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Abstract
A major opportunity in nuclear cardiology is the many significant artificial intelligence (AI) applications that have recently 
been reported. These developments include using deep learning (DL) for reducing the needed injected dose and acquisition 
time in perfusion acquisitions also due to DL improvements in image reconstruction and filtering, SPECT attenuation cor-
rection using DL without need for transmission images, DL and machine learning (ML) use for feature extraction to define 
myocardial left ventricular (LV) borders for functional measurements and improved detection of the LV valve plane and 
AI, ML, and DL implementations for MPI diagnosis, prognosis, and structured reporting. Although some have, most of 
these applications have yet to make it to widespread commercial distribution due to the recency of their developments, most 
reported in 2020. We must be prepared both technically and socio-economically to fully benefit from these and a tsunami of 
other AI applications that are coming.

Keywords  Nuclear cardiology · Absolute myocardial blood flow · Myocardial flow reserve · Artificial intelligence · 
Machine learning · Deep learning

Introduction

Over the past 50 years, the nuclear cardiology imaging field 
has evolved and developed enormously, becoming an inte-
gral part of current clinical practice and playing crucial roles 
in detection, risk stratification, and treatment selection for 
patients with known or suspected cardiovascular disease [1, 
2]. Single-photon emission computed tomography (SPECT) 
myocardial perfusion imaging (MPI) is the most widely 
performed noninvasive technique to detect coronary artery 
disease (CAD) — the single most common cause of death 
in the developed world — with several millions procedures 
performed worldwide annually [3, 4]. More recently, the 
introduction of cardiac positron emission tomography (PET) 
to clinical environments with its ability to quantify absolute 
myocardial blood flow has exhibited improved image qual-
ity, reduction in radiation dose, and greater diagnostic and 
prognostic value [5, 6]. While nuclear imaging modalities 

are powerful tools to study cardiovascular pathophysiology, 
a key aspect for their widespread clinical usage over other 
modalities has been the continuous development of algo-
rithms and techniques for automated processing, quantifica-
tion, and display [7–9].

In recent years, artificial intelligence (AI)-based tech-
niques and methods have crossed over from applications 
such as search engines, natural language processing, and 
self-driving cars to healthcare and medicine. AI develop-
ers have found in nuclear cardiology imaging a particularly 
rich and adapt field, already inherently quantitative due to a 
wealth of parameters and indexes with essential diagnostic 
and prognostic value routinely extracted [7–9]. The field of 
nuclear cardiology turned early on to computer-aided diag-
nosis methods and expert systems, which can be described 
as early expressions of AI-based techniques. Of note, an 
expert system developed at Emory used AI to automatically 
generate a structured natural language report with a diagnos-
tic performance comparable to those of experts [10]. This 
is one of few AI-driven diagnostic systems that have been 
cleared by the Food and Drug Administration (FDA)  and 
commercially available. But the field is bound to further ben-
efit from the introduction of highly efficient AI tools such as 
machine learning (ML), deep learning (DL), and particularly 
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convolutional neural networks (CNNs), which have been 
shown to be very effective in many imaging applications. 
These techniques have already been applied to a variety of 
tasks including enhancing image quality, image segmenta-
tion, diagnosis, and especially risk stratification and outcome 
prediction. The ability of these techniques to utilize large 
amounts of heterogeneous data, directly learning from it, 
and to extrapolate patterns often invisible to the human eye 
moves clinicians and scientists closer to a tailored clinical 
and therapeutical approach to each patient based on his/her 
characteristics. Although most ML- and DL-based published 
methods have not entered clinical routine yet, and important 
limitations need to be addressed and emphasized, in the last 
few years, a number of investigations have demonstrated not 
only the feasibility of AI techniques in nuclear cardiology, 
but also its usefulness.

Recent AI Applications in Nuclear Cardiology

As AI-based techniques have entered cardiac medical imag-
ing, they have been primarily used in image processing, 
diagnosis, and risk stratification. But other equally important 
fields of nuclear imaging, such as dose reduction and image 
reconstruction techniques, are expected to experience new 
developments [11]. Figure 1 illustrates the chain of major 
applications commonly applied to a nuclear cardiology 
tomographic study.

