 population after pembrolizumab treatment
(Fig. 6i). Moreover, plotting the expression levels of several MDK-
receptors (ITGA4, ITGB1, NCL) with NFKB1 show a good correlation in
gene expression in CD8+ T cells where the RNA could be quantified
(Fig. 6j). Taken together, these results could implicate MDK-signaling
as a pathway through which pre-nodal cells evade CD8-mediated
immune-editing.

Discussion
Currently available algorithms analyzing single-cell data have the
ability to construct evolutionary trajectories, which are especially
powerful in studying specific events in space (eg. relationships
between different tumor sites, primary vs lymph-nodemetastasis) and
time (eg. pre- and post- treatment analysis)12, 30. Here, we applied these
to explore early lymph-nodemetastasis across tumor and immune sub-
compartments within the tumor. Analysis of tumor cells shows that
nodal metastasis is an early event, where canonical epithelial-to-
mesenchymal transition is less apparent than postulated. Our findings
support previous studies that suggest EMT is not an all-or-none phe-
nomenon, but instead occurs at graded levels37, 38. This contrasts with
in vitro systems (including our own) where cultured tumor cells from
lymph nodes display more canonical features of EMT39. Despite the
overlap between tumor cells derived from primary and nodal sites,
trajectory mapping could define evolutionary pathways at individual
tumor levels, although this process requires a combination of trajec-
tory algorithms, scoring for aggressiveness (based on EMT and stem-
ness) and knowledge of the ground truth. Conversely, the complexity
of these analyses highlights one of the limitations of these conclusions,
which is examining a small number of tumors. An alternative hypoth-
esis is that there is no coherent pattern and lymph-node metastasis is
merely a passive drainage process that does not mark a biologically
(and thus temporally) distinct phase of disease, but instead amarker of
an aggressive primary tumor. Differentiating these requires a well-
controlled system including animal models that could capture this
evolutionary trait dynamically, and this would be an important
extension to validate ourfindings.Nevertheless,we have expanded the
results of previous studies in the identification of a pre-nodal or
metastatic population12, and importantly identified actionable drivers
that could be targeted for anti-metastatic therapy, in this case AXL and
AURK. While these have previously been identified and linked to
metastases, our data provides compelling evidence that the con-
tribution of these genes is limited to certain tumors and specific sub-
populations within those tumors. Theoretically therefore, targeting
AXL would not have the potential to prevent dissemination, but pre-
sumably reduces tumor heterogeneity by targeting the specific
clones40. The role of aurora kinases is less clear. Rather than impacting
the metastatic process, it is possible that this vulnerability reflects a

Fig. 3 | Functional analysis of actionable genes enriched in pre-metastatic
population in patient-derived cultures (PDCs). a Dimension reduction plots
based on PAGODA for PDCs derived from matched primary and metastatic lymph
nodes (nodal metastatic; M). Clusters are denoted by patient identity and site of
origin (left), and Seurat clusters (right). N = 1317 cells. b Heatmap of differentially
expressed pathways (rows) across samples and tumor origin (columns), showing
selected Hallmark and Gene Ontology (GO) gene sets. Bars on the top of the heat
map indicate the site of sample origins, clusters andpatient samples corresponding
to those of (a). c Boxplot showing the gene expression level of AXL (left, n = 353
cells) and AURKB (right, n = 318 cells) of malignant cells from primary and meta-
static PDCs for the indicated patients. Boxplots centered at themedian with hinges
at 1st and 3rd quartiles and whiskers drawn from hinges to the lowest and highest
points within 1.5 interquartile range; colors and cluster numbers of the bars cor-
respond to (a). d Representative micrographs of immunocytochemistry of AXL in
HN137 (n = 4) and AURKB in HN159 (n = 14) and HN220 (n = 12) of primary and
metastatic PDCs from at least 2 independent experiment. Scale bar indicates

100μm. e–g Representative micrographs from Boyden chamber assays of invaded
cells (purple) (top), and quantification of invaded cells (bottom) from primary
(n = 10 each; red) and metastatic (n = 10 each; blue) cell cultures treated with/
without BGB324or barasertib. At least 3 independent experiments were performed
for each culture. Data are represented as mean ± SEM. **p ≤0.01; ***p ≤0.001;
****p ≤0.0001 indicate significant difference using unpaired two-tailed t test com-
pared with untreated at corresponding site of origin, not corrected for multiple
comparison. Scale bar indicates 100 μm. Source data are provided as a Source Data
file.h Flow cytometrydot plots representing anti-AXL (left) andmouse IgG1 isotype
control (right) staining of primary and metastatic PDCs of HN137. i Gating used for
identification and isolation of AXLhi, AXLmid and AXLneg/low from HN137 primary PDC
by FACS sorting (left). Micrographs representing isolated AXL-based subpopula-
tions treated with/without BGB324 and their respective invasive potential in Boy-
den chamber assays (right) from 2 independent experiment. Scale bar indicates
2500μm.

Article https://doi.org/10.1038/s41467-023-37379-y

Nature Communications |         (2023) 14:1680 8



generalized reduction in cell cycling that occurs during EMT with a
concomitant sensitivity to all cell cycle inhibitors. We recently
demonstrated the same phenomenon during drug resistance: reduc-
tion in cell proliferation, limited AURK expression and sensitivity to
inhibitors of AURK and other cell cycle targets41. Nevertheless, the
ability to profile tumors and identify vulnerabilities in metastasis-

inducing clones is an attractive notion, with increasing interest in low-
dose, long term anti-metastatic therapy.

Alignment of CD8+ T lymphocyte populations is driven by exist-
ing knowledge on T-cell developmental states. The fact that we could
pool data across different patients increased the number of cells
available and in itself was a form of validation. The alignment was
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further supported by single-cell VDJ sequencing, which reinforced
trajectories from naïve or memory populations, towards clonally
expanded, dysfunctional and potentially tumor-targeting CD8+ sub-
populations. These supported both clonal replacement and revival
models in HNSCC, where tumor-targeting T cells could be derived
from both adjacent lymph nodes and tissue-resident CD8+ T cells.
Remarkably though, our data also suggests that these putative tumor-
targeting T cells were able to traffic in a bidirectionalmanner, although
one of the limitations in this study is that these data neither precludes
passive drainage of T cells across lymphatic channels nor collective
migration of T cells along with tumor cells from one site to the other.
Nevertheless, this trajectory could be used to identify modulators of
T-cell dysfunction by studying gene expression changes along pseu-
dotime, and was used to identify SOX4 as driver of dysfunction in CD8
cells. Several recent studies have implicated SOX4 in T-cell exhaustion
in the context of pan-cancer single-cell analyses or associated with
CAR-T cell dysfunction and exhaustion, lending support to our
data31, 32. However it remains unclear as to whether SOX4 merely
functions as transcription factor for a number of dysfunctional genes
or actually regulates the exhaustion program, and this will require
further investigation.

