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Abstract

New highly-multiplexed imaging technologies have enabled the study of tissues in unprecedented 

detail. These methods are increasingly being applied to understand how cancer cells and immune 

response change during tumor development, progression, and metastasis, as well as following 

treatment. Yet, existing analysis approaches focus on investigating small tissue samples on 

a per-cell basis, not taking into account the spatial proximity of cells, which indicates cell-

cell interaction and specific biological processes in the larger cancer microenvironment. We 

present Visinity, a scalable visual analytics system to analyze cell interaction patterns across 

cohorts of whole-slide multiplexed tissue images. Our approach is based on a fast regional 

neighborhood computation, leveraging unsupervised learning to quantify, compare, and group 

cells by their surrounding cellular neighborhood. These neighborhoods can be visually analyzed 

in an exploratory and confirmatory workflow. Users can explore spatial patterns present across 

tissues through a scalable image viewer and coordinated views highlighting the neighborhood 

composition and spatial arrangements of cells. To verify or refine existing hypotheses, users can 

query for specific patterns to determine their presence and statistical significance. Findings can 

be interactively annotated, ranked, and compared in the form of small multiples. In two case 

studies with biomedical experts, we demonstrate that Visinity can identify common biological 

processes within a human tonsil and uncover novel white-blood cell networks and immune-tumor 

interactions.
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1 Introduction

Tobler’s first law of geography, “Everything is related to everything else, but near things are 
more related than distant things” [86] emphasizes the importance of spatial proximity. This 
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is not limited to geographical phenomena; it is also applicable to many biological systems 

[61]. Biological tissues comprise numerous cell types that function together in multi-cellular 

units that are crucial in development, physiology, and disease. In cancer, the interactions 

between tumor cells and immune cells are of particular interest as these contacts dictate 

whether tumor growth is controlled or proceeds unrestrained [23]. Recent tissue imaging 

methods permit the identification and quantification of tumor and immune cell types within 

cancer tissue. Important functional interactions between cells can be inferred by identifying 

cells that are next to each other. In addition, higher-order arrangements of cells that may 

represent a structural or functional component of tissue can be quantified by determining 

which cells tend to neighbor each other (spatial neighborhood analysis). These ‘recurrent 

neighborhoods’ can assemble to compose more extensive spatial patterns.

Detecting such patterns poses substantial challenges; recent research found that spatial 

patterns must be investigated across large regions of tissues to yield biologically and 

statistically meaningful results [50], necessitating methods capable of spatial analysis at 

large scales.

Experts in the fields of pathology, cancer biology, and systems pharmacology have thus 

acquired whole-slide images from tissue sections using fluorescence microscopy techniques, 

such as CyCIF [48], with an overall size of up to 60k×60k pixels. This results in highly 

multiplexed tissue images, often larger than 100GB in size. Moreover, a single experiment 

can involve imaging ten or more specimens within a larger cohort. Identifying spatial 

neighborhood patterns in such data requires scalable computational methods. However, such 

techniques alone cannot fully replace the human mind; experts have expansive domain 

knowledge of cell and tissue morphology formed through years of visually investigating 

tissues. There is thus a need to facilitate visual human-in-the-loop data exploration, 

permitting these experts to guide pattern identification and verification. Yet existing visual 

approaches [77, 84, 85] for spatial neighborhood analysis, by design, only scale to single 

images representing small regions of tissue and are limited in their interactive capabilities.

We addressed these challenges as a team of visualization researchers, pathologists, and 

cell biologists via a process of goal specification, iterative design, and tool deployment 

in a biomedical research laboratory. We make the following contributions: (1) A domain-

specific human-in-the-loop workflow to visually analyze, extract, and summarize spatial 

interaction patterns within and across datasets. This workflow enables both exploratory 

and confirmatory analysis through semi-automatic pattern detection and visual querying. 

Identified patterns can be annotated with information about their biological context, 

compared, and saved for continued study. (2) A scalable and flexible computational 

pipeline to quantify cellular neighborhoods and their spatial arrangements into larger spatial 

microenvironments (patterns). This pipeline quantifies the spatial neighborhood of each 

cell as a vector of surrounding cell types in a defined query range. We group similar 

neighborhoods and verify their significance through permutation testing, allowing for the 

identification of meaningful spatial patterns within and across tissues. (3) A scalable 

visual analytics system named Visinity to interactively analyze the computed neighborhood 

patterns in and across the large whole-slide tissue image data. Visinity consists of a 

web-based multiplex image viewer with different rendering modes and superimposed 
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neighborhood encodings. Image exploration is linked to projections and parallel coordinates 

highlighting frequent neighborhoods and their composition. Small multiple arrangements of 

these views summarize findings and allow for side-by-side comparison.

We evaluate the applicability of our approach in two hands-on case studies with biomedical 

experts. We first demonstrate that our system can detect well-established spatial patterns 

of immune cells in a healthy human tonsil specimen. Second, we analyze a cohort of 

specimens from a genetically engineered mouse model of lung cancer, revealing immune 

cell interactions that are an area of cutting-edge research in oncology. We report on user 

feedback on Visinity’s functionalities and demonstrate the tool’s computational scalability.

2 Related Work

2.1 Visual Spatial Analysis of Biomedical Imaging Data

A wide variety of bioimaging data viewers (e.g., OMERO Pathviewer [35], ViV [53]), 

Napari [82], Cytomine [75], Minerva [70]) and visual analysis tools (e.g., ParaGlyder [57], 

Vitessce [19], Facetto [40], Scope2Screen [32]) are used to study multiplexed tissue images 

and derived feature data. Visualization and analysis methods for older spatially resolved 

modalities, by contrast, often operate directly on the pixel data, though not at the single-cell 

resolution [6, 7, 13, 17]. Generally, the aforementioned tools focus on visual exploration and 

cell-type identification and are not intended to analyze interactions between cell types and 

the larger spatial neighborhoods that tissue microenvironments are composed of.

A small subset of tools go beyond single-cell analysis to investigate neighborhood patterns. 

CytoMAP [85] is a computational toolbox designed to analyze spatial patterns in highly-

multiplexed imaging data. Similar to our approach, it uses radial queries to compute local 

neighborhoods and visualizes their composition and arrangements. However, the static plots 

that CytoMAP provides do not allow for interactive exploration and search. ImaCytE [84], 

HistoCat [77], and Halo [2] offer interactive spatial analysis capabilities through linked 

views. These approaches visualize cell-cell interaction as matrices, superimposed links in 

the image space (Halo), interaction networks (HistoCAT), and as aggregated glyph-based 

representations of frequent neighborhoods (ImaCytE). While the proposed visual encodings 

were evaluated as effective for exploring cell interactions, their confirmatory analysis 

capabilities are limited. Visinity, by contrast, offers various visual querying capabilities to 

search for specific interactions.

