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Abstract
Purpose  In this study, we propose a deep learning (DL)–based voxel-based dosimetry method in which dose maps acquired 
using the multiple voxel S-value (VSV) approach were used for residual learning.
Methods  Twenty-two SPECT/CT datasets from seven patients who underwent 177Lu-DOTATATE treatment were used in 
this study. The dose maps generated from Monte Carlo (MC) simulations were used as the reference approach and target 
images for network training. The multiple VSV approach was used for residual learning and compared with dose maps gen-
erated from deep learning. The conventional 3D U-Net network was modified for residual learning. The absorbed doses in 
the organs were calculated as the mass-weighted average of the volume of interest (VOI).
Results  The DL approach provided a slightly more accurate estimation than the multiple-VSV approach, but the results 
were not statistically significant. The single-VSV approach yielded a relatively inaccurate estimation. No significant differ-
ence was noted between the multiple VSV and DL approach on the dose maps. However, this difference was prominent in 
the error maps. The multiple VSV and DL approach showed a similar correlation. In contrast, the multiple VSV approach 
underestimated doses in the low-dose range, but it accounted for the underestimation when the DL approach was applied.
Conclusion  Dose estimation using the deep learning–based approach was approximately equal to that in the MC simula-
tion. Accordingly, the proposed deep learning network is useful for accurate and fast dosimetry after radiation therapy using 
177Lu-labeled radiopharmaceuticals.
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Introduction

177Lu-octreotate (177Lu-DOTATATE) peptide receptor radio-
nuclide therapy is used to treat patients with metastatic neu-
roendocrine tumors (NETs) [1]. Since the peptide receptor 
has high efficacy for tumor targeting and since 177Lu emits 
beta particles with sufficient energy for killing tumor cells, 
the therapy has low side effects and good therapeutic effi-
cacy [2]. However, retrospective dosimetry is needed to 
ensure efficient and accurate treatment. Maximization of 
tumor doses and minimization of organs at risk for further 
treatment can be realized through dosimetry.

There are two main types of dosimetry: (1) organ-based 
dosimetry and (2) voxel-based dosimetry [3, 4]. Organ-
based dosimetry uses organ-specific S-values derived from 
sex- and age-specific digital phantoms. It has been used 
because it is easy to perform, but it is not appropriate for 
patient-specific dosimetry, since the anatomical character-
istics of each patient are different from those of the digital 
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phantoms. Consequently, voxel-based dosimetry has been 
proposed for patient-specific application. It uses anatomical 
information acquired from CT images and spatial informa-
tion of radioactivity distribution from radioisotope imaging 
techniques, such as SPECT and PET. Voxel-based dosim-
etry using Monte Carlo (MC) simulations can yield accurate 
dose estimates, but is not practical because it requires very 
long computational times [5–8]. The multiple voxel S-value 
(VSV) approach has been suggested as an alternative [9, 10], 
which provides accurate and fast dose estimates not only for 
diagnostic 68 Ga PET data, but also for 177Lu-DOTATATE 
treatment cases.

In previous studies, various deep learning (DL) approaches 
have been applied for medical image correction, segmenta-
tion, and denoising [11–19]. Several approaches for voxel-
based dosimetry using DL have also been reported. Lee et al. 
attempted DL-based dosimetry for the first time using a 3D 
U-net structure [20]. Gotz et al. proposed a 3D U-net structure 
and improved the accuracy using the hybrid deep neural network 
and empirical mode decomposition method [21]. Azadeh et al. 
performed a study to predict patient-specific dose kernels rather 
than generating direct dose maps [22]. The predicted patient-
specific dose kernels were then convolved with the activity map 
to yield a dose map. Zongyu et al. proposed a network that used 
PET images in addition to SPECT images to improve image 
resolution [23].

In this study, a U-net-based network for voxel-based 
dosimetry was proposed. In particular, dose maps acquired 
using the multiple VSV approach were used for residual 
learning. The multiple VSV approach provides an accurate 
voxel-wise dose map in most regions, but an error occurs at 
the boundary regions (i.e., between the lung and adjacent 
region or bone and adjacent region). The proposed network 
was validated by comparison with MC simulations and the 
multiple VSV approach.