Interactome analyses performed to identify signaling networks
within CD8+ T cells during early metastasis converged onto the MDK
pathway. Remarkably, in a humanized mouse model, MDK signaling
was associatedwith a reduced ability to reinvigorate exhausted T cells.
This is supported by a recent publication which identified that the
MDK pathway could abrogate immune reactivation by ICB therapy in
melanoma, and this could be reversed using MDK-specific inhibitors36.
In a similar context, MDK-inhibition could be explored in the preven-
tion and treatment of tumor metastasis in HNSCC and add synergy to
PD1-blockade which is the current standard of care in
metastatic HNSCC.

Recent studies have further defined exhausted/dysfunctional CD8
T cells into four subsets, involving transcription factor TCF1/7 and
surface receptor LY108 (SLAMF6 in human). In a stepwise develop-
ment, tissue-resident LY108+CD69+(Texprog1) can interconvert with
circulatory LY108+CD69− (Texprog2), while the latter can undergo a
reversible proliferation-driven transition to circulatory LY108-CD69-
effector-like (Texint), and eventually Texint can undergo an irreversible
transition to tissue-resident LY108−CD69+(Texterm) CD8 T cells42, 43.
These exhausted subsets scatter across different anatomical sites,
similar to the TCF7+CD8 T cells in our data although these pre-
dominate in the lymph-node, suggesting a large pool of TCF1/7+ pro-
genitors. This reported interconvertibility of resident and circulating
T cells likely accounts for the intertumoral clonotype sharing detected
across naïve-like, memory, pre-dysfunctional and dysfunctional states,
and even supports the potential for bidirectional movement of T cells
between the primary tumor subsite and regional lymph-node (Fig. 5f).
This supports a model of bifurcation among these phenotypes30, 35, in
which levels of inflammation and/or suppression may differ across
anatomical locations within tumor, contributing to CD8 T cell fate
decision. Nevertheless, T cell dysfunction is associatedwith the change
of functionality rather than inactivity, as dysfunctional TILs still retain

cytotoxic ability, and their anti-tumor reactivity can be re-invigorated
under appropriate conditions35, 44–48.

There were a number of deficiencies in our study, not least of
which the challenge to collect, process and analyze a larger cohort of
paired tissue. This can be overcome by validation in external datasets,
although we acknowledge that there are limited number of HNSCC
tumor datasets that have been published to date. We also focused the
analyses in this study to epithelial and T cells, while our data identified
a range of different cell types in the primary tumor and lymph-node
sites.One important cell type identifiedherewas the cancer-associated
fibroblasts (CAFs). These cells are considered to promote an immu-
nosuppressive tumormicroenvironment (TME) by regulating function
and recruitment of immune cells, and transition to metastatic
disease49, 50. CAFs can negatively influence TME through production of
chemokines and cytokines to drive angiogenesis and cancer growth
(eg. VEGF, TGFβ)51–53, suppress CD8 T cell anti-tumor responses
directly (eg. IL6, CXCL12, PDL2) and/or the recruitment of suppressive
immune cells into the proximity50, 54–56. CAFs also contribute to the
dysregulation of metabolic exchange between cells57, as well as
mechanical remodeling of extracellular matrix to facilitate tumor-cell
migration and invasion58, 59. Although single-cell RNAseq can identify
and study the transcriptomeof CAFs, it lacks spatial resolution to show
in situCAFs interplaywith other cell types (eg cancer cells and immune
cells) which can be useful for the discovery of reliable biomarkers for
therapeutic targets and risk-stratification of patients for treatment and
prognosis.

In conclusion, we applied single-cell genomics, and specifically
focused on trajectory and interactome analyses to uncover pathways
and mechanisms that mediate early nodal metastasis in HNSCC. The
data presented here shows that early metastasis is a much more
nuanced process than previously presumed. Collectively these indi-
cate the discovery potential of single-cell studies and existing com-
putational tools, when applied to specific clinical contexts and
questions. Future studies will focus on more specific tumor sub-
populations including CD8+ cells and the impact of treatment on
tumor recurrence and metastasis.

Methods
Ethics approval
This research complies with all relevant ethical regulations. The study
of patient tumor samples was approved by SingHealth Centralized
Institutional Review Board (CIRB: 2014/2093, 2018/2512 and 2016/
2757) and each patient’s written consent. Human cord blood samples
were collected at the KKWomen’s and Children’s Hospital, Singapore,
and were performed in compliance with Institutional Review Board
(CIRB Ref: 2013/778/D and 2019/2443/D) and each patient’s parent(s)
written consent for donation of cord blood for the generation of
humanized mouse models. Umbilical cord blood (UCB) samples were
collected from uncomplicated pregnancies at term and patients were
recruited from planned Cesarean deliveries without any prejudice. All
animal experiments were approved by the Institutional Animal Care
and Use Committee of the Biological resource center (BRC), A*STAR,
Singapore (IACUC numbers 161192, 191496).

Fig. 4 | scRNAseq analysis of tumor-infiltrating T cells and establishing a tra-
jectory for tumor-targeting CD8+ lymphocytes. a UMAP of tumor-infiltrating
T cells from primary and metastatic tumors with clusters denoted by colors and
labeled with inferred cell identities. N = 10,168 cells. b Heatmap of differentially
expressed genes (rows) between cells classified into inferred T-cell subsets. Bars on
the top of the heatmap indicate the site of origin and cell type corresponding to
those of (a) with selected genes indicated. c UMAP of all 3387 CD8 T cells from
primary and metastatic tumors. Clusters are denoted by colors and labeled with
inferred cell identities based on (d) expression of selected genes used for CD8
T-cell subset annotation for. e Slingshot analysis of CD8 T cells showing two
potential trajectories giving rise to tumor-targeting CD8+ cells: Trajectory 1 (top,

n = 2904 cells)—from naïve to dysfunctional and Trajectory 2 (bottom, n = 2863
cells)- memory to dysfunctional. f Graphs showing the estimate scores of curated
genes related to naïve-like (IL7R, TXNIP, SELL, CCR7, TCF7), proliferative (MKI67,
HMGB2, TYMS), dysfunctional (GZMB, GNYL, CTLA4, LAYN, LAG3, TIGIT) popula-
tions, and expression of CXCL13 during the development of CD8 T-cell along the
naïve-proliferation-dysfunction axis in Trajectory 1. N = 2904 cells. g Geneswitches
output showing ordering of the top switching genes along the naïve to dysfunc-
tional (Trajectory 1) CD8 T-cell axis using. Key genes are highlighted with enlarged
font size. h UMAP projections of expression levels for genes highlighted in (g).
N = 2904 cells.
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Patient sample collection
For tumors, all patients were confirmed histologically to be
HNSCC and suitable for surgical resection (with no prior cancer
treatment). Patients included males and females, aged 21–85, as
the information on sex and gender is not relevant in our study.
Only primary lesion larger than a T2, with sufficient tissue for

study without compromising pathological exam were included.
Details of clinical and pathologic features are provided as Sup-
plementary Data 1 and 2. Fresh tumors were collected from the
primary site and metastatic draining lymph-node, and these
arrived in the laboratory within 30min upon resection in the
operating theater.