Most existing systems do not scale to the large datasets our users work with. ImaCytE 

supports computation and rendering of tens of thousands of cells, whereas whole-slide tissue 

images often contain upwards of a million cells. Visinity enables this through scalable multi-

resolution WebGL rendering, spatial indexing, and algorithms that operate at interactive 

rates. Additionally, like CytoMAP, most approaches offer isolated analysis of one tissue at a 

time, whereas Visinity enables users to analyze and compare across specimens. Somarakis et 

al. [83] support such cohort analysis of pairwise cell-cell interactions through explicit visual 

encodings (raincloud plots and heatmaps), but data sizes are limited to 105 cells per dataset 

(Visinity scales to 107 cells). Finally, to test the statistical significance of identified spatial 

patterns, HistoCAT and ImaCYtE rely on permutation testing. We extend these methods 
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with efficient parallelization, precomputation, and visualization to make them scalable, 

understandable, and interactively adjustable.

2.2 Visualization of Spatial Interaction

Our approach also draws more broadly on work visualizing spatial interactions outside of 

the biomedical domain, such as movement and communication between geographic areas. 

A straightforward approach is to display such interactions in their spatial dimensions, e.g., 

on top of a map or image. Advantages of this approach are the familiarity of reading 

maps as well as emphasizing the spatial auto-correlation in the interaction data. ArcGIS 

[1], among other geographical information systems, offers statistical methods and visual 

encodings [3, 79] to compute and display spatial dependencies, involving spatial correlation, 

clustering, and alignment of spatial objects (shape, center, orientation). Results are usually 

superimposed on the map. To show spatial interaction, flow maps [97] are a common 

practice. Varying opacity [94], spatial aggregation [68, 90], and edge bundling [68] are 

common methods to resolve clutter in these views. However, while flow maps are well 

suited for tracking interactions across large distances, cell interactions in tissue usually form 

a more planar graph with local connectedness. Glyph overlays [74] can indicate a direction 

(i.e., tensor fields) and additional features without obscuring the underlying data. In our 

data, interaction is not explicitly defined but indicated through spatial proximity. We thus 

decided not to emphasize interaction by visual edges or glyphs. Instead, we use minimalistic 

color-coding to highlight cell types in user-based selections and contours (concave-hulls) to 

emphasize the unity of detected neighborhood clusters while keeping the underlying image 

data visible. Interaction patterns have also been displayed in abstract (non-spatial) views 

where they can be visualized in aggregation, such as node-link diagrams [8] and matrices 

[97]. Other systems [25, 42], similar to Visinity, apply a combination of coordinated spatial 

and abstract views [73], offering different perspectives on the data.

Visinity also draws on visual querying to search spatial interaction patterns. PEAX [44] 

introduces visual querying for pattern search in sequential data where users query by 

example and interactively train a classifier to find similar patterns. Krueger et al. [69] 

propose a visual interface to sketch, query, display, and refine spatial interactions between 

moving objects. We adapt and task-tailor this workflow; search can be triggered by selecting 

existing patterns in the tissue image or by explicitly sketching a spatial neighborhood 

composition.

2.3 Computational Spatial Analysis Methods

Relevant spatial analysis methods can be categorized into: (A) statistical methods measuring 

spatial distribution/ correlation of single or pairwise features, (B) approaches detecting 

higher-order feature interaction such as topics and motifs from tabular data, and (C) image-

based approaches to find reoccurring spatial features.

A) Spatial (Auto-)Correlation Methods: Moran’s I [56] and Geary’s C [18] are 

commonly used methods to quantify spatial autocorrelation, which determines how a 

variable is distributed spatially. Such correlation can be computed for every data feature 

(e.g., gene/protein expression) in isolation to describe their spatial organization and has 
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been used to identify biological relationships in imaged tissue [13]. Ripley’s K function 

[72], among others, extends this by computing random, dispersed, or clustered distribution 

patterns at varying scale, for one (univariate) or between two features (bivariate).

B) Higher-order Interactions between Multiple Features: To identify higher-order 

patterns, the spatial relatedness of objects can also be modeled as a network. Ribeiro 

et al. summarize the field of sub-graph counting and motif discovery [71]. However, 

the number of cells (nodes in the graph) in combination with a variety of cell types 

(node attributes) renders current motif discovery algorithms computationally infeasible 

for interactive setups, especially when considering interaction at multiple scales. The 

complexity of most algorithms grows exponentially with motif sizes [93]. Other approaches 

compute groups (topics or clusters) based on probabilities and distances. Zhu et al. [98] 

use a Hidden-Markov random field to model spatial dependency of gene expression. 

Spatial-LDA [91] is a probabilistic topic modeling approach, which is also applied in the 

biomedical field [58]. CytoMAP [85] and stLearn [67] rely on distance-based clustering; 

they extract per-cell features from histology images, collect neighborhood information for 

each cell (represented as vectors), and cluster these vectors to reveal patterns. We formalize 

and combine these concepts into a computational neighborhood quantification pipeline. 

We improve existing methods by inverse distance weighting, adding similarity search, and 

creating a scalable implementation; neighborhood size can be changed on the fly to analyze 

spatial patterns at different scales.

C) Image-based Approaches: Other methods directly operate on the image. Common 

deep learning approaches [76] include representation learning for comparing and finding 

similar image regions [14, 95] and convolutional neural networks [21] for object 

classification and localization. However, supervised approaches are difficult in a biomedical 

context because of a lack of labeled data and their explainability. Overcoming segmentation 

by operating directly on pixel data [62, 64, 89] renders interpretation of interactions between 

captured patch-like structures more challenging. This aligns with our experts’ practice 

of using cells as elemental and meaningful biological building blocks. By building our 

approach on single-cell data derived from multiplexed images, we were able to develop a 

more scalable and quantifiable approach.

3 Whole-slide Multiplexed Tissue Imaging Data

The data created by our biomedical experts consists of multiplexed images of tissue 

generated by iterative staining with antibodies that recognize specific proteins followed by 

imaging with a high-resolution optical microscope in successive cycles. Our collaborators 

commonly use cyclic immunofluorescence (CyCIF) [49] to generate these data, though other 

imaging technologies [20, 22] are capable of producing similar image data. Individual cells 

in the image are then segmented. Based on the relative protein expression levels present 

within each cell, most cells can be assigned to a specific cell type [45, 60]. This process, 

therefore, yields the following data for a single specimen (Fig. 2): (a) a multi-channel 
tissue image, where each channel corresponds to a different ‘marker’ (often proteins are 

recognized by an antibody ), (b) a cell segmentation mask that conveys the location of each 

individual cell in the image space, and (c) single-cell data: a feature table that includes 
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position and cell type for each cell. (d) Specimens can be parts of greater ‘cohorts’ and 

are investigated in conjunction to one another. These data are sizeable; single slides range 

from 2 to 6 cm2 in size and contain up to 107 cells. The tissue image, given the number of 

channels, contains up to 109 pixels, resulting in an image file as large as 200GB. All analysis 

in this paper uses the OME standard for microscopy image data [46] and is generated with 

the MCMICRO [78] image processing pipeline.