Materials and Methods

Data Acquisition

177Lu-DOTATATE SPECT/CT images acquired from 
seven patients who underwent 177Lu-DOTATATE treat-
ment for up to four cycles were used in this study (total 
22 datasets). A GE NM 670 SPECT/CT system was used 
for imaging. SPECT/CT images were acquired 4, 24, 48, 
and 120 h after intravenous injection of 177Lu-DOTA-
TATE. The total time taken for single-bed scan cover-
ing the chest and abdomen was approximately 30 min. 
The reconstructed CT image contained 161 CT slices 
of 512 × 512 pixels. The corresponding SPECT images 
had 128 slices of 128 × 128 pixels. The voxel size was 
0.98 × 0.98 × 2.5 mm3 and 3.87 × 3.87 × 3.87 mm3 for 

CT and SPECT, respectively. The attenuation correc-
tion and resolution recovery were applied when per-
forming SPECT reconstruction using an ordered subset 
expectation maximization algorithm. A medium-energy 
high-resolution and sensitivity collimator was used for 
shielding, and activity calibration was performed using a 
cylindrical phantom filled with a known activity concen-
tration. Linearity was confirmed using various activity 
concentrations.

MC Simulation

The dose maps generated from the MC simulation were 
used as the reference approach and target images for net-
work training. Geant4 Application for Emission Tomogra-
phy (GATE) v.8.2 was used for the MC simulation, as in 
previous studies [9, 10, 24]. Before the simulation, the CT 
images were resampled to have same voxel sizes as that of 
the SPECT image. Furthermore, co-registration of sequen-
tial SPECT/CT images was performed to generate time-inte-
grated activity (TIA) maps. The TIA maps were acquired 
using a voxel-wise trapezoidal sum according to Eq. 1 [25]:

where Ai is the activity in each voxel of the ith SPECT image 
acquired at ti ( Δti = ti+1-ti , A0

= 0) , and � is the physical 
decay factor of 177Lu.

In GATE, “DoseActor” was used for voxel-based dosim-
etry. Patient-specific phantom images derived from the CT 
image and TIA map for the voxelized source were used as 
input files for the simulation. To generate patient-specific 
phantoms, CT images in the Hounsfield unit were converted 
into a density map (g/cm3) based on a published database 
[26]. The simulation was conducted for 1% of the time-
integrated activity considering the computation time, as in 
previous studies [9, 10]. A dose map (Gy) was generated 
from the simulation, which was performed using an in-house 
computing cluster with 60 CPU cores and 128 GB of RAM.

Multiple VSV Approach

The multiple VSV approach was used for residual learning and 
compared with dose maps generated from DL [9, 10]. In this 
study, the multiple VSV approach with 20 kernels was used 
for dosimetry, because it provides accurate dose maps compat-
ible with the MC simulation in the case of 177Lu-DOTATATE 
dosimetry [10]. The single-VSV approach has also been used for 
dosimetry. By contrast, the multiple-VSV approach comprises 
four steps: (1) generation of VSV kernels using MC simulation, 
(2) convolution of the TIA map with each VSV kernel, (3) mask-
ing each medium-specific dose map with the corresponding 
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medium mask map, and (4) summation of all masked dose maps 
to generate the final dose map. Further details can be found in 
a previous study [9].

DL Approach

The residual learning strategy was applied for DL approach. The 
conventional 3D U-net network was modified for residual learn-
ing, as illustrated in Fig. 1 [27]. 3D patch-based learning was 
performed by considering the size of the network, which took 
CT and TIA patch images with a size of 64 × 64 × 64 as inputs, 
and was trained to yield a dose map. Supervised learning was 
achieved by using an MC dose map as the target image. Each 
encoding layer comprised two 3 × 3 × 3 convolution layers and 
a 2 × 2 × 2 max-pooling layer. Each convolution layer was fol-
lowed by batch normalization and rectified linear unit (ReLU) 
activation function. The decoding layer comprised one 3 × 3 
× 3 convolution layer, a concatenating path, and two 3 × 3 × 3 
convolution layers. Each convolution layer involved the ReLU 
activation function. The number of feature maps in the first layer 
was set to 16 via empirical fine-tuning. It was then doubled as 
it passed through the encoding layer, and reduced by half as it 

passed through the decoding layer. After passing through all 
the layers, the feature maps were contracted to one image by 
a 1 × 1 × 1 convolution. The residual learning was applied for 
network training in contrast to the previous study as described 
above [20]. The image generated after the 1 × 1 × 1 convolution 
was summated with a multiple VSV dose map for the residual 
learning. The multiple VSV dose map using 20 VSV kernels 
was used. Therefore, the network was trained to compensate the 
difference between multiple VSV approach and reference image 
(i.e., MC approach).