n = 1 n = 2 n > 2
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UCB were collected into EDTA tubes in a sterile field at birth.
Sample was kept on ice, transported to the laboratory and processed
within 2 h. CD34+ hematopoietic stem cells (HSC) were enriched using
the CD34 MicroBead Kit UltraPure (Miltenyi Biotech, Bergisch Glad-
bach, Germany), and each enriched sample was passed through a
second column, according to the manufacturer protocol. The average
purity of the enriched CD34+ HSC was 95% as examined by flow
cytometry. The enriched CD34+ HSC was immediately cryopreserved
using serum-free cell freezing medium Bambanker (GC Lymphotec,
Japan) in liquid nitrogen for storage and thawed just before use.

Tumor sample dissociation
Tumorswereminced, placed into CTubes and digested using a human
tumor dissociation kit and gentleMACS™ Octo system (all from Mil-
tenyi Biotech, Bergisch Gladbach, Germany) as described in manu-
facturer’s protocol. After digestion, single-cell suspensions were
passed through 70 µm cell strainers (Sigma-Aldrich, St. Louis, MO),
washed with sterile PBS and pelleted by centrifugation at 300 × g × 5
min. Cells were resuspended in appropriate medium and cell count
was performed using The Countess™ Automated Cell Counter (Invi-
trogen, Carlsbad, CA) with trypan blue for dead cell exclusion.

Cell enrichment by magnetic separation
For patient tumors, up to 1 × 107 of tumor cells were magnetically
labeled with anti-CD45 microbeads (Miltenyi Biotec, Bergisch Glad-
bach, Germany) for 20min at 4 °C inMACS buffer (0.5% BSA and 2mM
EDTA in PBS). Following incubation, cells were washed once with
MACS buffer, filtered through 40 µm filter mesh (Sigma-Aldrich, St.
Louis,MO), pelleted and resuspended in 500 µL ofMACSbuffer before
loading onto the MS column andmagnetic stand for cell separation as
described in the manufacturer protocol. After the separation, cells
were washed, pelleted and resuspended in appropriate medium for
downstreamexperiments. The numbers of enrichedCD45+ andCD45−
cells were adjusted to 1:1 ratio before proceeding to droplet-based
single-cell capturing.

For humanized mouse tumors, up to 1 × 107 of tumor cells were
magnetically labeled with anti-CD8 microbeads (Miltenyi Biotec, Ber-
gischGladbach, Germany), incubated, washed and loaded onto theMS
column as described above. After the separation, the CD8+ fraction
was washed, pelleted and resuspended in appropriate medium for
downstream experiments. The CD8− fraction was enriched for tumor
cells using a Tumor Cell IsolationKit, human (Miltenyi Biotec, Bergisch
Gladbach, Germany). The numbers of enriched CD8+ and tumor cells
were adjusted to 1:1 ratio before proceeding to droplet-based single-
cell capturing.

Patient-derived cell cultures
Unsorted or CD45- sorted tumor suspensions derived from digested
tumor samples (see above) were seeded onto wells of Corning

CellBIND plates (Corning, New York City, NY) during first two weeks.
All patient-derived tumor-cell cultures were passaged until a tumor
majority was observed, and well characterized previously20, 21. Cells
were maintained in complete RPMI (C/RPMI) containing 10% FBS, 1%
pen-strep, 1% antimycotic and a humidified incubator at 37 °C with 5%
CO2. Cell culture identity was authenticated by comparing the STR
profile (Indexx BioResearch), mutational and/or expression profile of
each cell line to its original tumor. All cultures were tested and con-
firmed to be free of mycoplasma using an EZ-PCR Mycoplasma
Detection Kit (Biological Industries, Kibbutz Beit Haemek, Israel) at the
time of experiments.

Xenograft tumor model in humanized mice and anti-PD1
treatment
NOG-EXL (hGM-CSF/hIL-3 NOG) female mice (n = 8), pre-engrafted
with human CD34+ hematopoietic stem cells enriched from cord
blood of two de-identified donors (KKH88/KKH92) in the KK
Women’s and Children’s Hospital, Singapore (see above), were
procured from CIEA-SIgN. As the information on sex and gender
was not relevant to our study, only female mice were available
and used for the experiment. At 16 weeks post-engraftment and
when human chimerism in blood was approximately 40% or more,
mice were injected subcutaneously at both flanks with 5 million
cells of primary tumor cultures derived from patient HN279. Eight
days after tumor inoculation, tumor growth kinetics was closely
monitored by measuring tumor size at every alternate day using
calipers, and mice were shaved for clearer visualization of tumors
when necessary. At Day 16 of tumor implantation, mice were
randomly divided into two groups of 8 mice each: Control group
and anti-PD1 treated group. Pembrolizumab (Keytruda; Merck,
Kenilworth, NJ), a monoclonal antibody against human PD1, was
administered intraperitoneally (i.p.) at 12.5 mg/kg on day 28, 30,
32 and 34 to mice in the treated group, while those in the control
group were administered with phosphate buffered saline (PBS).
Mice were monitored for signs of treatment-related toxicity twice
weekly and tumor size was not allowed to exceed 1.5 cm in dia-
meter. One day after the last antibody administration, mice were
euthanized by CO2 inhalation followed by cervical dislocation,
and tumors were harvested for dissociation and preparation for
single-cell capture and single-cell RNAseq as described in other
sections of Methods. Mice were housed in a 12 light/12 dark cycle
at approximately 18–23 °C with 40-60% humidity.

