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Abstract

KSHV causes primary effusion lymphoma (PEL). Here we review what is known about human 

gene essentiality in PEL-derived cell lines. We provide an updated list of PEL-specific human 

gene dependencies, based on the improved definition of core essential genes across human cancer 

types. Requirements of PEL cell lines for IRF4, BATF, CCND2, CFLAR, MCL1 and MDM2 
have been confirmed experimentally. KSHV co-opts IRF4 and BATF to drive super-enhancer 

(SE)-mediated expression of IRF4 itself, MYC, and CCND2. IRF4-dependency of SE-mediated 

gene expression are shared with Epstein-Barr Virus (EBV)-transformed lymphoblastoid cell lines 

(LCLs) and human T cell leukemia virus type 1 (HTLV-1)-transformed adult T-cell leukemia/

lymphoma (ATLL) cell lines, as well as several B cell lymphomas of non-viral etiology. LCLs and 

ATLL cell lines similarly share dependencies on CCND2 and CFLAR with PEL, but also have 

distinct gene dependencies. Genetic dependencies could be exploited for therapeutic intervention 

in PEL and other cancers.

Introduction

Primary effusion lymphoma (PEL) is a rare complication of infection by Kaposi’s Sarcoma-

associated herpesvirus (KSHV or human herpesvirus 8), accounting for 3–4% of non-

Hodgkin lymphomas (NHLs) in human immunodeficiency virus (HIV)-infected patients 

and <1% of NHLs in HIV-negative patients [1,2]. Since we can only cite the most pertinent 

references here, we also refer the reader to recent reviews of PEL and KSHV oncogene 

expression [3,4]. PEL tumor cells are infected by KSHV and lack expression of typical B 

cell markers or immunoglobulins (Igs), but their expression of plasma cell markers (IRF4, 

CD138), mRNA expression profiles, rearranged Ig loci and marks of somatic hypermutation 

indicate a relatively mature post-germinal center B cell origin. The rarity of PEL suggests 

that KSHV infection and immunodeficiency alone are insufficient for lymphomagenesis. 

Accordingly, de novo infection of primary human B cells by KSHV does not readily lead 

to immortalization. Likely cofactors for the development of PEL are co-infection by Epstein-
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Barr virus (EBV) and cellular driver mutations. Indeed, EBV co-infection is observed in 

most PEL tumors and evidence for cooperative B cell transformation by EBV and KSHV 

has been reported in vitro and in vivo [5–8]. A comprehensive understanding of cellular 

mutations in PEL based on genome or exome sequencing, similarly to other lymphomas, has 

not yet been achieved, due to the rarity of PEL. However, genomic studies support a role 

for cellular mutations in PEL lymphomagenesis [9,10]. Moreover, mutations in the tumor 

suppressors p53, PTEN, and RB, among other genes, have been observed in PEL-derived 

cell lines and/or individual PEL tumors [11–13]. PEL is currently treated by chemotherapy, 

similarly to other non-Hodgkin lymphomas. The reported median overall survival of PEL 

patients remains below 2 years [14].

KSHV gene expression is essential in PEL-derived cell lines

KSHV encodes more than 100 proteins and non-coding RNAs as part of latent (constitutive) 

or lytic (inducible) gene expression programs. Latency is a viral maintenance state, where 

gene expression is restricted to several latent genes. The KSHV lytic gene expression 

cascade is initiated by a single viral transcription factor and culminates in virus production. 

The majority of PEL tumor cells are latently infected. The latent nuclear antigen (LANA) 

is expressed in all tumor cells, where it maintains the episomal KSHV genome during 

cell division and has additional oncogenic roles, including inhibition of p53 [11,15]. Aside 

from LANA, the major latency locus encodes a dicistronic mRNA for viral homologs of 

cyclin D2 (vCYC) and FLICE inhibitory protein (vFLIP), pri-miRNA precursors for >20 

KSHV miRNAs, and mRNAs for Kaposin proteins. PEL tumors and cell lines also express 

a viral homolog of interferon regulatory factors (vIRF3) from a separate genetic locus [16]. 

EBV gene expression in EBV+ PEL follows the latency I program, with expression of the 

EBV nuclear antigen 1 (EBNA1), the EBER1/2 non-coding RNAs, and multiple miRNAs. 