The network was trained and tested using a cross-val-
idation strategy with sevenfold, the same as the number 
of patients. In other words, for each fold, datasets from 
one patient were used as test sets, and datasets from other 
patients were used for training to avoid network overfitting. 
Therefore, all 22 SPECT/CT dataset were used for the train-
ing and validation of the network. Each SPECT and CT data-
set was split into 125 patches of size 64 × 64 × 64, forming 
one dataset for training and testing. The L1 loss between the 
dose map from the MC simulation and the network was esti-
mated for training. An adaptive moment optimizer was used 
to minimize loss. Network training was implemented using 

Fig. 1   Modified 3D U-net structure for residual learning

Table 1   Absorbed Dose (Gy) 
estimated using 4 different 
approaches (mean ± standard 
deviation) and mean absolute 
error (MAE, %) compared to 
Monte Carlo simulation

Absorbed dose (Gy)
& MAE (%)

Kidneys Bone marrow Liver Spleen Tumors

MC Dose 6.41 ± 1.34 1.76 ± 1.61 10.00 ± 7.29 6.25 ± 3.04 15.28 ± 12.63
Single VSV Dose 6.75 ± 1.40 1.99 ± 1.82 10.69 ± 7.80 6.62 ± 3.32 16.81 ± 13.36

MAE 5.45 11.84 6.82 9.30 13.62
Multiple VSV Dose 6.36 ± 1.32 1.78 ± 1.64 9.76 ± 7.05 6.18 ± 2.96 15.15 ± 12.10

MAE 1.56 1.21 2.79 2.28 4.66
DL Dose 6.46 ± 1.36 1.77 ± 1.62 10.02 ± 7.28 6.26 ± 3.05 15.54 ± 12.64

MAE 1.04 0.81 0.54 1.34 3.18
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a computer system with 32 GB of RAM and an NVIDIA 
GeForce RTX 3090 graphics card.

Dose Estimation

The absorbed dose at the organ level was calculated as the 
mass-weighted average of the volume of interest (VOI) as 
below:

where mi and Di are the mass and dose of the ith voxel, 
respectively, and mtotal is the total mass of the VOI. The 
kidneys, liver, spleen, bone marrow in the lumbar spine, and 
tumor region were considered for dose estimation. The VOIs 
for these organs and tumor region were manually drawn on 
a CT image as in the previous study [10]. The 3D Slicer 
software was used for organ delineation [28]. For tumor 
regions, the PET-edge technique provided by MIM soft-
ware was applied to SPECT/CT images for the delineation 
(MIM Software Inc., Cleveland, OH). The mean absolute 
error (MAE) of each method (i.e., the multiple VSV, single 
VSV, and DL approaches) compared to MC was calculated 
as follows:

where n denotes the number of dataset (i.e., n = 22). Further-
more, error maps in the voxel-level and dose-line profiles 
were generated to observe discrepancies in the voxel levels.

Results

Absorbed Doses

The absorbed doses of the organs estimated using differ-
ent approaches are summarized in Table  1. The mean 
absorbed doses for the kidneys, bone marrow, liver, spleen, 
and tumors estimated through MC, regarded as a reference 
approach in this study, were 6.41, 1.76, 10.00, 6.25, and 
15.28 Gy, respectively. The multiple VSV approach yielded 
relatively accurate dose estimates. The MAEs of multiple 
VSV were 1.56, 1.21, 2.79, 2.28, and 4.66% for kidneys, 
bone marrow, liver, spleen, and tumors, respectively. The DL 
approach provided a slightly more accurate estimation than 
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the multiple-VSV approach, but the results were not statisti-
cally significant (P > 0.05). The MAEs of the DL approach 
were 1.04, 0.81, 0.54, 1.34, and 3.18, respectively. The sin-
gle-VSV approach yielded a relatively inaccurate estimation. 
The MAEs of the single-VSV approach were 5.45, 11.84, 
6.82, 9.30, and 13.62 in the same order. The single VSV 
approach yielded high errors for the bone marrow and tumor 
regions, where the medium properties of the regions were 
different from those of water.

The Bland–Altman plots for the relative difference of 
each approach compared with the MC are presented in 
Fig. 2. As described above, the single-VSV approach showed 
a relatively high error in bone marrow and tumor dose esti-
mations. The relative differences were approximately 5% 
for kidneys, liver, and spleen in most cases. Furthermore, 
the multiple VSV and DL approach showed lower errors, 
regardless of the organs. The relative differences between 
MC and these two approaches were less than 5% in most 
cases. The DL approach was marginally more accurate than 
the multiple-VSV approach, particularly for the liver.