Histology
Approximately 30,000-40,000 cells were deposited onto glass slides
using Shandon Cytofunnels and a Cytospin 4 Cytocentrifuge instru-
ment (both from Thermofisher, Waltham, MA). Subsequently, these
cells were fixed in 4% paraformaldehyde and blocked with 5% normal
goat serum prior to immunostaining with primary antibodies against

Fig. 5 | Functional analysis of genes involved in CD8 dysfunction and T-cell
receptor sequencing analysis. Violin plots showing expression of SOX4, DUSP4
and RBPJ in CD8 T-cell subpopulations derived from published cohorts of scRNA-
seq meta-dataset from (a) HNSCC (n = 542 cells from 11 patients) and (b) skin
squamous-cell cancer (n = 17,561 cells from 11 patients)12, 30. P values are calculated
by one-sided unpaired Wilcoxon test. c Boxplots showing expression of SOX4,
DUSP4 and RBPJ in CD8 T-cell subpopulations from (b), grouped by pre- (n = 6986
cells) and post-pembrolizumab (n = 10,575 cells) treatment. Boxplot represents
median ± upper/lower quartile; whiskers represent 1.5 interquartile range; p values
are calculatedby two-sidedunpairedWilcoxon test, where *p ≤0.05; ****p ≤0.0001,
ns not significant. Boxplots indicate quartiles with median at middle, and the
whiskers drawn at the lowest and highest pointswithin 1.5 interquartile rangeof the
lower and upper quartiles, respectively. b, c X-axis labels: CD8_mem = CD8 mem-
ory; CD8_eff =CD8 effector; CD8_act =CD8activated;CD8_ex_act = CD8exhausted/
activated; CD8_ex = CD8 exhausted.d Bar graph showing percentage of CD8T cells

expressing CD39, CD57, LAG3 or PD1 from PBMCs that were activated and cultured
with siNT, siSOX4 or siDUSP4 for 5 days (n = 4). Black lines and error bars represent
mean ± SEM. *p ≤0.05; **p ≤0.01; ****p ≤0.0001 indicate significant difference by
paired two-tailed t-test compared with siNT of respective markers, ns not sig-
nificant. e Frequency of CD39+CD8+ TILs expressing PD1 or CD57 that were acti-
vated and cultured with siNT or siSOX4 for 5 days (n = 4). d, e Source data are
provided asa SourceDatafile. fBarplots of thepercentageof TCRclone(s)detected
once (n = 1399 cells), twice (n = 182 cells) or more than two times (n = 405 cells)
across the CD8 T-cell subpopulations of all patients with HNSCC subjected to
scRNAseq. g UMAP projection of CD8 T cells from HN272 (n= 377 cells), HN263
(n = 340 cells) and HN257 (n = 347 cells) colored by selected TCR clonotypes.
h Schematic diagram summarizing the development and trafficking of CD8 T-cell
clones between primary tumor, lymph-node and metastasis, and bloodstream of
HN272, HN263 and HN257 based on the clonotype data from (f). Diagram was
created with BioRender.com.
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AXL (clone C89E7; CST, Danvers, MA; 1:200 dilution) or AURKB (clone
RM278; Invitrogen, Carlsbad, CA; 1:200 dilution) at 4oC overnight. For
AXL staining, slides were washed and stained with Dako REAL™ EnVi-
sion™ Detection System (Dako, Santa Clara, CA). Slides were then
counterstained with hematoxylin, dehydrated and mounted with
coverslip using DPX mountant (Sigma-Aldrich, St. Louis, MO). For

AURKB staining, slides were washed with PBS and incubated with
AF488-conjugated goat anti-rabbit secondary antibody (#A11008;
Invitrogen; 1:200 dilution) at room temperature for 1 h. After washing
with PBS, the cells were then stained with DAPI for 5mins, washed and
mounted with coverslip using a DAKO mounting reagent. Immuno-
histochemistry images were take using a Nikon Eclipse 80imicroscope
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withDS-Ri2 camera (Nikon, Tokyo, Japan) at 20x opticalmagnification.
Immunofluorescence imageswereobtainedusing a Vectra 3 pathology
imaging system microscope and quantified using inForm software
(version 2.4.2; both by PerkinElmer, Inc., Waltham, MA).

Invasion assay
25,000 single cells were resuspended in serum-free RPMI with or
without 0.25 µM of bemcentinib (BGB324) or 0.25 µM of barasertib
(both fromSelleckChem,Houston, TX). Next, cells were seeded on top
of a 8 µm filter membrane within a 24-well transwell insert (Corning,
New York City, NY). C/RPMI was added to the bottom of wells of 24-
well Falcon TC Companion Plate (Corning, New York City, NY). After
72hrs, insertswere removed,washedwith PBS and theupper surfaceof
the membrane was scrubbed twice using cotton tipped swab to
remove non-invading cells. To quantify invaded cells, the exterior
bottom of each insert was fixed and stained with 25% methanol and
0.5% crystal violet solution for 5mins. After washing of the inserts with
excess distilled water and air-drying, the membranes were carefully
removed using scalpel blades and mounted onto glass slides with
coverslips. Slides were visualized and digital images recorded using a
Nikon Eclipse 80i microscope with DS-Ri2 camera (Nikon, Tokyo,
Japan) at 20x optical magnification. Cell invasion area was determined
by quantifying the area with crystal violet staining using the ImageJ
software.

In vitro tumor-infiltrating lymphocytes expansion
Tumor-infiltrating lymphocytes (TILs) were initiated in 24-well plates
(Corning, New York City, NY) with each well containing one tumor
fragment (1-8mm3) in 1ml of TIL-CM and 6000 IU/ml of recombinant
human interleukin-2 (IL-2; Proleukin, Clinigen Healthcare Ltd, Staf-
fordshire, England)44, 60. TIL-CM comprises RPMI 1640 with GlutaMAX
supplemented with 2mM HEPES, 10ug/ml gentamicin and 1%
Antibiotic-Antimycotic (all from Thermofisher, Waltham, MA) and 10%
human AB serum (Sigma-Aldrich, St. Louis, MO). After 5 days of
initiation, half the media was removed and refreshed with TIL-CM and
IL-2. Subsequently, half themediawas exchanged every 2–4days. After
14-18 days, 1 to 2million TILs were transferred to T75 flasks containing
irradiated (50Gy) allogenic PBMC feeders at a ratio 1 to 200 for the
Rapid Expansion Protocol (REP). Cells were cultured with a mixture of
TIL-CM and AIM V (50/50) media, 6000 IU/ml of IL-2 and 30ng/ml of
anti-CD3 antibody. After 5 days, half the media was exchanged with
fresh 50/50 media containing 6000 IU/ml of IL-2. Subsequently, half
the media was replaced and refreshed with AIM V supplemented with
5% AB serum and 6000 IU/ml of IL-2 every 2–4 days. After 14-18 days in
REP, these TILs (termed REP-TILs) were then used for further
experiments.