EBNA1 functions to maintain the EBV genome, similarly to KSHV LANA. Roles of the 

KSHV latency genes have been inferred from loss-of-function (LOF) gene dependency 

studies in PEL cell lines and gain-of-function ectopic expression studies in in vitro and in 

in vivo models. Specifically, knockdown of LANA, the vCYC/vFLIP dicistron, or vIRF3 

impairs survival of PEL cell lines [17,18]. The role of the KSHV miRNAs in PEL is poorly 

understood, but there is evidence that some miRNAs promote PEL cell viability and/or 

proliferation [19,20], including miR-K11, a viral mimic of the B cell oncogene miR-155 

[21,22]. Ectopic expression of LANA, vFLIP, miR-K11, or the full latency locus induces 

lymphoproliferative phenotypes in mice [23–25], further supporting their critical role in 

PEL. Evidence for a dependency on EBV gene expression in EBV+ PEL cell lines comes 

from a recent study that showed that targeting EBNA1 by CRISPR/Cas9 impaired PEL cell 

survival [26].

Gene Essentiality Studies Identify Cellular Oncogene Dependencies

Since viral gene dependencies likely reflect oncogenic cellular deregulation, studying host 

gene dependencies in PEL cells represents an opportunity to identify deregulated genes 

and pathways. Pooled genetic screening approaches using targeted gene inactivation by 

CRISPR/Cas9 have dramatically improved the ease, specificity, and sensitivity of genome-

wide loss-of-function screening to query gene essentiality [27–31]. In particular, the Cancer 
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Dependency Map (DepMap) Project includes a growing collection of genome-wide loss of 

function screens and represents the most comprehensive effort to define gene essentiality 

across cancer types (https://depmap.org/portal/) [32]. Based on data from 1070 CRISPR 

screens representing 34 different tissue lineages, DepMap currently reports 1982 common 

essential (“pan-essential”) genes. This designation is made based on their inclusion in the 

top X depleted genes in 90% or more of the screened cell lines, using an empirical approach 

to determine the value of X [33]. Other genes are essential in only some cancer cell lines, 

and thus more likely to reflect the specific biology of the originating cell type or its unique 

oncogenic drivers. While CRISPR/Cas9 is by far the most established approach to LOF 

screening, LOF by RNA interference, epigenetic CRISPR interference (CRISPRi), and other 

CRISPR systems represent alternatives.

Cellular Gene Dependencies in Primary Effusion Lymphoma

To achieve a better understanding of the cellular gene dependencies in PEL, our lab has 

conducted CRISPR/Cas9 gene essentiality screens in 8 PEL cell lines, including 4 that are 

co-infected with EBV [34]. This work identified 210 PEL-specific oncogenic dependencies 

(PSODs), i.e. genes that were preferentially essential in PEL cell lines over non-PEL 

cell lines. At the time, this designation was made based on 52 screens from 15 non-PEL 

cancer cell lines. We experimentally validated dependencies on the hematopoietic lineage 

transcription factors (TFs) interferon regulatory factor 4 (IRF4) and basic leucine zipper 

ATF-like transcription factor (BATF), the G1/S cyclin D2 (CCND2), the p53 ubiquitin 

ligase murine double minute 2 (MDM2), as well as anti-apoptotic cellular FLICE-inhibitory 

protein (cFLIP, encoded by CFLAR) and MCL1 (Fig. 1) [34,35]. Several of the top 

dependencies are candidates for therapeutic targeting. Specifically, cyclin D-dependent 

kinase 4/6 (CDK4/6) inhibition by palbociclib is toxic in PEL cells [34,36]. PEL cell 

lines are also sensitive to specific inhibitors of MCL1, an anti-apoptotic protein of the 

BCL2 family [34,37]. The implications of IRF4 dependency are discussed below. Consistent 

with previous reports [38–41], PEL cell lines require MYC and genes involved in mTOR 

signaling, however, these genes are pan-essential. Importantly, pan-essentiality does not 

necessarily preclude clinical targeting, since it is difficult to distinguish addiction to 

overexpression or activation above basic levels from essential housekeeping functions based 

on CRISPR screens alone.