Dose Maps and Error Maps

Figure 3 shows the dose maps generated using each approach 
and the corresponding relative and absolute error maps 
from SPECT/CT images of a 74-year-old male patient diag-
nosed with rectal NET who received 177Lu-DOTATATE of 
7.62 GBq. Figure 4 shows dose maps and error maps of a 
69-year-old male patient diagnosed with rectal NET who 
received 177Lu-DOTATATE of 7.51 GBq.

The orange arrows in the figures indicate the lung-liver 
interface regions. The dose maps generated by the single 
VSV approach showed large errors in the regions, regardless 
of the patient. These discrepancies were identified not only 
in the dose maps, but also in the difference maps. However, 
the multiple VSV and DL approach provided similar dose 
maps compared to the MC simulation, as shown in the differ-
ence maps. No significant difference was noted between the 
multiple VSV and DL approach on the dose maps. However, 
this difference is prominent in the error maps. The errors 
at the voxel level were minimum at the lung-liver interface 
regions, kidneys, spleen, and tumors in the liver when the 
DL approach was used.

Figure 5 shows the dose-line profiles of each approach 
acquired using SPECT/CT images of a 63-year-old male 
patient diagnosed with rectal NET who received 177Lu-
DOTATATE of 6.11  GBq. A bone metastatic tumor is 
observed on the horizontal line (A–B) in the figure. A ver-
tical line (C–D) was drawn to pass through the cancer in 
the liver and region of the lung-liver interface. As shown in 
the dose-line profile along the horizontal direction, the DL 
approach was approximately identical to the MC simulation, 

Fig. 2   The Bland–Altman plots for comparison of dose estimation for 
each organ between the MC simulation approach and three different 
approaches. The first column is for the single VSV approach, the sec-
ond for the multiple VSV approach, and the third for the DL-based 
approach. The dashed lines represent the baseline at − 5 and 5%

◂
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particularly in the bone metastasis region. Furthermore, the 
superiority of the DL approach was highlighted for metas-
tases in the liver region, as shown in the vertical dose-line 
profile. In the lung-liver interface region, the multiple VSV 
approach was as accurate as the DL approach.

Voxel‑Wise Correlation

The voxel-wise correlations between MC simulation and 
the three different approaches were analyzed to observe 
the accuracy of each model at the voxel level. As shown in 
Fig. 6-a and d, the single VSV approach overestimated the 
doses in the high-dose range (> 5 Gy) and underestimated 
the doses in the low-dose range (< 5 Gy). The multiple VSV 
and DL approach showed a similar correlation. However, 
the multiple VSV approach underestimated doses in the 
low-dose range, as shown in Fig. 6-b and e but it accounted 
for the underestimation when the DL approach was applied, 
as shown in Fig. 6-c and f. Furthermore, the DL-based 
approach had a slightly narrower plotting shape than that 
in the multiple VSV approach. The voxel-wise correlations 
were 0.9809, 0.9939, and 0.9954 over the entire dose range 
for the single VSV, multiple VSV, and DL approach, respec-
tively, and 0.9641, 0.9891, and 0.9911 over the low-dose 
range, respectively.

Calculation Time

The computation time for the MC simulation was longer 
than 48 h, although the simulation was executed for 1% of 
time-integrated activity. Furthermore, the simulation time 
increased with the total time-integrated activity. The time 
for the single VSV, multiple VSV, and DL approach was 
approximately 1, 2, and 3 s, respectively, including image 
file input/output and dose map generation. The time taken by 
these three approaches were not affected by the total time-
integrated activity.

Discussion

A DL network with residual learning for accurate voxel-
based dosimetry was proposed and validated in this study. 
Validation was performed at the organ and voxel levels. The 
single VSV approach showed the highest error among the 
three approaches for organ-specific dose estimation, as pre-
sented in Table 1, and as discussed in previous studies [9, 10, 
29]. As the single VSV approach assumes that the medium 
properties of the human body are the same as that of water, 
an error occurs in the medium where the density is different 
from that of water. In contrast, the multiple VSV and DL 
approach considered the characteristics of the medium prop-
erty at the voxel level through the CT images. Therefore, 

these two approaches provided accurate voxel-based dose 
estimations for most voxels. The errors of organ-specific 
dose estimation obtained using the two approaches were 
less than 5%, regardless of the organ regions, as presented 
in Table 1. Although the multiple-VSV approach was suf-
ficiently accurate at the organ level, it would be a result of 
cancelation of positive and negative errors at the voxel level 
occurring in the process of summing the values of voxels. 
Therefore, it can be inferred that the multiple VSV approach 
has room for improvement compared to MC when viewed 
in units of voxels.