Small-interfering RNA knockdown of SOX4 and DUSP4
Peripheral blood mononuclear cells (PBMCs) from healthy donors or
REP-TILs were cultured at a density of 0.2–1 × 106 cells/ml in 24-well
plate (Corning, New York City, NY), containing TexMACSMedium and
T Cell TransAct (both from Miltenyi Biotech, Bergisch Gladbach, Ger-
many) at 1:200 dilution. A final concentration of 1 µM of Accell pooled
small-interfering RNA (siRNA) targeting human SOX4 (Gene ID 6659)
orDUSP4 (Gene ID 1846), ornon-targeting siRNA (all fromDharmacon,
Lafayette, CO) was added into respective wells. After 5 days of incu-
bation, cells were harvested, stained with fluorochrome conjugated
antibodies and analysed by flow cytometry. To access knockdown
efficiency, after 24 h of treatment with siRNAs, cells were harvested for
RNA extraction using a Qiagen RNeasy Mini kit with on-column DNA
removal (Qiagen, Valencia, CA) and reversed transcribed using a
SuperScript II Reverse Transcriptase kit (Invitrogen, Carlsbad, CA), as
described in themanufacturer protocol. Real-time PCRwas performed
using iTaq Universal SYBR Green Supermix and a CFX96 Touch Real-
Time PCR machine (both from Bio-Rad Laboratories, Hercules, CA),
according to the manufacturer protocol. Primers for SOX4-Fwd: 5′-
GGT CTC TAG TTC TTG CAC GCT C-3’; SOX4-Rev: 5′-CGG AAT CGG
CAC TAA GGA G-3’.

Midkine inhibition assay
Single-cell suspension from dissociated tumors were seeded at a
density of 0.3–0.5 × 106 cells/ml containing C/RPMI in a 24-well plate.
Small molecule 3-[2-(4-fluoro-benzyl)imidazo[2,1-b][1,3] (MDKi; Cal-
biochem, SanDiego, CA) were added intowells at a final concentration
of 100nM. After 5 days, suspension cells were first harvested, and
adherent cells were trypsinized and harvested for antibody staining
and flow cytometry analysis as per below.

Flow cytometry
For AXL surface staining, trypsinized cells were stained with fluor-
ochrome conjugated antibody recognizing AXL (#108724; R&D sys-
tems; 1:25 dilution) or with isotype IgG1 antibody (MOPC-21; BD
Biosciences, Franklin Lakes, NJ; 1:200 dilution). For intracellular
AURKB staining, trypsinized cells were fixed and permeabilized with a
Foxp3/Transcription Factor Staining Buffer Set (eBioscience, San
Diego, CA) according to themanufacturer protocol. Afterfixation, cells
were stainedwith primary antibody recognizing AURKB (clone RM278;
Invitrogen, Waltham, MA; 1:200 dilution) or rabbit IgG1 isotype anti-
body (DA1E; R&D systems, Minneapolis, MN; 1:500 dilution), and
subsequentlywith goat anti-rabbit IgG secondary antibody conjugated
to Alex Fluor 647 (#A32733; Invitrogen; 1:200 dilution). For Midkine
inhibitor assay, harvested cells (as above) were surface stained with
fluorochrome conjugated antibodies (1:50 dilution each) recognizing

Fig. 6 | Determining interactions between pre-metastatic malignant cells and
CD8+ T-lymphocytes. a Hierarchical plot from Cellchat analyses showing ligand-
receptor interactions between tumor subpopulations (primary/pre-nodal) with
T-cell subsets andTAMs. Circle sizes are proportional to number of cells in each cell
group, and edge width represents communication probability with putative ligand-
receptor pairs as indicated. b Dot plots showing significant MDK ligand-receptor
pairs contributing to signaling. Dot color and size represent the calculated com-
munication probability, and p values determined from one-sided permutation test.
c Flow cytometry of cancer cells isolated from HN372, HN377 and HN380 tumors
treated with/without MDK-inhibitors (iMDK). (Top) Percentage of live CD3−CD8−,
CD3+CD8− and CD3+CD8+ Tcells gated on CD45+ cells, (bottom left) panCK+CD3-
cancer cells gated on CD45- cells and (bottom right) ki67+ cancer cells gated on
CD45-panCK+ cells. Numbers within each plot indicate percentage. PatientID and
treatment conditions (untreated/iMDK-treated) are indicated on top or adjacent to
the plots. d Frequency of MDK+ (blue; n = 969 cells) and MDK- (orange; n = 210
cells) malignant cells in control or anti-PD1-treated mice (n = 4 mice each).
e Expression level of selected genes involved in tumor-cell proliferation from
control or anti-PD1-treated mice (n = 4 mice each, 1179 cells). f UMAP of tumor-

infiltrating CD8 T cells extracted from humanized NOG-EXL mice treated with/
without anti-PD1 (n = 4 mice each; 2342 cells) (see Supplementary Fig. 6i). Clusters
denoted by colors labeled with inferred cell identities. g Distribution of CD8 T-cell
subpopulations in control vs anti-PD1-treated mice (n = 4 each). h Delta (Δ) per-
centage of CD8 T cells expressing the specific MDK-receptors ITGA4, ITGB1 or NCL
in dysfunctional, transitional and proliferating subpopulations, comparing
untreatedversus anti-PD1-treatedmice (n = 4 each).Delta percentage is determined
by the percentage of MDK receptor+ CD8+ T cells from anti-PD1-treated mice
minus control mice (n = 4 each). i NFKB1 expression in the three
CD8 subpopulations in controls and anti-PD1-treated mice (n = 4 mice each, 760
cells). j Scatterplot showing the correlation of expression between NFKB1 with the
following MDK receptor(s): ITGA4, ITGB1 and/or NCL in dysfunctional CD8 T cells
subpopulations. Each dot represents one dysfunctional CD8 T-cell from control
(red; n = 35 cells) or anti-PD1-treated (blue; n = 58 cells) mice. R and two-sided p
valuesdeterminedusing Pearson correlation statistical analysis. *p ≤0.05; **p ≤0.01
indicate significant difference, ns not significant. d, i Data analyzed by unpaired
two-tailed t test (d, g, h, j) Source data provided as a Source Data file.
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CD45 (HI30) from Biolegend, San Diego, CA; CD8 (HIT8a) from
eBioscience; CD3 (OKT3) from Biolegend or BD Biosciences. Then,
cells were fixed and permeabilized and intracellularly stained for
antibodies recognizing ki67 (B56; BD Biosciences; 1:5 dilution) and
pan-CK (AE1/AE3; eBioscience; 1:100 dilution). For siRNA knockdown
experiment, harvested cells were stained with fluorochrome con-
jugated antibodies (1:50 dilution each) recognizing CD57 (HNK-1),
LAG3 (11C3C65), CD39 (A1) and CD4 (OKT4) all from Biolegend; PD1
(J105) and CD8 (SK1) from eBioscience; and CD4 (SK3) from BD Bios-
ciences. These cells were stained for 30min on ice in the dark with 2%
BSA in PBS. Live and dead cells were distinguished using a Fixable
Viability Dye eFluor 506 (eBioscience; 1:200 dilution). For EPCAM
detection, tumors harvested from humanized mice were dissociated
into single-cell suspensions as described above, and stained with
antibodies recognizing human CD45 (HI30) and mouse CD45 (30-F11)
both from eBioscience and at 1:50 dilution each; and human EPCAM
(HEA-125; Miltenyi Biotec, Bergisch Gladbach, Germany; 1:50 dilution),
and dead cells were excluded using DAPI (#4220801; Biolegend). Cells
were acquired using a BD FACSCanto II or LSRFortressa instrument
and analysed using FlowJo v10.5.3 software (both from BD Bios-
ciences). Cell sorting was performed using a BD FACSAria III instru-
ment (BD Biosciences).