4 Goal and Task Analysis

To understand the needs of domain experts in the field, we surveyed a group of 6 biologists 

and 3 pathologists from Harvard Medical School, Dana-Farber Cancer Institute, or Brigham 

and Women’s Hospital. From the questionnaire (see Supplemental Material) and monthly 

meetings over a period of one year, we identified and refined a set of high-level domain 

goals from which we derived specific tasks as guidelines for an effective visual analytics 

system. We thus fulfilled the translator role put forth in the design study methodology by 

Sedlmair et al. [80], requiring a comfort level with task abstraction [51] in computer science.

4.1 Goals

G1.—Experts are interested in identifying how specific cell types attract or repel each other 

(cell-cell interaction). When immune and cancer cells are frequently observed close to one 

another (in each other’s spatial neighborhood), they are likely to interact. For instance, the 

interaction of two types of immune cells (B and T-cells) is a central tenet of protective 

immunity. These interactions can occur at various scales (cells directly adjacent to each 

other or in the same large region of tissue).

G2.—With these neighborhoods as building blocks, experts seek to understand their spatial 

arrangement within the tissue image. These neighborhood patterns can be equally distributed 

throughout the image or appear in proximity, forming biologically meaningful spatial 

structures (groups). Germinal centers, which are regions within lymph nodes where B cells 

proliferate, are examples of such micro-structures.

G3.—Experts seek to validate the statistical significance of identified neighborhood patterns 

and larger spatial structures (G1, G2) within and between specimens. By understanding how 

often they appear and how properties (e.g. composition, size) vary between patterns, expers 

can determine clinical relevance and motivate further investigation.

G4.—Finally, experts want to connect patterns present in an image back to biological and 

clinical information. They hope to determine how the presence of specific patterns correlates 

to specific cancer therapies, the growth of tumors, and immune response to those tumors, 

with an overall goal of improving cancer diagnosis and treatment.

Our survey showed that the scientists are interested in performing both exploratory 

and confirmatory analysis to achieve these goals. In their highly experimental settings, 

discovering novel spatial neighborhood patterns and thereby generating new hypotheses is of 

similar importance as the ability to express and verify existing hypotheses.
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4.2 Tasks

T1: Visually explore spatial neighborhoods (G1, G2) from different perspectives. This 

includes navigation, visual identification, and selection of regions of interest in the tissue 

as a means for exploring the spatial neighborhoods present in a specimen or multiple 

specimens.

T2: Group similar cell interactions, through which experts can identify the larger 

structures formed by these cell-cell interaction patterns (G2). These grouping strategies must 

scale to the large data, even grouping the patterns present in multiple specimens at once 

while also being interactively configurable to incorporate users’ domain knowledge.

T3: Express and search for hypotheses (G3). This includes the ability to query for 

specific user-defined cell-cell interactions as well as search by example, i.e., find additional 

occurrences of the pattern present in a ROI. It also includes querying across cohorts.

T4: Compare the contents and spatial expression of patterns identified within a single 

specimen and across a cohort (G3), while taking into account the biological and clinical 

context. (G4). In this context, spatial expression refers to the presence of a pattern within a 

tissue.

T5: Rank the presence and statistical significance of pattern within a specimen, building 

on the previous task. This augments comparison and helps experts better understand these 

patterns (G1, G2) and how they differ within and across specimens (G3).

T6: Extract, annotate, and save found patterns along with biological and clinical 

information (G4), as analysis is ongoing and not limited to isolated sessions. This 

information may relate to the source of the specimen, specific treatments involved, or patient 

outcomes. This allows for continued analysis, where gained knowledge is applied to new 

specimens (G3), and insights can be shared with other experts.

5 Workflow

From the identified goals and tasks and in bi-weekly sessions with the experts, we extracted 

an iterative human-in-the-loop workflow (Fig. 3) for spatial neighborhood analysis that 

guided the design of our visual analytics system Visinity (see Sec. 7).

After importing the data, users can specify a neighborhood size (can be modified), 

depending on if they are interested in more local or global interaction patterns (Fig. 3, a). 

Neighborhoods are then quantified. Users can gain an overview of the tissue environments 

across all specimens in their cohort (T1) in the form of small multiples (Fig. 3, b). Users 

can start to explore the image (bottom-up analysis) (Fig. 3, c) and select regions of interest 

in the tissue to visualize the spatial neighborhoods present (T1). To aid exploration, they 

can interactively cluster neighborhoods in an entire tissue (T2), extracting patterns in a semi-

automated manner. Top-down analysis (Fig. 3, d, T3) to test and refine existing hypotheses 

can either be done by specifying the cell types involved in a neighborhood pattern or by 

selecting a region of interest in the tissue as an example of a spatial pattern. Both trigger a 
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search within and across tissue images for matching neighborhoods. Based on the contents, 

spatial context within the tissue, and statistical significance of results (quantified through 

permutation testing), users refine their hypotheses and can save and annotate identified 

patterns (T6). Finally, a user can (Fig. 3, e) compare these saved patterns within a dataset 

and across datasets, allowing them to test if a pattern in one tissue is present and statistically 

significant in another (T4, T5).

6 Quantifying Spatial Neighborhoods

According to our biomedical experts, a cell’s neighborhood is defined by the cells in spatial 

proximity within a defined spatial distance. Groups of cells with similar neighborhoods form 

patterns that assemble to compose more extensive spatial arrangements. To explore (T1), 
group (T2), search for (T3), compare (T4), rank (T5), and save (T6) cell neighborhoods 

and the patterns they form, we propose a neighborhood quantification pipeline, building 

on existing work in the field [84, 85]. We extend these methods with a more scalable 

implementation to interactively investigate patterns of different length-scales in whole-slide 

imaging data, with spatial distance weighting to reflect the neighborhood influence of cells, 

and with higher-order permutation testing to determine the significance of found proximity 

patterns.

Our computational pipeline (Fig. 4) works in 5 steps (1–5):

Step 1:

We build a ball tree with the coordinates of each cell in the image. This takes O(n+k) to 

perform spatial range queries, where n is the number of points and k the number of points 

returned in that range [36].

Step 2:

We create a feature vector representing each cell’s neighborhood of size 1 × c (where c 
is the number of cell types in the dataset). Each column corresponds to the fraction of 

a cell’s overall neighborhood occupied by a specific cell type. These values are linearly 

weighted such that cells closer to the center of the neighborhood radius contribute more 

to the overall neighborhood. The resulting vector is normalized. This representation builds 

on existing approaches [84, 85] and was reaffirmed by feedback from our collaborators, 

who said that it was highly interpretable and fit with the hypotheses they had regarding the 

cell-cell interactions present in a dataset (T3).

Step 3:

Repeat this process for every cell in a dataset, resulting in one vector for each cell. We 

generate a matrix representing the neighborhoods in a dataset, where each row is the 

neighborhood of a cell.

Step 4:

Cells with similar spatial neighborhoods are represented by similar neighborhood vectors. 

We run a distance-based nearest neighbor search (T3) and use a configurable threshold to 
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define similarity. To find groups of similar neighborhoods (T2), we utilize partition-based 

clustering (see Sec. 8.1 for more details). Together with our experts and based on literature 

[31], we evaluated vector comparison based on Euclidean distance to achieve the most 

satisfying results while also providing simplicity, interpretability, and scalability.