Tomographic Acquisition, Reconstruction, 
and Dose Reduction

Shiri et al. [12] recently proposed a CNN method aimed at 
the reduction of acquisition time, and consequently of radia-
tion dose, for SPECT MPI by either reducing the acquisition 

time per projection by 50% or by halving the number of 
angular projections. For each patient in a cohort of 363, four 
sets of projections were generated from the acquisition list 
mode data: full time (FT) with 20 s per projection, half time 
(HT) with 10 s per projection, full projection (FP) with 32 
projections and half projection (HP) with 16. The convolu-
tion network performed an image-to-image transformation 
to predict FT from HT and FP from HP. Their results, though 
preliminary, showed that the predicted images obtained with 
HT projection achieved a better image quality than the ones 
predicted from HP. Other feasibility studies investigated the 
applicability of low-dose imaging [13, 14] by developing 
DL-based techniques for image denoising that outperformed 
traditional image processing techniques. Particularly, Ramon 
et al. [13] used a supervised DL approach to remove the high 
image noise typical of low-dose acquisitions by using pairs 
of full-dose and low-dose images. The study included 1,052 
SPECT MPI datasets and tested two common reconstruction 
techniques, filtered back projection (FBP), and ordered-sub-
sets expectation–maximization (OSEM). The results indicate 
that DL methods can significantly improve noise reduction 
while enhancing diagnostic accuracy. Figure 2 depicts the 
results of the technique in the presence of a perfusion defect 
with progressive decreases of injected dose.

For decades, stress-only protocols have been proposed as 
a mean to reduce effective radiation exposure by up to 60% 
and cancel unnecessary tests. Yet, these protocols remain 
severely underutilized. A ML-based algorithm was recently 
proposed [15] for risk prediction based on only stress MPI 
and clinical data to select the low-risk patients that could 
benefit from rest test cancelation. The study included 20,414 
subjects with 98 features trained and tested to provide risk of 
major adverse cardiovascular events (MACE) as a continu-
ous probability of future events indicated as ML score. Three 
different thresholds of ML score were derived by matching 
the cancellation rates achieved by a physician interpretation 

Fig. 1   Chain of individual 
applications required for a 
clinical myocardial perfusion 
tomographic study. Green 
checkmarks signify the specific 
applications that have been 
improved with machine learning 
and deep learning algorithms 
covered in this article
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and two clinical guidelines, and the annual MACE rates for 
patients selected for rest test cancellation were compared 
between the different approaches. Patients selected for rest 
cancellation with ML-guided cancellation recommendations 
exhibited a lower MACE rates than those chosen based on 
physician’s interpretation or clinical guidelines.

Attenuation Correction

Another important area is that of attenuation correction (AC) 
with low-dose CT. Decades of investigations on SPECT MPI 
have shown that AC reduces ambiguity and increases diag-
nostic accuracy. But since SPECT/CT devices are expen-
sive and not always available, non-AC SPECT images are 
commonly used for diagnosis. DL methods have recently 
presented scientists with a possible solution in the form of 
generative adversarial networks (GANs) and their specific 
application in creating images of one modality from those 
of another. A feasibility study for generating AC maps from 
nuclear SPECT images was recently published. Shi et al. 
[16] developed a 3D model based on GANs that was trained 

to estimate attenuation maps solely from SPECT images. 
The study included 65 patients (normal and abnormal) with 
SPECT and AC CT. The synthetic attenuation maps were 
qualitatively and quantitatively consistent with the true maps 
with a mean absolute error of 3.6%. Analogously, the two 
sets of AC-corrected SPECT images (true and with syn-
thetic AC) were highly similar with a mean absolute error 
of 0.26%. The trained DL model was able to generate a syn-
thetic AC map from SPECT images in 1 s. Figure 3 shows 
for two patients the true vs synthetic AC maps, as well as the 
final perfusion polar maps obtained with true and synthetic 
AC vs without AC.