Generation of single-cell gene expression libraries by
microfluidic-based technology
Patient-derived cell lines were trypsinized into single-cell suspensions,
loaded and captured using medium-sized (10-17um) Fluidigm Inte-
grated Fluidic Circuit (IFC) and a Fluidigm C1 instrument (Fluidigm,
South San Francisco, CA), as described in themanufacturer’s protocol.
Each well in the IFC was visualized and cataloged for single-cell cap-
ture, prior to reloading into the C1 instrument for lysis, reverse tran-
scription and cDNA synthesis. The cDNA product was harvested from
the IFC, barcoded for individual cell identity, pooled and cleaned for
next generation sequencing. Libraries were sequenced by an Illumina
Hiseq 4000 (Illumina, San Diego, CA) with 151-bp single-ended or pair-
ended reads.

Generation of single-cell gene expression and TCR libraries by
droplet-based technology
The 5’ gene expression (GEX) and TCR single-cell RNA libraries
were prepared using the 10x Chromium Single-Cell V(D)J Reagent
Kits (10x Genomics, Pleasanton, CA), as described in the manu-
facturer’s protocol. Briefly, freshly dissociated patient tumor cells
were sorted into CD45+ and CD45- fractions, mixed at a 1:1 ratio,
washed and resuspended with PBS 0.04% BSA to a final con-
centration of 500-1200 cells/µl with cell viability of more than
85%. For humanized mice, dissociated tumor cells were mixed at
1:1 ratio with enriched CD8+ and tumor cells. Subsequently, cells
were loaded into the Single-Cell A Chip for gel bead-in-emulsion
(GEM) generation and barcoding, targeting for a cell recovery of
4000-7000 cells per sample. Next, reverse transcription occurred
within the GEM, and the GEM was broken, and cDNA purified
using Dynabeads MyOne SILANE (Thermofisher, Waltham, MA).
cDNA was amplified to construct a 5’ library which was used to
build the GEX and TCR libraries. For GEX library construction,
2–50 ng of amplified cDNA was fragmented, end repaired and
size-selected using SPRIselect Reagent (Beckman Coulter, Brea,
California), and sample index PCR was performed. For TCR library
construction, 2 µl of amplified cDNA was first enriched for V(D)J
sequence using a human T Cell V(D)J Enrichment Kit. Subse-
quently, 2–50 ng of the enriched transcripts was fragmented, end
repaired, sample indexed and size-selected using SPRIselect
Reagent (Beckman Coulter, Brea, California). Libraries were
sequenced using an Illumina Hiseq 4000 (Illumina, San Diego,
CA) with 151-bp pair-ended reads.

Data processing of single-cell RNA-seq libraries and clustering
The scRNA-seq reads were aligned to the GRCh38 reference genome
and quantified using cellranger count version 2.2.0 (10x Genomics,
Pleasanton, CA). Downstream analyses were performed using Seurat
version 3.1.561. For human samples, cells with (i) greater than 20%
mitochondrial RNA content, (ii) less than 200 genes detected, or (iii)
greater than 40,000 UMI and 6000 genes detected were excluded
from analysis. For NOG.EXL mouse samples, cells with (i) greater than
10% mitochondrial RNA content, (ii) less than 100 genes detected, or
(iii) greater than 7000 genes detected were excluded from analysis.

For clustering of all cell types, Seurat alignment across patients
was applied. The Seurat objectwith all the cells wasfirst split by patient
ID, then for each patient’s object, raw UMI counts were lognormalized
and variable genes were called independently based on average
expression > 0.1 and average dispersion >1. Sets of anchors across
patient’s objects were identified using parametersCCA dims = 1:30 and
number of neighbors k.filter = 200, and followed by the integration.
Scaled z-scores for eachgenewere then calculated using the ScaleData
function and regressed against the number of UMIs per cell and
mitochondrial RNA content. Scaled data were used input into a prin-
cipal component analysis (PCA) on the basis of variable genes. Clusters
were identified using shared nearest neighbor (SNN)-based clustering
on the basis of the top83 significant principal components determined
by JackStraw function, with resolution =0.6 which is determined by
clustreeoutput. The sameprincipal componentswere used to generate
theUMAPprojections, whichwere generatedwith aminimumdistance
of0.3 and30neighbors. Differentially expressed (DE) genes for eachof
the identity clusters were generated using FindAllMarkers with
min.pct=0.25 and logfc.threshold =0.25. Cell types were annotated
using the resulted DE genes together with the expression of known
marker genes.

Formalignant-cell clustering, we isolated subsets of cells from the
complete dataset that were identified as malignant cells based on
broad clustering. Cells were then reclustered using Seurat without
patient alignment, since tumor cells tend to be patient specific. Raw
UMI counts were normalized using regularized negative binomial
regression via function SCTransform, where cellular sequencing depth
is utilized as a covariate in a generalized linear model. The number of
UMIs per cell and mitochondrial RNA content were regressed out in a
second non-regularized linear regression. Malignant-cell clusters were
identified using SNN-based clustering based on the first 15 principal
components with resolution =0.5. To assign the
epithelial–mesenchymal transition score, we used theAddModuleScore
function based on genes annotated with the GSEA MSigDB geneset
“HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION”.