Step 5:

Inspired by similar approaches [77, 84], we use permutation testing [30] to determine the 

patterns’ statistical significance (T5) within a specimen and across a cohort. We count 

individual neighborhoods that match a given neighborhood pattern based on a user-defined 

similarity threshold (Sec. 8.2). We then randomly shuffle the assigned cell types in the data, 

recomputing neighborhood vectors (Steps 1 - 3), and calculating the number of matching 

neighborhoods for each permutation. Eq. 1 describes our P value calculation.

P = ∑(Permuted Data Matches ≥ Actual Matches)
# of Permutations (1)

7 Visualizing Spatial Neighborhoods

To realize the identified workflow (Sec. 5) and task (T1-T6) we developed Visinity — 

an open-source visual analytics system [4] for spatial neighborhood analysis. Visinity’s 

interface (Fig. 1) consists of coordinated views offering different perspectives on detected 

neighborhoods, including their composition and spatial occurrence in the tissue.

Cohort Overview.

After data import and neighborhood quantification (Sec. 6), users can start the analysis 

with an overview of all specimens in a cohort. Together with the biomedical experts, we 

chose small multiples of image thumbnails as a sufficient and compact way to comparatively 

summarize (T4) the images in a cohort and their morphology (Fig. 1, b). Users can zoom 

and pan into these thumbnails to begin exploration and select a specific dataset for thorough 

investigation (T1) in the image viewer (a). As analysis progresses, spatial neighborhood 

patterns identified in a single specimen are detected and visualized in other members of the 

cohort by highlighting their spatial presence in linked images. Specimens can also be sorted 

by the number of matching neighborhoods to the pattern currently being investigated or by 

the statistical significance of that pattern within a specimen (see Sec. 9).

Spatial Exploration of Tissue Morphology.

To support visual exploration of the spatial neighborhoods in tissue images (T1), we offer 

a scalable image viewer (Fig. 1, a), allowing navigation via zooming+panning. The viewer 

builds on our previous work Facetto [40] and Scope2Screen [32]. Through multi-channel 

rendering, pseudo-colored channels can be blended together into a single view, enabling 

users to analyze the expression level of multiple markers at once.

To mark and filter for cell neighborhoods in an ROI, users can employ an interactive lasso 

tool. Fig. 5, a shows a selected spatial neighborhood in a lymphoid nodule from a healthy 
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tonsil tissue. We decided to primarily render cell neighborhoods directly in the image space. 

This design was driven by our experts’ feedback that spatial image context is essential 

for pathologists to draw the right conclusions. We render selected cells with superimposed 

outlines so that the underlying tissue image and morphology is still visible. These outlines 

are optionally colored by cell type using a categorical color scale (Fig. 5, a). We derived this 

color scheme from ColorBrewer [28] and Colorgorical [24] to increase the contrast between 

selected cells and the black image background. In this example, the region is composed 

primarily of two immune cell types, B cells, and T cells. The encoding is effective for a few 

image channels and cell types (Fig. 6, a), but becomes increasingly difficult to comprehend 

when combining multiple pseudo-colored channels with categorical cell coloring. Thus, 

users can switch to an alternative mode that visualizes detected neighborhood patterns with 

a concave hull, emphasizing their unity while maintaining a non-occlusive view of the 

underlying image channels (Fig. 6, b).

Composition of Spatial Neighborhoods.

To provide more information about what cell types spatial neighborhoods are composed of 

(T1), we include a parallel coordinate plot (Fig. 5, b). We chose PC plots over bar charts 

and box plots to emphasize the occurrence of each cell type in a spatial neighborhood while 

also encoding the distribution and correlation between the features. Fig. 5, b shows the 

composition of a selected tonsil region (a). Here, each poly-line represents the neighborhood 

of a cell. Each individual axis is defined by the influence of a specific cell type in the 

neighborhood. Two distinct neighborhoods are represented, one containing more B cells and 

one containing more CD4 T cells. To emphasize correlations between cell types on adjacent 

axes, we employ an axis reordering strategy [9, 33]. Fig. 8, a shows a negative correlation 

between CD4 T cells and B cells. The axes can also be reordered by drag&drop, addressing 

the need of experts to investigate pairwise interactions between cell types (T3) To compare 

(T4) the current selection to the overall composition of a specimen or cohort, the PC plot 

optionally encodes the neighborhoods in the entire specimen or cohort in gray, behind the 

current selection in orange (Fig. 1, c). The opacity of lines in the plot is chosen based 

on the data size and screen dimensions, thus minimizing over-plotting and making sure 

neighborhood patterns within the overall data are visible. This view also supports interactive 

brushing, allowing users to investigate such patterns. When analyzing a specimen that is part 

of a larger cohort, the user can toggle between visualizing the specimen in isolation or the 

overall cohort.

Embedding of Neighborhood Vectors.

While a PC plot emphasizes neighborhood composition and can reveal correlation, it can 

be hard to distinguish patterns from one another due to increasing occlusion and visual 

clutter. To make neighborhood patterns more distinct, we perform dimensional reduction 

on the neighborhood vectors and visualize the reduced 2D data in a scatterplot (Fig. 5, 

c), where each point reflects a cell’s spatial neighborhood. Cells that are close to another 

share a similar neighborhood and form spatial groups. For cohort data, we create a shared 

embedding of the neighborhoods across the individual datasets allowing users to identify 

and compare similar spatial neighborhoods and discrepancies across specimens.

Warchol et al. Page 10

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2023 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Dimensional reduction is a conventional and familiar practice for our intended users. 

There is significant biological precedent for the use of t-SNE [38, 84, 85, 87] and 

UMAP [54, 85] to investigate spatial features in tissue images. With proper initialization 

and hyperparameters, both methods can preserve global structures and produce similar 

embeddings [39, 92]. While both are stochastic, UMAP has been shown to demonstrate 

improved stability, making the embedding more reproducible [54]. We thus use UMAP 

with parameters to emphasize global structure [15] (50 n_neighbors, 0.01 min_dist) to 

visualize these data, though t-SNE with a high attraction behaves similarly [11]. We found 

that UMAP produced good spatial separation in the 2D layout at various dimensionalities 

(dictated by number of cell types), allowing users to distinguish patterns from another 

and easier selection. The scalability of UMAP is another benefit, specifically when using 

RAPIDS GPU UMAP implementation [59], which is capable of embedding million-cell 

neighborhood matrices in a few minutes (see Sec. 10). However, we see incorporating other 

dimensionality reduction techniques, particularly those which emphasize scalability [37, 66], 

allow for user input [65], or are tailored to specific biological data (e.g. preservation of rare 

cell types [88]) as a promising application for Visinity (Sec. 11.4).

Users can navigate in the scatterplot (embedding view) and make selections as they would 

with the image view, which highlights the selection in the coordinated views. E.g., a user 

may notice a region of high density in the embedding (Fig. 5, c) and select it in order to 

understand the cell types that compose that visual group (Fig. 5, b) and the locations (Fig. 