Image Segmentation

Accurate left ventricular (LV) segmentation is crucial for 
a reliable assessment of myocardial perfusion and func-
tion. Many LV segmentation algorithms have been previ-
ously proposed using conventional analysis for this task 
[17]. Yet, recent ML and DL technological advancements 
have further increased the LV segmentation robustness. A 

Fig. 2   Results from DL-based denoising technique for low-dose 
SPECT MPI [13]. Images for a normal male subject (left panels) 
and a CAD male subject (right panels) with: a OSEM from full dose 
data, b OSEM from reduced dose data, and c DL processing. A nor-
mal perfusion distribution is shown in the left panels (normal (a)). A 
perfusion defect in the LAD territory is indicated with green arrow 
in the right panel (abnormal (a)). In b and c, the rows from top to 
bottom correspond to 1/2, 1/4, 1/8, and 1/16 dose, respectively. As 

compared to OSEM, the normal regions of the LV myocardial wall 
are more uniform after DL processing in both left and right panels. 
In the DL processing, the extent of the defect is better preserved than 
in OSEM processing even at much lowered dose levels. CAD, coro-
nary artery disease, LAD, left anterior descending artery, DL, deep 
learning, OSEM, ordered-subsets expectation–maximization. Figure  
adapted from slide courtesy of MA King and AJ Ramon
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quality control algorithm was developed to evaluate the 
automatically obtained contours and detects segmentation 
failure [18]. Two error flags were implemented to check 
the LV shape and the location of the mitral valve. The 
software was validated against expert readers in the iden-
tification of segmentation errors and significantly reduced 
human supervision. Further, ML techniques were recently 
used in the implementation of an algorithm for the auto-
mated identification of the valve plane (VP) from SPECT 
images [19]. The quantitative assessment of ischemia 
greatly relies on correct rest and stress relative perfusion 
maps, which in turn depend on the proper VP identifica-
tion during segmentation. The authors created high-level 
image features — 22 features related to VP location, shape 
and intensity as well as from gated acquisitions — as input 
into an algorithm based on support vector machine (SVM) 
techniques that efficiently include expert knowledge and 
the anatomical variations of VP location. Coronary CT 
angiography was used to validate the VP location, and 
total perfusion deficit (TPD) was employed to assess diag-
nostic accuracy of the model. This fully automated method 
exhibited a diagnostic performance equivalent to that 
obtained after correction by experienced readers. Another 
team leveraged the potential of DL techniques to develop a 
model for the delineation of LV epicardial and endocardial 
profiles from gated SPECT images [20]. The method was 
implemented as an end-to-end fully CNN trained with LV 
contours delineated by clinicians. Preliminary results on 
56 subjects demonstrated excellent precision in assessing 
LV myocardium volumes with an error of 1.09 ± 3.66%.

Image Interpretation and Outcome 
Prediction

Image-based diagnosis and outcome prediction is possibly 
the sector of nuclear cardiology that has experienced the 
largest progress since the latest technological and method-
ological developments brought about by ML and DL tech-
niques. In early approaches to CAD investigations with AI 
methods [21–27], artificial neural networks (ANNs) have 
been employed to determine if ischemia was present, to 
what extent, and which coronary was likely to have a sten-
otic lesion by using sample of myocardial perfusion data 
as input and corresponding invasive coronary angiography 
(ICA) results as output. Recently, using a fully ML-based 
SVM technique [28], Arsanjani et al. [29] combined sev-
eral quantitative variables to detect CAD from a cohort of 
957 SPECT studies. The algorithm integrated perfusion 
and functional indexes, namely TPD, ischemic changes, 
and ejection fraction (EF) changes between rest and stress, 
and regional LV wall motion and thickening scores. The 
diagnostic accuracy was compared to visual interpreta-
tion by two expert readers and validated with ICA results. 
Each individual quantitative measure had been extensively 
used to assess CAD, but their integration has remained 
challenging to perform. The study showed an improved 
diagnostic accuracy for the SVM technique with a receiver 
operating characteristic (ROC) area under the curve (AUC) 
of 0.92 vs 0.88 and 0.87 for the two readers. In a follow-up 
investigation [29] which included 1181 rest/stress SPECT 