For T-cell clustering, we first isolated subsets of cells from the
complete dataset that were identified as T cells based on broad clus-
tering. We removed specific immunoglobulin genes, mitochondrial
genes, genes linked with poorly supported transcriptional models
(annotated with the prefix “RP-”) and ribosomal proteins related genes
(annotated with the prefix “RPL-” and “RPS-”). Ribosomal RNAs were
removed to allow accurate and efficient downstream analyses. Cells
were then reclustered using Seurat alignment across patients similar as
the previous analysis. Sets of anchors across patient’s objects were
identified using parameters CCA dims = 1:30 and number of neighbors
k.filter = 70. T cell clusters were identified using SNN-based clustering
based on the first 30 principal components with resolution =0.8. For
UMAP visualization, we used the same principal components, a mini-
mum distance of 0.05 and 30 neighbors. DE genes for each of the
identity clusters were generated using FindAllMarkers with min.pct =
0.2 and logfc.threshold =0.2. Based on the resulted DE genes and the
expression of known marker genes, some clusters identified as B-cells
were excluded from the downstream analysis.

For CD8+ T-cell clustering, CD8+ T cells were first extracted from
the T-cell clustering based on the following two criteria: (1) in Pre-
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dysfunctional, Dysfunctional and Proliferative clusters, and with zero
CD4 expression, (2) in Naïve-like, Memory and Transitional clusters,
with zeroCD4 andpositive CD8 (either CD8AorCD8B) expression.We
assigned G1, G2/M and S cell cycle phases to CD8+ T cells using the
CellCycleScoring function. In order to remove such cell cycle-driven
artefacts, cellswere reclustered using Seurat alignment acrosspatients
and cell cycle phases. Some cell groups, such as G2/M cells of patient
HN237, with less than 50 cells were removed before alignment. Sets of
anchors across cell groups were identified using parameters CCA
dims = 1:20 and number of neighbors k.filter = 50, and followed by the
integration. Clusters were identified using SNN-based clustering based
on the first 60 principal components with resolution =0.8. For UMAP
visualization, we used the same principal components, a minimum
distance of 0.05 and 30 neighbors.

Data processing of single-cell TCR-seq libraries
TCR reads were mapped to vdj_GRCh38_alts_ensembl-3.1.0-3.1.0
reference genome and quantified using cellranger count version 3.1.0
(10x Genomics, Pleasanton, CA). In total, 60% of annotated CD8+
T cells were assigned a TCR and only 3.2% of cells not annotated as
T cells were assigned a TCR. Overall, productive TCR-alpha and TCR-
beta sequences were recovered from 1461 and 1948 CD8+ T cells. 3.3%
of CD8+ T cells with TCR reads were assigned only TRA sequences and
27.5% of T cells with TCR reads were assigned only TRB sequences.
1,590 unique TCR sequences, and clonotype sizes ranged from 1 cell to
60 cells were identified. Clonotypes were defined either as expanded
(i.e., detected in at least two cells) or unique (i.e., detected in no more
than one cell).

Inferring copy number alterations from scRNA-Seq data
InferCNV (v1.2.2) (https://github.com/broadinstitute/inferCNV) was
used to identify somatic large-scale chromosomal copy number
alterations using single-cell gene expression data. InferCNV was
applied individually to each patient with immune cells, fibroblasts and
endothelial cells as the reference “normal” group. Gains or deletions of
large segments of chromosomes were observed in the epithelial cell
population of each patient.

Comparison of cellular components by tumor site
TCGA RNA-seq and clinical annotation data was downloaded from the
GDCData Portal [https://portal.gdc.cancer.gov/]. The RNA-seq profiles
were deconvolved using xCell [https://portal.gdc.cancer.gov/] to esti-
mate immune and stromal cell components. Tumor site data was
extracted from clinical annotation and sites with fewer than 10 tumors
were removed from analysis. Associations between cell component
and site were assessed by one-way ANOVA tests.

Labeling of tumor cells using InferCNV and CopyKAT
information
CopyKAT v1.0.8 was used to infer copy number profiles and assign
withorwithout copynumber alterations (CNAs) labels to each cell. Pre-
processed single-cell RNA-seq counts were given as input with default
parameters. Some cell profiles failed to meet the CopyKAT’s internal
quality thresholds and were filtered out. CopyKAT predictions are also
conservative, as some epithelials it predicted to be normal had CNAs
characteristic of HNSCC.

Identification of pre-metastatic subpopulation features in pri-
mary tumors
For the trajectory analysis in Fig. 2C, branches and states were detec-
ted using the monocle v2.16.0R package. Genes that define the trajec-
tory were selected using the differentialGeneTest function and with
q-values <0.05. Dimensional reduction was performed using the
DDRTree method and states were identified using the orderCells func-
tion. EMT score of each cell calculated previously was plotted as

boxplot with group of states. CytoTRACE v0.3.2R package was applied
to predict the differentiation score and plotted on the monocle tra-
jectories. We hypothesized that de-differentiation co-occurs with the
metastatic phenotype. Hence, the monocle state with low EMT score
and more differentiated score inferred by CytoTRACE was selected as
the root. This state was then indicated in the monocle function
orderCells to generate apseudo-time. Basedon the derivedCytoTRACE
differential score, primary cells of each patient were divided into two
groupswith high score (top 25% less differentiated) and low score. The
cell group of high score were considered as pre-metastatic sub-
population in the primary tumor.

In order to determine the significant genes that regulate the tra-
jectory from primary to pre-metastatic cells, GeneSwitches v0.1.0R
package was applied28. GeneSwitches is a statistical framework based
on logistic regression to find the set of genes that switch during the
transition. Cells from the primary tumor site were first extracted from
the specific trajectories. Then the corresponding single-cell log-trans-
formed gene expression and monocle pseudo-time were input into
GeneSwitches. Function binarize_exp with fixed cutoff 0.2 was used to
binarize the gene expression into on or off states. For each gene,
find_switch_logistic_fastglm function calculated a switching time and
associated confident level. Top 70 genes of high confident levels,
including surface proteins and transcription factors, were plotted
using function plot_timeline_ggplot to visualize the switching orders
and quality (Supplementary Fig. 2A, B). For gene ontologies analysis,
genes of confident level above 0.01 were input into function find_s-
witch_pathway with default parameters.