5, a) of those neighborhoods within a tissue image (image viewer) or across multiple images 

(cohort view). Likewise, users can select a spatial region in the cohort view and image 

viewer and review the greater neighborhood pattern it is part of in the embedding. When 

investigating a specimen, users can toggle between the individual embedding or cohort 

embedding.

Pairwise Correlation Between Cell Types.

To address the need to explore pairwise interaction between two specific cell types (G1), 
(T1) we offer a correlation matrix visualization. We chose a matrix over a node-link diagram 

to avoid clutter when encoding relationships between every pair of cell types. Matrix 

visualizations provide a consistent and compact layout, making it easy for users to compare 

interactions in a specific pattern to those in the overall specimen and to other patterns 

(T4). Inspired by existing geographic [52] and biomedical [85] approaches, we compute 

the Pearson correlation coefficient between each pair of cell types within the computed 

neighborhood vectors to quantify these pairwise relationships. Two cell types with a strong 

positive correlation tend to be found in similar neighborhoods, whereas two cell types with 

a strong negative correlation tend to avoid each other. We use a diverging red-white-blue 

color palette to visualize these correlation values. To support comparison, we split each field 

into two triangles (Fig. 1, e), one representing the correlation of cell types in the overall 

image or cohort and one representing correlations within currently selected neighborhoods. 

Selecting a triangle in the matrix filters the other views to highlight neighborhoods with 

respective pairwise cell type correlation above a user-defined threshold. In Fig. 5, d, B cells 

have a negative correlation to all other cell types (all correlations are blue), indicating that 

the region of B cells is very homogeneous. CD4 T cells, meanwhile, have a positive (red) 

Warchol et al. Page 11

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2023 April 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



correlation with CD8 T cells, blood vessels, and regulatory T cells, indicating these different 

cell types are interacting.

8 Semi-Automated Analysis

Beyond exploration through linked views (T1), Visinity offers semi-automated methods to 

cope with the large and high-dimensional (≥ million cells per specimen) data. This allows 

users to automatically group spatial neighborhoods (T2) through interactive clustering and 

search for neighborhood patterns to test and refine hypotheses (T3) at scale.

8.1 Detecting Spatial Patterns Through Clustering

To automatically cluster the cells based on similar neighborhood vectors we chose to use 

EM (expectation-maximization) clustering for Gaussian mixture models [96]. Depending 

on the specific biomarkers, derived cell types, and cellular neighborhoods, we can only 

make assumptions about the underlying model with many latent unknown variables. The EM 

algorithm finds (local) maximum likelihood parameters of that statistical model given our 

sample data [16] and can detect clusters that vary in shape and density, compared to, e.g., 

k-means. This approach scales to cluster our datasets interactively without precomputation.

The interface enables users to either cluster the neighborhoods in a specific dataset and 

apply this clustering to the rest of the cohort, or to run the clustering on all specimens in 

a cohort and then drill down into individual specimens to explore results in more detail. 

Computed clusters are listed with other saved patterns in a list view (see Fig. 1, i), and 

users can click on them to visualize them in each of the linked views. The clustering can 

be used in an iterative manner; based on the spatial context in the image, the cluster’s 

composition, and where the cluster lies in the embedding, a user may choose the number 

of clusters they desire, allowing the detection of sub-structures that may exist within a 

given neighborhood pattern as well as the macro-structures that contain these neighborhoods 

compose. We visualize these clusters by coloring their cells by cell type and emphasize unity 

with a concave hull, as we do for regional selections. Fig. 10 shows identified clusters in the 

tonsil data, including the B cell follicles investigated earlier and the ‘Paracortex’, containing 

many different types of T cells.

8.2 Hypotheses Testing With Visual Querying

Visual Querying By Region of Interest.—For any region of interest found during 

data exploration, there might be similar regions in the specimen or throughout the cohort. 

Visinity enables users to execute such queries for any detected or manually selected 

neighborhood pattern (query-by-example), revealing similar spatial neighborhoods both 

within the image and in all images in the cohort (Fig. 1, g).

The computational process is outlined in Fig. 7: For any selected region (a), we first 

compute the mean of the neighborhood vectors in that region (b). We then compare this 

representative vector v1 with each other neighborhood vector v2 in the image using the 

Euclidean similarity score [81]: 1
1 + d v1, v2

, with distance d between vectors. Neighborhoods 

above a specified similarity threshold are then highlighted in each of the linked views 
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(Fig. 7, d). Additionally, we visualize (Sec. 9) the number of matching neighborhoods and 

statistical significance of this hypothesis as determined through permutation testing (Sec. 6).

Representing an ROI by its mean vector is an approximation of the neighborhoods in 

the region. As the region increases in size, particularly when the region contains multiple 

patterns of interest, this gets more and more inaccurate. However, when such a region 

is selected, the composition and embedding views provide context to the homogeneity 

of this selection, allowing a user to investigate potentially discrete patterns in isolation. 

Moreover, to accommodate the analysis of regions of tissue of any size, users can modify 

the neighborhood radius to fit their needs. Through iterative design with frequent feedback 

from our expert collaborators, we found this approach was effective at finding similar 

neighborhoods, as demonstrated in Sec. 11.1 and Sec. 11.2.

Visual Querying By Neighborhood Composition.—Experts indicated that they often 

were interested in investigating interactions between specific cell types (T3). To support 

expression and search for their hypotheses (Fig. 5, f), users can look for specific interactions 

by defining a custom query vector in the neighborhood composition view by clicking 

and dragging to create a polyline representing a query vector. The current neighborhood 

composition and overall composition are both optionally displayed behind the query vector, 

allowing the user to match trends reflected in these views while building a query (Fig. 

8, a). The results, which represent the interaction of the specified cells, are visualized in 

the linked views (Fig. 8). A user can perform query refinement or expansion by adjusting 

the similarity threshold; increasing this threshold yields neighborhoods that more precisely 

match the query (Fig. 8, b) while decreasing the threshold casts a wider net (Fig. 8, c). The 

same refinement can be applied to ROI-based queries.

8.3 Visual Querying Across Specimen

When a user queries a specimen for a pattern, we search across the entire cohort for 

matching neighborhoods, which are displayed in the cohort section of the comparison view 

(Fig. 1, f). We additionally display the number of results and significance of the query 

within each specimen above the spatial summary, as discussed in Sec. 9. Users sort related 

specimens within the list by significance and number of results (T5).

9 Visual Comparison and Result Summarization

While using Visinity, users can save and retrieve patterns and label them with clinical or 

biological context (T6), which are displayed in a pattern list in the interface, as reflected 

in the proposed workflow (Fig. 3, e). Once saved, experts can compare the neighborhood 

composition and spatial expression of these patterns (T4). Comparison can happen on two 

levels: between identified patterns and between specimens.

Comparison Between Neighborhood Patterns.