Fig. 3   Results from DL-based generation of attenuation correction 
maps from SPECT MPI images [16]. Left panel shows images of 
the primary, scatter window SPECT reconstructions, the synthetic 
attenuation maps, and CT-based attenuation (true) maps in the axial, 
coronal, and sagittal views. Right panel shows SPECT reconstructed 
images corrected using CT-based (true) attenuation maps, synthetic 
attenuation maps generated by the Generative Adversarial Network 
(GAN) and without attenuation correction in short axis (SA) and ver-

tical long axis (VLA) views. Note in the right panel the agreement 
between the true corrected and corrected with synthetic DL-generated 
ATTMAP short axis (SA) views and vertical long axis (VLA) views. 
Note that the uncorrected bottom slices show inferior wall attenuation 
artifacts absent in the corrected ones. ATTMAP, attenuation map, w, 
with, w.no, without. Reprint with permission from [16], Shi et  al., 
Eur J Nucl Med Mol Imag, 2020
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studies, the authors demonstrated additional improvements 
achieved with ML when quantitative perfusion measures 
and clinical variables were combined. The ML results 
were once again tested against an expert reader with an 
AUC of 0.94 vs 0.89 (p < 0.001). As integration of numer-
ous heterogeneous variables can prove challenging and 
given that MPI interpretation largely depends on readers’ 
experience, the inclusion of such automated assessment 
could provide fundamental assistance to diagnosticians in 
the future, particularly in less experienced centers. The 
search for improved diagnostic accuracy has as its ultimate 
goal outcome prediction, and particularly, in the case of 
CAD, the identification of subjects that would benefit from 
earlier intervention. In Arsanjani et al. [30], the authors 
aimed at investigating if early revascularization could 
be effectively predicted by combining clinical data with 
quantitative SPECT MPI-derived features. A database of 
713 rest/stress studies with a total of 372 revascularization 
events was analyzed, and an automated feature selection 
algorithm was used to extract the relevant parameters from 
a collection of 33 indexes and variables. The performance 
of the ML model was compared to that of two readers. 
The results were mixed: in predicting revascularization, 
the ML algorithm exhibited sensitivity comparable to that 
of one experienced reader, higher than the second one, 
but similar to standalone perfusion measures; its specific-
ity was better than both readers’ but similar to TPD. In a 
multicenter study, Hu et al. [31] also used a ML algorithm 
to predict per-vessel early revascularization within 90 days 
from SPECT MPI. The model used 18 clinical variables, 

9 from stress testing plus additional 28 imaging features 
from a database of 1980 patients for a total of 5590 vessel 
observations. The AUC of the ML method was compared 
to expert analysis and quantitative assessment; it outper-
formed current quantitative methods per-patient and per-
vessel and also expert interpretation. The prediction of the 
need for revascularization is an important clinical need in 
CAD assessment, as a consistent number of patients that 
are scheduled for invasive angiography ultimately do not 
have obstructive disease.

The ML-based ANN approaches have had reasonable 
diagnostic performance when using limited inputs like the 
17 LV segments perfusion scores (SSS, SDS). Figure 4 illus-
trates how when the level of diagnostic complexity needed 
raises to that where all the LV voxels are fully connected to 
each other, the simple ANN approach becomes inefficient 
and where DL CNN approach has major benefits. DL-based 
techniques have also been extensively used in CAD diagno-
sis and prognosis studies, with the algorithms identifying 
patterns independently. Its first use is described in Betancur 
et al. [32] with a deep CNN modeled to directly interpret 
perfusion polar maps and identify obstructive disease. Fig-
ure 5 describes the simplicity of the CNN approach in these 
complex feature detection challenges [33]. In Betancur’s 
approach, a database of 1638 patients was used to implement 
the model and was compared to quantitative assessment by 
TPD: per-vessel sensitivity improved from 64.4% (TPD) to 
69.8% (CNN) by only using as input imaging data. The tech-
nique was further developed to include upright and supine 
data [34], an acquisition approach routinely used to mitigate 