Since our study in 2018, the DepMap Project has greatly improved the definition of pan-

essential genes. Based on these data, 146 of the 210 previously defined PSODs are now 

designated pan-essential, while 58 still meet our criteria for PSODs (median FDR-adj. p 
≤ 0,05 cutoff in the 8 PEL screens, not pan-essential), and 6 genes have unknown status 

(see Supplementary Table 1). In addition, 18 genes that were not previously included now 

meet our criteria for PSODs. The 76 “updated PSODs” still include IRF4, BATF, CCND2, 

and CFLAR. MDM2 and MCL1 are now considered be pan-essential, however, they also 

belong to a subset of 86 pan-essential genes with highly skewed gene effect distributions in 

DepMap, i.e. a subset of cell lines display a greater dependency compared to the majority 

of cancer cell lines. Based on their validated highly significant essentiality in PEL, a more 

striking dependency of PEL cells on MCL1 and MDM2 compared to most other settings 

is therefore likely. The known association of LANA with p53 and MDM2 furthermore 
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underscores the critical importance of MDM2 in PEL cell biology. Importantly, MDM2 

can in principle be targeted by small molecule inhibitors [11,15,42]. The former PSOD 

adenylate kinase 2 (AK2) is third example of a gene that is now designated pan-essential but 

has a skewed essentiality profile. AK2 would be interesting to investigate in PEL, because 

high levels of adenylate kinase expression in plasma cell malignancies can be exploited 

for therapeutic intervention [43]. Future studies should investigate the updated PSODs for 

their roles in PEL, since these genes are particularly likely to include highly specific targets 

for therapy and to capture the unique biology of PEL. Interestingly, both the previous and 

updated PSODs include the E3 ubiquitin ligase TRIM43, which has recently been shown 

to restrict KSHV reactivation [44]. TRIM43 essentiality is detected in only few (9/1070) 

DepMap screens and could be due to a KSHV reactivation phenotype.

A comparison of non-pan-essential gene dependencies of PEL to those of other transformed 

cell types could point to commonalities or differences in how oncogenic transformation is 

achieved that inform future research. It could also help predict whether therapeutic strategies 

that are in use for other cancers could be effective in PEL. In the following sections, we will 

provide a limited comparison of gene essentiality in PEL with other cell types that all exhibit 

dependency on IRF4 as a master transcription factor.

Unique and shared dependencies in virally transformed hematologic cell 

lines

Besides KSHV, the human tumor viruses EBV and HTLV-1 cause hematologic cancers. 

EBV causes the EBV-associated subset of Burkitt’s lymphomas and lymphomas in the 

context of immunodeficiency and/or HIV-infection [45]. In contrast to KSHV, EBV 

transforms primary human B cells in vitro into lymphoblastoid cell lines (LCLs). LCLs 

express the full set of EBV latency genes (latency III), similarly to EBV-associated 

lymphomas in immunodeficient patients. LCLs exhibit dependencies on the expression 

of several EBV oncoproteins. LCLs share dependencies on IRF4, BATF, CCND2, and 

CFLAR with PEL, but also have distinct dependencies, for example for genes involved 

in the activation of PI3K signaling by LMP2A (SYK, BTK, CD19, CD81) [46]. CFLAR 
dependency of LCLs is overcome by antibody-based inhibition of TNF-α or genetic 

inactivation of the TNFα receptor (TNFRSF1A) [46]. HTLV-1 causes adult T-cell leukemia/

lymphoma (ATL, or ATLL) [47,48]. ATLL cell lines depend on the expression of HTLV-1 

HBZ protein, which is the only viral protein that is expressed in all ATLL tumors [49]. 

Gene essentiality screens in three ATLL cell lines have identified dependencies on IRF4, 

CCND2, and CFLAR that are shared with PEL and LCLs [49,50]. It is likely that LCLs, 

PEL, and ATLL also share a dependency on CDK6, although CDK6 narrowly missed our 

stringent statistical cut-off in PEL (median FDR-adj. p~0.052), and it was shown that LCLs 

and ATLL cell lines are sensitive to CDK4/6 inhibition [46,50]. ATLL cell lines additionally 

have single gene dependencies that are not shared with PEL and LCL, for example on 

BATF3 and JUNB (see below), as well as components of the JAK/STAT signaling pathway 