To summarize and compare identified neighborhood patterns, users can choose between 

spatial and compositional comparison (Fig. 1, f). Small multiples of bar charts (Fig. 10) 

represent the composition of each saved pattern, allowing users to compare the presence 
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of each cell type between patterns. We chose bar charts over the initial PC plot (Sec. 7) 

as they are a concise and simple visual encoding that allows users to easily compare the 

neighborhood composition of many patterns (T4). We also provide spatial context regarding 

the patterns in a concise manner with scatterplots (Fig. 10), which encode the position of 

each pattern in the tissue, providing a stripped-down visual summary of the tissue imaging 

data. A user can select these small multiples to view them in full detail in each of the 

linked views and, in the case of comparison across images, to search for that pattern within 

a new image. On top of each plot, a bar represents the number of cells with that given 

neighborhood above each specimen thumbnail (Fig. 10). The color of the bar encodes the 

statistical significance (see Sec. 6, step 5) on a single hue white-orange color scale.

Comparison Between Specimens.

It is also of interest to understand where and how frequently a specific neighborhood pattern 

appears in the different specimens (T4). After a pattern is selected from the pattern list (Fig. 

1, i), a bar shows the number of matching neighborhoods above each specimen thumbnail 

of the Cohort View (Fig. 10). Again, we encode the number of cells contained in the pattern 

with its computed significance as a bar above the respective plot.

10 Scalable Implementation

Throughout the design process, we emphasized scalability, leveraging methods and 

interfaces that support simultaneous analysis of gigapixel images containing more than a 

million cells. We feature a JavaScript client / Python server architecture with web-based 

frontend visualization and efficient backend computation. We built on our previous work 

(Scope2Screen [32], Minerva [29, 70]), storing images in the Zarr [55] format and rendering 

them using WebGL. The embedding view, linked image thumbnails, and spatial comparison 

views use the regl-scatterplot [43] library, which allows for panning, zooming, and selection 

in datasets containing as many as 20 million points. We combined efficient methods with 

strategic pre-computation to quantify and analyze spatial neighborhoods. Neighboring cells 

are queried using scikit-learn’s [63] ball-tree index structure. The neighborhood vector 

computation is compiled with Numba [41], and thus translated into efficient machine-code. 

When the neighborhood radius changes, we recompute all neighborhoods and save them as 

Zarr arrays. To evaluate runtime performance of this approach (Fig. 9) we generated random 

test data ranging in size from 105 cells to 107 cells. These synthetic data maintain the same 

cell density as the Tonsil dataset investigated in Case Study 1. We randomly give each cell 

one of the 13 cell types assigned in the same tonsil dataset, maintaining the same incidence 

of each cell type as was present in the tonsil. The greatest computational bottleneck is 

neighborhood quantification at increasingly large neighborhood sizes, which is primarily 

a result of the time needed to identify neighboring cells. We found the ball tree used to 

search neighbors outperformed various other similarity search implementations [26,34] on 

2D data. When computing neighborhoods, we also randomly reassign cell types to create 

new permuted versions of this neighborhood matrix, which is similarly compiled and saved 

as a compressed Zarr array. Similarity search across the neighborhood vectors and permuted 

neighborhood vectors is conducted in parallel. We offer two EM clustering implementations, 

one using scikit-learn [63] which is fit on a 10% random sub-sample of the data and a 
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hardware-accelerated approach [10] fit with all the data. Sub-sampling worked well with 

data and quantified cell types used by our collaborators. However, when small quantities of 

rare cell types are identified, these cells may be lost. SCHNEL [5], among other methods 

offer clustering strategies that specifically preserve rare cell types.

As demonstrated in Fig. 9, our permutation testing, clustering, and search implementations 

scale linearly as the number of cells increases. Visinity’s source code and executables are 

available on GitHub [4].

11 Case Study Evaluation

We present two case studies that demonstrate the utility of our system, each with a 

domain expert. These experts were involved in the goal and task analysis and provided 

incremental feedback during the system development. In each 90-minute in-person session, 

the participants, who had no hands-on experience with Visinity, were given a brief walk-

through and then steered the system themselves. While analyzing the tissues, the experts 

were instructed to think-aloud the biological context and motivation for their analysis and to 

provide usability feedback for the system. After completing the session, each expert filled 

out a survey quantifying the usefulness and intuitiveness of Visinity’s features.

11.1 Case Study 1: Human Tonsil

Tonsils, which are lymphoid organs at the back of the throat, are a part of the immune 

system and help defend against foreign organisms. They have been extensively studied as 

they are dense tissues with distinct morphology and contain many immune structures and 

interactions. In this case study, a senior anatomic pathologist (P1) at Harvard and Brigham 

and Woman’s Hospital, with a focus on precision medicine in cancer biology, investigated a 

single tissue specimen of a normal human tonsil. We demonstrate that Visinity can be used 

to identify such known spatial arrangements of immune cells.

Data: The tonsil was scanned to generate a 17,231 × 12,312 micron whole-slide image 

of 1.3 million cells. The imaging data are 62 GB and contain 45 channels, each 26,482 × 

19,065 pixels. Cells in the specimen were assigned by a computational biologist to one of 13 

different types based on patterns of protein expression.

Analysis: We began the analysis by turning on the DNA channel in the image viewer, 

outlining the nuclei of all cells in the specimen in the tissue image. Zooming and 

panning in the image revealed the expected tonsil morphology and architecture. As an 

initial exploratory step, we clustered the spatial neighborhoods in the tonsil into ten 

groups. P1 immediately noticed three clusters occupying adjacent regions in the image that 

corresponded to known biological structures and interactions. One cluster formed distinct 

oval-shaped groups, which P1 identified as representing germinal centers which are areas 

of B cells, a type of white blood cell that proliferates before migrating out of the tonsil to 

secrete antibodies (Fig. 10, a). Another cluster outside of the germinal centers contained 

numerous T cells of various types (helper, cytotoxic, and regulatory) and specialized blood 

vessels that shuttle B and T cells in and out of the tonsil. P1 identified this as the T-cell zone 

of the tonsil (Fig. 10, b). Between these clusters was a band of Helper T cells binding to B 
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cells. Here, Helper T cells facilitate in the development of B cells into antibody-secreting 

plasma cells or memory B cells, which remember information about specific antigens so the 

body can defend against them in the future (Fig. 10, e).

P1 then investigated the distribution of macrophages in the tonsil, which are cells that engulf 

and consume other cells and attract immune cells. In this tissue, two types of macrophages 

were identified based on the proteins they express, CD68 and CD163. We selected each type 

of macrophage in the cell-type legend and found that these neighborhoods occupied two 

distinct regions of high density in the embedding. We saved and labeled both patterns. In 

the spatial comparison view, the pathologist noted that the CD68 macrophage neighborhoods 

were located in the interior of the tonsil, near and within the B cell follicles, whereas CD163 

macrophages were closer to the surface of the tonsil (Fig. 10, c,d). The comparison bar 

charts demonstrated that while both macrophage neighborhoods contained roughly the same 

fraction of Helper T cells and Regulatory T cells, the CD68 macrophage neighborhoods 

were far richer in B cells, whereas the CD163 macrophage neighborhoods had more T cells 

and fewer B cells, suggesting differential roles in B cell development.