Fig. 4   Limitations of the artificial neural network (ANN) architec-
ture. ANN approaches have found some success when using limited 
input variables and three-layer feed-forward architecture where the 
ANN is fed with perfusion scores from the 17 myocardial segments 
in order to reach a conclusion as to whether the left ventricular myo-
cardium demonstrates ischemia. When more image detail is required 
such as shown in this illustration, and each of the 600 voxels in a 

polar map has to be connected to every other voxel, the first ANN 
layer alone would require 600 × 600 connections, huge databases and 
extensive computer time to train. Thus, the success of the deep learn-
ing approaches showed in Figs. 5 and 6. LAD, left anterior descend-
ing vascular territory, LCX, left circumflex vascular territory, RCA, 
right coronary vascular territory, DX, diagnostic conclusion
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attenuation artifacts. The DL algorithm was trained on polar 
maps, hypoperfusion defects, and hypoperfusion severity 
and similarly evaluated to detect obstructive CAD. Com-
pared to combined quantitative assessment, the DL model 
showed improved AUC in predicting disease per-patient and 
vessel, as well as enhanced sensitivity and specificity. The 
same team also developed a ML model for risk stratification 
and prediction of MACE by combining clinical data and 
imaging features from 2619 SPECT [35]. When ML was 
compared to expert visual interpretation, automated stress 
TPD and automated ischemic TPD, the AUCs were respec-
tively 0.81 vs 0.65 vs 0.73 vs 0.71 respectively (p < 0.01).

Efforts to reduce complexity in input data and features 
selection are also taking place. Juarez-Orozco et al. [36] 
developed an ML algorithm from easily accessible clinical and 
functional variables for the detection of myocardial ischemia 
as determined through quantitative PET-derived myocar-
dial flow reserve (MFR) < 2.0. A database of 1234 patients 
was used for the model implementation and testing, and its 
performance was evaluated against a simple logistic regres-
sion model with the same variables. ML achieved an AUC 
of 0.72 compared to 0.67 obtained with traditional regression 

techniques. Similarly, Alonso et al. [37] estimated patient’s 
risk of cardiac death based on SPECT MPI and clinical data 
with multiple ML models by selecting subsets of variables 
from a group of 122 potential features. Models were trained 
and tested on 8321 patients and compared to standard regres-
sion techniques. The authors identified a model with 6 features 
and an AUC of 0.77 that outperformed more complex regres-
sion models that used up to 14 features.

Key Socio‑economic Questions

The remainder of this article suggests how the various nuclear 
cardiology stakeholders should prepare for the AI revolution 
to exploit the opportunities that it brings and avoid potential 
threats. Similar perspectives have been offered for all of health-
care [38].

Fig. 5   Example of inner workings of a convolutional neural network. 
The outputs of each layer of a typical convolutional network architec-
ture applied to the images of a raw myocardial perfusion polar map 
and a blackout polar map after comparison to normal limits emulated 
from Betancur et al. [32]. Simple matrix operators are convolved with 
each image to extract desired features. Shown here are two operators: 
rectified linear unit (ReLU) which applies a threshold from the input 

to the next output layer, and Max Pooling, which applies a filter to 
a 2 × 2 image patch reducing image dimensions. Each rectangular 
image is a feature map corresponding to the output for one of the 
learned features, detected at each of the image positions. Information 
flows bottom up, and a score is computed for each image class in out-
put. Illustration  adapted from LeCun et al. [33]
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Institutional Issues

Perhaps the most important role in preparing for the AI revo-
lution lies with the clinical institutions that generate data, 
including both actual images and clinical variables. This is 
because the ML and DL algorithms are mostly driven by 
data rather than by the sophistication or cleverness of the 
scientific code. In fact, the majority of the code needed for 
this AI may be obtained for free as open-source code, and 
it is the data that trains the algorithms and where the value 
lies. Thus the saying “Data is the new oil.” Following this 
analogy, it may be argued that most healthcare systems are 
sitting on top of major oil deposits and do not even know it. 
Figure 6 illustrates the increase in performance when using 
large databases (Big Data) as compared to conventional 
algorithms.