(STAT3 and IL10RB).
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IRF4 is a transcriptional master regulator in PEL and other IRF4-dependent 

cancers

The invariant requirement for IRF4 places PEL into a group of IRF4-dependent hematologic 

cancers that includes multiple myeloma (MM) [51], ATLL [49], the activated B cell-

like subtype of diffuse large B cell lymphoma (ABC-DLBCL) [52,53], and anaplastic 

large cell lymphoma [54]. While IRF4 overexpression can result from genetic mutations 

or translocations, recent studies suggest that IRF4 overexpression in KSHV or HTLV-1-

associated hematological cancers and LCLs results from viral oncogene expression 

[35,46,49]. IRF4 is important at several stages of B and T cell differentiation, including 

plasma cell differentiation following IRF4-induced upregulation of PRDM1 [55,56]. In 

IRF4 dependent cancer cell lines, IRF4 is involved in super-enhancer (SE)-mediated gene 

expression. SEs are extended regions of enhancer elements that drive high expression of 

genes that specify cell identity in normal cells and oncogenic programs in cancer [57]. 

In PEL cell lines IRF4 occupies most SEs and IRF4-dependency has been validated for 

the SEs that promote the expression of IRF4 itself, CCND2, and MYC [35,58,59]. In 

PEL cells, IRF4 cooperates with BATF and the viral vIRF3 on several sites, including the 

IRF4-SE in the DUSP22 locus (Fig. 1A) [35]. Viral oncoproteins also deregulate IRF4 

expression and function in LCLs and ATLL. In LCLs, IRF4 and BATF co-occupy SEs 

together with the EBV EBNA2/3A/3C/LP transcription factors, to drive overexpression of 

IRF4, MYC and other genes [46,60–63]. A subset of the EBV-SEs overlaps IRF4-occupied 

SEs in PEL. In LCLs, IRF4 and BATF additionally repress the BCL2L11 locus [46], which 

encodes pro-apoptotic Bim. The transcriptional program in LCLs differs from that in PEL 

in that LCL require NF-κB transcription factors, RBPJ and IRF2, which have only weak 

and variable (NF-κB) or undetectable (RBPJ, IRF2) requirements in PELs. In LCLs, one 

essential role of IRF2 is to repress the IRF4 effector PRDM1, since inactivation of PRDM1 

partially rescued LCLs from IRF2 dependency [46]. Inhibition of PRDM1 may at least in 

part be required to prevent EBV reactivation during plasma cell differentiation. Interestingly, 

In ATLL, HBZ cooperates with BATF3/JUNB complexes to promote IRF4 expression and 

BATF3 and IRF4 promote the SE-dependent expression of MYC and other genes [49,50]. 

In MM, IRF4 expression depends on the cellular transcription factors IKZF1/3 and IRF4 

cooperates with FLI1 on SEs [64–66]. Interestingly, MM cell lines exhibit a dependency 

on PRDM1, likely reflecting their advanced B cell differentiation stage. In sum, studies of 

IRF4-dependent lymphoid cancer cells have identified key similarities in the role of IRF4 in 

SE-mediated gene expression, but also important differences in how IRF4 overexpression is 

achieved and how downstream effects are modulated.

Targeting IRF4 dependency for therapeutic intervention

SE-dependent gene expression can be disrupted by inhibitors of BET family proteins [67], 

which recognize acetylated histones present in SEs. SEs drive important essential genes 

(e.g. IRF4, CCND2, MYC) in PEL cells and accordingly BET-inhibitors kill PEL cells 

in vitro and in vivo [35,41,59]. Similar findings have been reported for LCLs, ATLL, 

and other IRF4-dependent cancers [49,63]. In MM and DLBCL, IRF4 dependency can 

furthermore be targeted using cereblon modulators (CMs), including lenalidomide and 

Kuehnle and Gottwein Page 5

Curr Opin Virol. Author manuscript; available in PMC 2023 October 18.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



pomalidomide. CMs bind the substrate recognition pocket of cereblon (CRBN), a substrate 

adaptor of cullin 4 ring E3 ubiquitin ligase complexes (CRL4), and redirect CRCL4CRBN to 

neosubstrates, resulting in their polyubiquitination and proteasomal degradation (Fig. 2A). 