In this study, the DL network was trained using a resid-
ual learning strategy. The network could predict a relatively 
accurate initial dose map at an early time, because a mul-
tiple VSV dose map was used for the residual map. As the 
learning progresses, the network recognizes the discrep-
ancy between the label map (i.e., the MC dose map) and the 
predicted dose map. Finally, a network was constructed to 
compensate for the error between the residual map and label 
map. The effect of this compensation is reflected at the voxel 
level by an error map, dose-line profile, and voxel-wise cor-
relation. The DL approach compensated for underestimation 
and overestimation, especially in the tumor and organ inter-
face regions, as shown in Figs. 3 and 4. This effect was more 
prominent in the dose-line profile as shown in Fig. 5. The 
multiple VSV approach underestimated doses in high-dose 
regions, but it was alleviated when the DL approach was 
applied. Furthermore, the compensation resulted in narrower 
voxel-wise correlation plots, as depicted in Fig. 6. Although 
the DL approach takes 3 s in addition to the time cost for 
residual map generation using the multiple VSV approach, it 

Fig. 3   Relative and absolute error maps of single VSV, multiple VSV, 
and DL-based approaches compared to MC simulation with corre-
sponding CT and dose maps for a 74-year-old male patient diagnosed 
with rectal NET
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could be inferred that the additional time is worth consider-
ing in terms of accuracy.

One of the limitations of this study is the small number 
of 177Lu-DOTATATE SPECT/CT datasets. Although patch-
based learning and cross-validation have been applied to 
prevent network overfitting, validation of the network with 
datasets from a large population is required. The second 
limitation is that scatter correction was not applied for the 
reconstruction of the 177Lu-DOTATATE SPECT/CT dataset. 

Validation of the network using SPECT/CT images recon-
structed with scatter correction is required. However, this 
does not affect the intrinsic performance of the network.

The network used in this study was similar to that sug-
gested in a previous study, but it involved residual learning 
to improve the reliability of the network [20]. Furthermore, 
68 Ga-NOTA-RGD PET/CT diagnostic images were used 
in a previous study. Moreover, the SPECT/CT of 177Lu-
DOTATATE was used in this study, which is a therapeutic 
radiopharmaceutical method. Therefore, the robustness of 
the U-net-based DL network on different types of radio-
isotopes was validated, although there are differences from 
previous studies. This fast and accurate voxel-based dosim-
etry tool can be used for practical patient-specific dosimetry 
after targeted radionuclide therapy to optimize the injection 
dose for safety and efficacy of the therapy. In particular, it 
would be helpful for the development of a new 177Lu-based 
radiopharmaceutical, such as PSMA, because dosimetry is 
required in clinical trials.

Conclusions

The proposed DL approach was used for voxel-based dosim-
etry of 177Lu-DOTATATE treatment cases, which involved 
residual learning for precise dose estimation. The network 
was validated by comparison with MC simulation at the 
organ and voxel levels. In addition, the single VSV and 
multiple VSV approaches were used for parallel compari-
son. The single-VSV approach showed the highest error at 
the organ and voxel levels compared to the MC simulation. 

Fig. 4   Relative and absolute error maps of single VSV, multiple VSV, 
and DL-based approaches compared to MC simulation with corre-
sponding CT and dose maps for a 69-year-old male patient diagnosed 
with rectal NET

Fig. 5   The dose-line profile of 
MC, single VSV, multiple VSV, 
and DL-based approaches
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The multiple-VSV approach yielded sufficiently accurate 
dose estimation, but mild errors were observed at the voxel 
level. In contrast, the DL approach was superior not only at 
the organ level but also at the voxel level. Dose estimation 
through the deep learning–based approach was approxi-
mately the same as that in the MC simulation.

It is expected that the network could yield reliable result to the 
external dataset as residual learning strategy was applied although 
the network was trained using a small dataset. In other words, the 
network is stable because the residual map was used for the net-
work provided initial information for prediction. Accordingly, 
the proposed deep learning network is useful for accurate and 
fast dosimetry after radiation therapy using general 177Lu-labeled 
radiopharmaceuticals. As a result, safe and optimized therapy 
can be achieved by efficiently managing the administration of 
radiopharmaceuticals through the accurate dosimetry.
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