Some institutions do know the newfound value of clinical 
data and are exploiting it. Sloan-Kettering Cancer Center 
is providing data to Paige. AI in the form of 25 million 
image sets of patient tissue slides and pathologists findings 
to develop AI algorithms to assist in cancer diagnosis [39, 
40]. Allegedly, the center provides exclusive use of these 
data for a 9% equity stake in the company. In another deal, 
St. Louis, Missouri–based Ascension, a Catholic chain of 
2600 hospitals, agreed to share data with Google in a pro-
ject with the code name “Project Nightingale” [41]. The 
reported shared data [41] include radiology scans, labora-
tory tests, hospitalization records, medical conditions, and 

patient’s personal information. These deals and many others 
follow the footsteps of IBM which in 2016 purchased Truven 
Health Analytics for $2.6 billion for their healthcare data 
on tens of millions of medical records and years of health 
insurance data [41].

Legal and ethical issues aside, which will be discussed 
below, these major financial transactions form part of the 
foundation for the fast-approaching AI-tsunami. Just like oil 
needs to be extracted and refined to be useful, institutions 
would benefit from having personnel to curate their clinical 
data and to have systems that can transparently access it. The 
purpose to this ready access to carefully curated, annotated 
clinical data is twofold. Access is both a source of valuable 
data for AI training but also more importantly to be able to 
benefit from the algorithms developed by others including 
academic investigators and industry.

Professional Societies’ Role

Professional societies have a role, perhaps a responsibility, 
in becoming a catalyst to expedite the deployment of AI in 
our field. Just as is commonly done by computer societies, 
healthcare societies can provide a major service by being 
one source of the needed big databases from contributions 
by many institutions for training algorithms. Although in 
the past this has created legal and financial concerns, the 
time is now to resolve it. Creative business models may 
be developed to reward all concerned and move the field 
forward. These databases, by their annotated nature, would 
also provide a source of validation, a valuable asset for AI 
algorithm development and regulatory clearance. Finally, by 
being an integral part of the development and validation pro-
cess, societies could become more relevant by fast tracking 
the new AI algorithms into their imaging guidelines, vastly 
reducing the many years that it now takes from innovation 
to recommendation.

Regulatory Issues

Initially, there was concern as to how to regulate AI algo-
rithms that came in the form of a black box, i.e., with no 
description as to how the algorithm reached conclusions or 
made decisions as these algorithms are mostly a set of train-
ing weights. The FDA, realizing that the coming AI-tsunami 
has the potential to transform healthcare, has adapted its 
vision as described in their recently published action plan 
[42] “…with appropriately tailored total product lifecy-
cle-based regulatory oversight, AI/ML-based Software as 
a Medical Device (SaMD) will deliver safe and effective 
software functionality that improves the quality of care that 
patients receive”. This follows the FDA’s publication [43] on 

Fig. 6   Why deep learning. Contrast of deep learning (DL) vs. con-
ventional algorithm performance as a function of the amount of 
data used for training. Note that when data is limited conventional 
algorithms exhibit better performance, but this advantage is quickly 
reversed as more training data is used. ML and DL algorithms are 
mostly driven by data rather than by the sophistication or cleverness 
of the scientific code and thus the benefit of a much faster implemen-
tation compared to conventional approaches
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a proposed regulatory framework describing their founda-
tion for a potential approach to premarket review for AI and 
ML-driven software modifications. This action plan recog-
nizes and embraces the iterative improvement power of AI/
ML/DL allowing a post-market mechanism for continuously 
improving the algorithms as new data is available. The pro-
cess would be constrained to specific procedures and meet-
ing certain target accuracy thresholds. These FDA actions 
are major encouragements for the medical device industry 
to fully utilize all the benefits of AI.