CM toxicity in MM and DLBCL can be explained due to degradation of the neosubstrates 

IKZF1/3, which are in turn required for expression of IRF4 (Fig. 2B) [64,65,68]. In 5q-

myelodysplatic syndrome, where the haploid expression of the pomalidomide-CRCL4CRBN 

neosubstrate casein kinase 1α (CK1α) creates a therapeutic window [69], the mechanism 

of CM action is independent of IRF4. It has been shown that CMs are toxic in PEL cell 

lines [40]. While an IKZF1-IRF4 axis was initially proposed to operate in PEL [40], our 

subsequent study failed to confirm dependencies of PEL cell lines on IKZF1 or IKZF3 

(Fig. 2C) [70]. Although IRF4 expression is reduced after CM treatment of PEL cell 

lines, the underlying mechanisms are unknown. CK1α is pan-essential and was validated 

as an essential gene in PEL cell lines [70]. However, although CM toxicity depends 

on CRL4CRBN [71], even the combined re-expression of CK1α and IRF4 provided only 

partial rescue from toxicity [70]. Thus, the complete set of relevant neosubstrates and 

the mechanism of reduced IRF4 expression in CM treated PEL cells remain unknown. In 

addition to its toxicity, pomalidomide also has immunomodulatory properties in PEL [72]. 

Future studies and an ongoing clinical trial that includes lenalidomide in combination with 

cytotoxic chemotherapy (ClinicalTrials.gov Identifier: NCT02911142) should establish if 

CMs represent a viable treatment strategy in PEL.

Summary and Key Questions for future studies

Recent studies have provided important insights into human gene essentiality in various 

cancers, including those driven by viral infection. In PEL, these studies have identified 

key dependencies on IRF4, BATF, CCND2, CFLAR, MDM2, and MCL1. Future work 

should seek to further link cellular and viral gene dependencies and to elucidate underlying 

molecular functions. It will also be interesting to compare mechanisms of KSHV-mediated 

transformation in PEL with that in other models of KSHV-mediated transformation, such 

as KSHV-transformed rat mesenchymal cells and endothelial cell models of KS [73,74]. 

Finally, genetic vulnerabilities should continue to be considered for development of 

therapeutic strategies.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of the roles of key cellular gene dependencies in PEL cell lines. (A) PEL cell 

lines depend on the PSODs IRF4 and BATF to drive super-enhancer-mediated expression 

of common essential MYC, and PSODs IRF4 and CCND2. vIRF3 is involved at least in 

the regulation of the IRF4-SE. SE-mediated gene expression can be disrupted using BET 

inhibitors (BETi), while IRF4 can potentially be targeted using CMs (see also Fig 2C). (B) 
CCND2 dependency most likely involves CDK6 and can be targeted using cyclin-dependent 

kinase inhibitors. (C) PEL cell lines depend on the PSOD CFLAR, potentially downstream 

of death receptor signaling, and the skewed pan-essential gene MCL1, which prevents 

apoptosis via the mitochondrial pathway. MCL1 can be targeted using specific inhibitors. 

(D) PEL cell lines depend on the p53 inhibitor MDM2. LANA is known to participate in a 

complex with MDM2 and p53 and contribute to p53 inhibition. The interaction between p53 

and MDM2 can be disrupted using Nutlins. Proteins encoded by selectively essential genes 

are in blue, those encoded by pan-essential genes are in green and essential viral proteins are 

in orange. Ub: ubiquitin.
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Fig. 2. Mechanisms of CM toxicity.
(A) CMs bind to the substrate binding pocket of the cereblon (CRBN) substrate adaptor 

of the CRL4 E3 ubiquitin ligase complex and lead to recruitment of neosubstrates, which 

undergo CRL4CRBN-mediated polyubiquitination and subsequent proteasomal degradation. 

Cullin 4A/B, DDB1, and RBX1 are other components of CRL4CRBN, which also requires 

neddylation (N8) for activity. RBX1 recruits an E2 ubiquitin ligase to the complex. (B) 
In multiple myeloma (MM) and DLBCL, the CM-induced degradation of IKZF1/3 leads 

to downregulation of IRF4 and MYC and fully accounts for CM toxicity. (C) In PEL, CM-

induced degradation of IKZF1/3 is observed, but inconsequential. CM-induced degradation 

of CK1α is toxic. IRF4 down-downregulation is observed and depends on CRL4CRBN, but 

the underlying mechanisms are indirect and unknown. Combined restoration of IRF4 and 

CK1α expression is insufficient to rescue CM toxicity, pointing to additional mechanisms of 

CM toxicity. Proteins encoded by selectively essential genes are in blue, those encoded by 

pan-essential genes are in green. Neosubstrates bear ubiquitin (Ub) chains.
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