Identification of aggressive sub-clone in HN257 primary sample
and mapping to TCGA
Cells from the primary site of patient HN257 were extracted and
applied to CytoTRACE as described above. Based on the derived dif-
ferential score, cells were divided into two groups with high score (top
30% less differentiated) and low score. The cell group with high score
was considered as an aggressive subpopulation in the primary tumor.
DE genes between these two groups were determined using Seurat
function FindMarkerswith default parameters.We identified a panel of
132 genes that were over- and 45 genes that were under-expressed in
the aggressive subpopulationwith adjustedp value <0.05 and absolute
fold change (nature log) > 0.3. Geneset enrichment analysis was then
conducted on this panel of genes using GSEA 4.1.0 app package
downloaded from GSEA website (http://www.gsea-msigdb.org/gsea/
index.jsp).

To apply this panel of genes to TCGA, we collected the HNSCC
transcriptome profiling gene expression files with FPKM values and
related clinical parameters from TCGA portal (https://cancergenome.
nih.gov).We focusedondata fromprimary tumors and 5-years survival
information which resulted in a total of 477 patients. The panel of 132
upregulated feature genes were extracted from the gene expression
matrix of TCGA samples. Then, based on the mean threshold of these
feature genes, 477 TCGA samples were divided into two sub-classes
(high features class and low features class). For survival analysis,weuse
R package survival to generate the Kaplan-Meier curves for these two
classes of patients, showing that tumors that were similar to the
aggressive HN257 sub-clone (high features class) had significantly
poorer outcomes.

Data processing of microfluidic-based single-cell RNA-seq
libraries and clustering
The raw reads in FASTQ files were aligned to the human genome (hg19
assembly) using STAR v2.6.0, followed by quantification of gene
expression usingRSEMv1.3.0 to generate TPMvalues.Cells with (i) less
than 100,000 raw counts, (ii) less than 10% unique exonic mapping
rate, or (iii) less than 1000 expressed genes (TPM> 1) were excluded
from analysis.
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For gene ontologies analysis and clustering, we applied pathway
and geneset overdispersion analysis (PAGODA) using scde v1.99.2R
package. The algorithm allows identification of the most over-
dispersed gene sets among the input ones including MSigDB
hallmark62 and C5 gene ontology geneset collections. PAGODA calcu-
lated weighted first and second principal component magnitudes for
each geneset (or aspect) and evaluate the statistical significance of the
observed overdispersion compared to the background expectation.
For clustering, cells were grouped based on a weighted correlation of
genes that drive the significant aspects. The same correlation from the
clustering were used to visualize cells in two dimensions using t-SNE
plots. In order to reduce redundancy, gene sets that are driven by the
same sets of genes or showing similar expression patterns were inte-
grated into aspects using a distance threshold of 0.5. Top significant
merged aspects were then plotted in heatmap.

We observed that primary cells of patient HN137 were sepa-
rated into two clusters, and one of them shared the similar
expression pattern of aspects with metastatic cells (Fig. 3b). In
addition, we also observed that a small primary subpopulation
clustered together with metastatic cells for patient HN159 and
HN220. Hence, we applied nonparametric differential expression
for single-cells (NODES, https://www.biorxiv.org/content/biorxiv/
early/2016/04/22/049734.full.pdf) to identify the gene features
for the pre-metastatic subpopulation in these patients.

Trajectory analysis of CD8+ T cells
We performed trajectory analyses of the CD8+ T cells using Slingshot
v1.4.0R package. Naïve-like and memory population were selected as
two starting points to infer the trajectories. We applied GeneSwitches
to the trajectory from naïve-like to dysfunctional cluster (trajectory 1)
as described above.

The naïve-like score was generated using the AddModuleScore
function based on the naïve marker IL7R and its top 30 co-expressed
genes (highest pearson correlation). Similarly, the dysfunction score
was based on the dysfunctional marker TIGIT and its top 30 co-
expressed genes. Lastly, the proliferation score was determined by the
average of S and G2M score calculated previously.

Validation using published scRNAseq dataset
Validation of AXL and AURK expression. We extracted cells that
were annotated as cancer cells for each patient in Puram et al.12.
Five patients were obtained cells from both primary site and
lymph-node. Our approach to identify the pre-nodal subpopula-
tion features in primary tumors were applied to these five
patients. Due to the limitation of low number of cells, we were not
able to apply GeneSwitches to identify regulatory genes along the
trajectories. However, several actionable genes identified in our
paper also appear to be implicated in this dataset: AXL (p25, p26,
P28), STAT2 (p25, p26) and AURK (p26, p28).

Validation of SOX4 expression
We extracted cells that were annotated as T cells in Puram et al.12 and
clustered using the Seurat R package. Raw counts were normalized
using regularized negative binomial regression via function
SCTransform. The number of genes per cell were regressed out in a
second non-regularized linear regression. T cell clusters were iden-
tified using SNN-based clustering based on the first 11 principal
components (except the third PC which was contributed by RP-
genes) with resolution = 0.8. In total, we obtained 7 clusters. Based
on the DE and marker genes, three clusters were annotated as CD8
T cells and the rest clusters were CD4 T cells. Since we focus on CD8
T-cell analysis, cells in three CD8 T-cell clusters were extracted and
re-applied the above clustering analysis with the following changes:
SNN-based clustering was based on the first 5 principal components
(except the third PC which was contributed by RP- genes) with

resolution = 0.5. As results, three clusters were annotated as naive-
like, transitional and dysfunctional cells. Expression of SOX4 and
RBPJ was higher in CD8 dysfunctional populations compared to
other CD8 T cells (Wilcoxon rank sum test).

Statistical analysis
Statistical analysis was performed using GraphPad Prism software
(GraphPad Software, Inc., SanDiego, CA), or otherwise indicated in the
figure legends or other Methods sections.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw human and mouse 10x scRNAseq raw data generated in this
study and the corresponding processed Seurat objects with all cells
have been deposited in the GEO under accession code GSE188737 and
GSE225170 respectively. The Fluidigm C1 scRNA-seq raw data and
processed gene expression matrix have been deposited in the GEO
under accession code GSE225331. The scRNAseq count data and ori-
ginal cell annotations for the published study of HNSCC12 and cuta-
neous squamous-cell carcinoma30 were downloaded from the GEO
under accession code GSE103322 and GSE123813. The HNSCC tran-
scriptome profiling gene expression files with FPKMvalues and related
clinical parameters were obtained from TCGA portal (https://
cancergenome.nih.gov). 10x scRNAseq data for tumor cells and
CD8+ T cells can be accessed and interrogated as an interactive web
application via the following Shiny app (http://hnc.ddnetbio.com/).
The remaining data are available within the Article, Supplementary
Information. Source data are provided with this paper.

Code availability
All code used to analyse the dataset is openly available at https://doi.
org/10.5281/zenodo.769288763. All software and algorithms used in
this study are publicly available and are listed in the Methods section.
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