In addition to identifying common immune interactions and distributions, the analysis 

revealed less well-appreciated patterns. The correlation matrix showed that Cytotoxic T 

cells and Regulatory T cells had the highest correlation in the specimen. We selected this 

index in the matrix to find neighborhoods of both cell types. Regulatory T cells help 

prevent the immune system from attacking healthy cells and the pathologist noted that the 

co-localization with Cytotoxic T cells is consistent with a modulatory role for the regulatory 

cells in controlling cytotoxic T cells, which kill other cells. In the composition view, most of 

the neighborhoods were shown to contain a roughly equal proportion of the two cell types 

as well as some helper T cells, but some neighborhoods were visible with a higher incidence 

of Regulatory T cells. Sketching such a pattern and searching for similar neighborhoods 

revealed small groups of cells underneath the tonsil membrane and outside of the B cell 

follicles (Fig. 10, f). P1 indicated that it was interesting to find Regulatory T cells clustered 

together since they are generally more evenly dispersed throughout tissues.

11.2 Case Study 2: Lung Cancer in Mouse Tissues

Mice share many biological similarities with humans and are commonly used as a model 

organism to study cancer biology. During this case study, a senior biologist (B1) with 

expertise in quantitative, molecular, and cellular biology at Harvard and Brigham and 

Women’s Hospital investigated 10 lung tissues belonging to a cohort of mice that were 

genetically modified to develop multiple small tumor nodules. Within this cohort, half of 

the specimens were from mice that develop tumors that elicit a very poor immune response 

(immune-poor) while the other half were engineered to activate Cytotoxic T cells, driving a 

robust infiltration of immune cells into the tumors (immune-rich). The objective of this study 

is to identify spatial organization and molecular features of immune cells that prevent tumor 

growth and to characterize the features of the immune response between the two specimen 

types.
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Data: This cohort was composed of 10 specimens representing 740 GB of imaging data. 

Each image contains 31 channels and is more than 600 million pixels in size. In total, these 

specimens contain 2.6 million cells, each assigned to one of 17 cell types by the senior 

biologist.

Analysis: As lungs contain many regions with low cell density, we chose a wide 50-micron 

neighborhood radius. B1 began in the cohort view to get an overview of each specimen and 

its morphology and then looked at the cell types with the highest pairwise correlation across 

the cohort in the matrix visualization, which were Dendritic cells and T cells. These cells 

are known to interact; Dendritic cells are messengers, presenting antigens to the surface of 

T cells, activating T cells to combat tumors. B1 indicated that identifying this interaction 

confirmed the accuracy of the cell-typing.

B1 next investigated the neighborhood embedding and changed the plot to color by cell 

type; this revealed a region containing many different immune cells, which was confirmed 

by selecting the region and visualizing these neighborhoods in the composition view. 

Adjoining this region in the embedding, the biologist identified a large cluster composed 

of a high percentage of epithelial cells. They selected one half of the epithelial region of 

the embedding; when visualized spatially across all specimens, this region corresponded 

to epithelial cells that make up the airways in the lung. The other half was identified as 

containing many of the tumors. B1 clicked on a specimen in the cohort view to investigate it 

individually. Turning on the channel for TTF1, a biomarker used to recognize lung tumors, 

allowed the biologist to identify many separate tumor nodules throughout the tissue, two 

of them in close proximity to each other. After lassoing one of the tumors, the outlined 

cells and composition view showed mostly epithelial cells, as well as a small number 

of macrophages and Cytotoxic T cells on its periphery. B1 identified this tumor as not 

infiltrated by immune cells. We used neighborhood similarity search to identify this pattern 

across both this single specimen and the entire cohort of specimens, identifying several other 

structures within the specimen that the biologist (B1) determined to be immune-poor tumor. 

When assessed across the cohort and sorted by the number of matching neighborhoods, 

the biologist found that far fewer of these structures were identified in the immune-rich 

cohort than in the immune-poor cohort, consistent with the lack of tumor antigen expression 

and immune activation in the immune-poor cohort. We investigated these tumors in the 

image, B1 noticed many adjacent immune structures, which occupied a distinct region in 

the embedding space. This region corresponded (Fig. 11, a) to immune structures outside 

of tumors across the specimens. Returning to the initial specimen we were investigating, 

B1 selected a tumor in the image which did not belong to the non-infiltrated tumor pattern. 

This pattern occupied a distinct region in the embedding space (Fig. 11, b), which, when 

investigated in all specimens, we found to represent immune-infiltrated tumors. The linked 

views demonstrated that the selected tumor contained many B cells as well as Cytotoxic 

and Helper T cells. Despite arising in an animal that was not engineered to express a tumor 

antigen, this tumor was infiltrated by immune cells, highlighting the natural variability 

present in animal models of disease.
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11.3 Feedback and Survey

We collected think-aloud feedback [12] from the pathologist (P1) and biologist (B1) during 

the case studies. We also held additional 30-minute hands-on sessions with two biologists at 

Harvard Medical School not involved in the project: a postdoc and a research assistant, both 

with expertise in the tumor microenvironment and multiplex immunofluorescence imaging. 

The users then filled out a survey to rate Visinity’s features on a 5-point Likert scale ranging 

from strongly disagree to strongly agree.

All users rated the interface design as intuitive and accessible (4x strongly agree). They 

particularly liked the search by region of interest (4x strongly agree) and by composition 

(4x agree). Both P1 and B1 emphasized that searching for known cell-cell interactions 

is a powerful way to verify cell types and confirmed the effectiveness of the similarity 

search in various cases. While all users strongly agreed that the matrix helps to identify 

co-localization of cell types and can highlight pairwise interaction patterns, P1 indicated 

that the lack of stronger correlations and, thus light shades of blue or redmade it more 

difficult to interpret. The composition view was rated helpful and intuitive (3x strongly 

agree, 1 agree). B1 suggested allowing users to switch between displaying the relative and 

normalized presence of a cell type in neighborhoods on the x-axis of the PC plot; some 

types occurred infrequently in the mouse cohort, making it hard to compare their incidence 

in neighborhoods.P1 particularly liked switching between user exploration and cross-sample 

testing. and suggested adding functionality to facet specimen into individual sets, allowing 

for regional comparison in a similar way. When comparing patterns across specimens, users 

generally found that patterns were either wholly statistically significant or insignificant. B1 

noted that while permutation testing is the standard way of determining significance, other 

statistical approaches that did not assume that the axis of variability was similar to the 

axis of information might yield more nuanced results. B1 stated that moving from a single 

sample to groups of samples made Visinity uniquely suited to robust and reliable biological 

discovery and was not included in any other visualization tool they had been exposed to.