A similar AI vision and concessions are also required 
from the radiopharmaceutical division of the USA FDA. 
Devices and imaging radiopharmaceuticals have a sym-
biotic relationship in that the radiopharmaceuticals’ FDA 
clinical trials follow a rigorous imaging protocol that then 
becomes part of the product’s package insert. To change 
the package insert usually requires another expensive clini-
cal trial. Deviation from the package insert may be done 
under the practice of medicine but may not be promoted by 
either the pharmaceutical or the device company. A simple 
example is when devices are improved, such as DL-assisted 
reconstruction to reduce the needed injected dose, and the 
new required dose falls below the lower limit listed in the 
radiopharmaceutical package insert. Even though this could 
result in a reduction of radiation to the patient and a poten-
tial financial saving to the healthcare industry, there is no 
present regulatory framework for its implementation. Coa-
litions of radiopharmaceutical companies should prioritize 
discussions with the FDA to implement these frameworks. 
Consideration should be given to both retrospective and pro-
spective trials. In this context, retrospective trials are FDA 
trials that are completed resulting in FDA approval of the 
radiopharmaceutical imaging agent, and now, there is data to 
modify the package insert based on algorithm improvements 
applied to the same original data. For prospective trials that 
companies are designing now, strong consideration should 
be given to permanently storing the original imaging data in 
its most elementary acquired raw form so it may be reused 
each time new algorithms improve efficiency but affect the 
original imaging protocols. In this scenario, FDA should be 
able to accept these results as those coming from a “new” 
clinical trial that allows the change in package insert.

Legal, Ethical Issues

As usual, legal and ethical norms woefully drag behind 
technological developments. This is even truer for the 
AI-tsunami because the legal and ethical issues are inter-
twined. There are two main legal implications: who owns 
the patients’ data, for example their MPI studies, and who is 
liable for using the results of an AI algorithm. Legally in the 
US, clinical data are considered the property of the provider 

organization and can be sold by the organization as long as 
patient access and privacy protection requirements are met 
[39]. “The Immortal Life of Henrietta Lacks” is a book and 
film about a true story of the case that helped provide the 
legal precedence to the ownership court decision [44].

The question of liability for clinical malpractice in the 
US is always dependent on the judgment of jurors and thus 
if sued, for whatever reason, one needs a defense. Perhaps 
unexpectedly, a recent study [45] sampling a representative 
set of 2000 adults presented with four scenarios in which the 
AI system provided treatment recommendations to a physi-
cian indicated that physicians who receive advice from an 
AI system to provide standard care can reduce their risk of 
liability by accepting, rather than rejecting, that advice, all 
else being equal. However, when an AI system recommends 
nonstandard care, there is no similar shielding effect of 
rejecting that advice and so providing standard care. These 
investigators concluded that tort law system is unlikely to 
undermine the use of AI precision medicine tools and may 
even encourage the use of these tools [45].

Ethicists have not reached consensus as to ethical norms 
for using and sharing clinical imaging data for AI. It has 
been proposed, and generally accepted, that all who par-
ticipate in the health care system, including patients, have 
a moral obligation to contribute to improving that system 
[46] and thus to allow the use of their imaging studies and 
clinical data for the development of AI algorithms. What is 
contested is whether it is ethical for this valuable clinical 
data to be sold or should it become public to benefit future 
patients [40]. Since it is legal to sell the data as a significant 
revenue producing component of a healthcare system, his-
tory dictates that the data will not be given away for free. A 
possible exception is a scenario where multiple institutions 
participate voluntarily, and to a limited degree, to create a 
big database for the benefit of the field.

Conclusion

AI-based methodologies have the potential to revolutionize 
the way we approach patient’s care and medical imaging, 
including nuclear cardiology. The research reviewed in this 
article illustrates the vast applicability of these techniques. 
Nuclear cardiology has already benefited from a wealth of 
techniques for reliable image acquisition, processing, diag-
nosis, prognosis, and report generation. AI’s progress to date 
and the fast approaching tsunami of new AI applications 
provide a novel collection of tools that should be embraced 
to enhance the future of our field. Continued progress resides 
in our commitment as scientists to thoughtfully and critically 
invest in new technologies with patients’ care in mind.
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