11.4 Lessons Learned

Long-term collaboration with biomedical experts was essential to understand the application 

domain. The digital pathology field is familiar with visualization, e.g., ways to display 

multiplexed image data, colorization of channels, projections of high-dimensional features, 

and heatmaps (matrices) to discover cell interaction. Learning the experts’ dictionary and 

conventions was key to providing a useful solution while offering concepts beyond the 

state-of-the-art. Together, we refined features and designs from early and separate prototype 

views into integrated solutions. We identified questionnaires (to understand the needs), 

real-world use cases (to test the applicability), and hands-on user testing (to stress the 

interface design) as a successful combination for our evaluation. Secondly, we learned 

and categorized approaches to quantify spatial neighborhood depending on the data and 

application scenario, but we experienced a lack of consensus and integration. A VA 

approach offering round-trip analysis rendered highly advantageous for them compared 

to the state-of-the-art of disconnected tools for individual steps. Through iterative design, 

we discovered a tight linkage between image, composition, and embedding perspectives a 

powerful analysis concept. We found that displaying neighborhood patterns in the image 
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with minimalistic outliness and boundary encoding to be an effective approach aligning with 

our experts’ expectations and existing conventions. We identified ‘cellular neighborhood’ 

and ‘cell interaction’ as constructs of spatially close cells and ‘spatial neighborhood 

patterns’ as regions of interest with frequent occurrences of these constructs (building 

blocks). We learned extending visual neighborhoods analysis from a single specimen to 

evaluating neighborhood patterns in cohorts is key to discovering significant building blocks 

in the cancer micro-environment.

12 Conclusion and Future Work

We present Visinity, a visual analytics system for investigating spatial neighborhood patterns 

within and across tissues. It provides a flexible human-in-the-loop workflow building on 

an integrated computational pipeline to quantify cellular neighborhoods. We demonstrate 

the applicability of our system to identify biologically meaningful spatial neighborhood 

patterns. We identify three key avenues of future research, ranging from the short to the long 

term.

Extracting Image-Based Features.

Our methods for quantifying and identifying spatial patterns are built for single-cell 

information (position and cell type). However, reducing high-detail images of cells to 

single intensity values or type classifications causes a loss of information. Computer vision 

models could help to capture biological structures based on their shape, as well as marker 

polarization within cells, indicating if cells attract or repel each other. While many deep 

learning models for image-based feature extraction are a black box, visual analytics could 

add interpretability and steerability.

Moving Beyond 2D Imaging.

Recent developments in tissue imaging have begun to produce multiplexed high-resolution 

3D volumes. While our scalable method for quantifying neighborhoods adapts well to 

3D data, such multi-volumetric data pose new challenges in designing suitable visual 

encodings, scalable volume+surface rendering strategies, constraint and guided navigation, 

and interaction.

Identifying Spatial Signatures.

As spatial analysis of tissue imaging data becomes more prevalent, it would be helpful 

to extend Visinity’s existing ability to save significant spatial patterns into a knowledge 

database similar to the Molecular Signature Database [47] that serves as a vital reference 

in genomics or even assemble the relations into a knowledge graph representation as 

provided in the INDRA project [27]. Accompanying visual interfaces to query and explore 

attributes and relationships of biological relevant spatial interaction patterns could greatly 

benefit the digital pathology community, allowing the discovery of new patterns and easing 

communication of cancer research.
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Refer to Web version on PubMed Central for supplementary material.
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Fig. 1: 
Visinity interface. a) Image viewer: multiplex whole-slide tissue images highlighting spatial 

cell arrangement; b) Cohort view: search, apply, compare spatial patterns across different 

specimens; c) Neighborhood composition view: visualizes cell types that make up cell 

neighborhoods; d) UMAP embedding view: encodes cells with similar neighborhood as 

dots close to each other; e) Correlation matrix: pairwise interactions between cells; f) 

Comparison & summary view: different small multiple encodings of extracted patterns; 

g) Neighborhood search: finds cells with similar neighborhood; h) Interactive clustering: 

automated detection of neighborhood patterns; i) Annotation panel: save and name patterns; 

j) Channel selection: color and combine image channels.
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Fig. 2: 
A specimen consists of (a) multi-channel image data, (b) segmentation mask of cells (often 

> 106 cells), and (c) single-cell data containing information about the position, cell type, and 

marker intensity values for each cell. (d) Specimens are often part of cohorts.
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Fig. 3: Visinity Workflow:
(a) Neighborhood quantification: users choose a spatial range triggering neighborhood 

vector computation; (b) Browse cohort: small multiples of specimen to gain an overview 

of neighborhood patterns; (c) Bottom-up analysis: explore spatial arrangements and cell-type 

composition of neighborhoods, generate hypotheses, cluster, and extract patterns; (d) Top-

down analysis: two visual querying capabilities allow hypothesis generation and search for 

similar patterns; (e) Pattern annotation and comparison within and across datasets.
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Fig. 4: Neighborhood Quantification:
(1) For a cell in an example microenvironment, find all proximate cells within a specified 

radius. (2) Each cell’s neighborhood is a feature vector that represents the weighted presence 

of each cell type in the neighborhood. (3) Repeat this process for each cell, resulting in a 

neighborhood vector for each cell in an image. (4) Groups of similar neighborhood vectors 

correspond to spatial patterns. (5) Randomly permute cell types in an image to determine 

patterns’ significance.
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Fig. 5: Visual Exploration Through Linked Views:
(a) Selected ROI to investigate the spatial neighborhoods. Cell types are displayed with 

color-coded segmentation outlines. (b) Neighborhood composition in a PC plot - orange 

lines represent neighborhoods selected, exhibiting two discrete patterns. (c) Interactive 2D 

UMAP embedding of all neighborhood vectors in a specimen in grey; current selection 

visualized in orange. Users can select a region to explore similar neighborhoods. (d) 

Pairwise cell-cell interactions visualized as a correlation matrix.
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Fig. 6: Cell Outlines or Concave Hull:
Two view modes: (a) coloring cell outlines by cell type; (b) outlining patterns with a 

concave hull.
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Fig. 7: Hypothesis Testing through Visual Querying:
(a) Users can test spatial pattern hypotheses in the form of regions of interest or approximate 

neighborhood composition. (b) We formulate this hypothesis as a neighborhood vector and 

(c) compare that neighborhood to every neighborhood in the image. (d) Results above a set 

similarity threshold are visualized in each of the linked spaces.
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Fig. 8: Search By Neighborhood Composition:
(a) A user can sketch a custom neighborhood and increase/decrease the threshold to find 

more/less similar neighborhood patterns (b, c). Here, interactions between B cells (left) and 

T cells (right), outlining B cell follicles.
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Fig. 9: 
Runtime evaluation for steps in the neighborhood computation pipeline. Data size is 

increased gradually.
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Fig. 10: Case Study 1:
Small multiple comparison views summarize the biological structures and processes found 

in a human tonsil, including key interactions between B cells, T cells, and macrophages as 

well as unexpected regulatory T cell structures.
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Fig. 11: Case Study 2:
Distinct regions in the embedding represent (a) immune structures far from tumors and 

(b) tumors infiltrated with immune cells. Tumor cells (green), B cells (orange) and T cells 

(purple).
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