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Abstract

Older patients are at high risk of infections, which often present atypically and are associated with high morbidity and
mortality. Antimicrobial treatment in older individuals with infectious diseases represents a clinical challenge, causing an
increasing burden on worldwide healthcare systems; immunosenescence and the coexistence of multiple comorbidities
determine complex polypharmacy regimens with an increase in drug—drug interactions and spread of multidrug-resistance
infections. Aging-induced pharmacokinetic and pharmacodynamic changes can additionally increase the risk of inappropriate
drug dosing, with underexposure that is associated with antimicrobial resistance and overexposure that may lead to adverse
effects and poor adherence because of low tolerability. These issues need to be considered when starting antimicrobial
prescriptions. National and international efforts have been made towards the implementation of antimicrobial stewardship
(AMS) interventions to help clinicians improve the appropriateness and safety of antimicrobial prescriptions in both acute
and long-term care settings. AMS programs were shown to decrease consumption of antimicrobials and to improve safety
in hospitalized patients and older nursing home residents. With the abundance of antimicrobial prescriptions and the recent
emergence of multidrug resistant pathogens, an in-depth review of antimicrobial prescriptions in geriatric clinical practice
is needed. This review will discuss the special considerations for older individuals needing antimicrobials, including risk
factors that shape risk profiles in geriatric populations as well as an evidence-based description of antimicrobial-induced
adverse events in this patient population. It will highlight agents of concern for this age group and discuss interventions to
mitigate the effects of inappropriate antimicrobial prescribing.

Key Points

Older patients are at high risk of infections and adverse
events due to antimicrobial medications.

Inappropriate antimicrobial use contributes to complica-
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tions, mainly due to drug underexposure that leads to
antimicrobial resistance, and drug overexposure that
leads to adverse effects and poor adherence because of
low drug tolerability.

Antimicrobial stewardship interventions addressing
adherence to guidelines, dosage adjustment in liver and
kidney dysfunction, as well as formulary adaptations
and therapeutic drug monitoring can be lifesaving and
improve the safety and effectiveness of antimicrobial
treatments.
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1 Introduction

Infections are common in older and frail patients and are
associated with a significantly higher risk of morbidity,
mortality, and health care costs [1]. A diagnosis of infec-
tion in the elderly may be challenging because classic
symptoms may lack or mimic those of a comorbid condi-
tion [2, 3]. Community-acquired pneumonia, for example,
may present with confusion only and this will delay the
diagnosis, especially in patients with underlying cogni-
tive impairment or dementia. On the other hand, elderly
patients may have fever without apparent infections, thus
making a very difficult decision on how and when to start
antibiotics [3, 4]. However, the choice of the class of anti-
microbial agents in older patients is often a challenging
issue. Indeed, the type of antibiotic should consider fac-
tors related to patient, culprit pathogen (if and whenever
possible), pharmacokinetic (PK) and pharmacodynamic
(PD) properties, and the presence of polypharmacy, which
may significantly increase the risk of developing adverse
drug reactions and interactions.

The aim of this review was to describe the PK and PD
aspects that may affect the safety of antimicrobials in
older patients, as well as their impact on polypharmacy
and drug interactions involving antimicrobial agents.
Potentially useful interventions for reducing the risk of
drug interactions when prescribing antimicrobials to older
patients are also reviewed.

1.1 Search Strategy

Identification of relevant articles to 1 September 2022 was
performed on standard databases (MEDLINE and Cochrane
Library) by combining the following keywords: ‘Antimicro-
bial*’; ‘older or elder* or over 65 or aging’; ‘drug-related or
medication-induced’. Search results were limited to studies
written in the English language from 1990 to 2022. For the
key studies, we reviewed the bibliographies and citations and
performed an author search to identify any additional stud-
ies. Two independent reviewers (LS and AC) identified and
summarized the study characteristics (design, sample size,
demographics, and clinical data), thereby selecting studies
deemed relevant for the aim of this review. 5291 articles
were originally included; studies were initially screened
based on title and abstract and 4890 articles were excluded.
The full-text of the remaining 401 articles was screened and
213 were not found to fulfil the aim of the present review
and were finally excluded, resulting in the inclusion of 188
articles.

2 Age-Related Changes
in Pharmacokinetics/Pharmacodynamics
and their Impact on Safety
and Tolerability of Antimicrobial Agents

PK processes (absorption, distribution, metabolism, and
excretion) undergo relevant modifications during aging
(Table 1). The loss of functional capacity of several

Table 1 Age-related PK modifications potentially associated with antimicrobial adverse effects

PK phase PK change =¥ consequence
Absorption 1. | Gastric acid production =¥ | drug dissolution and bioavailability (e.g. fluconazole, itraconazole) [8]
2. | Gastric motility, small bowel surface area, and splanchnic blood flow =¥
| drug absorption [15, 18]
Distribution 1. 1 Adipose tissue =¥ 1 half-life and toxicity of lipid-soluble antimicrobials (e.g. fluoroquinolones, macrolides, rifampin, tetracy-
clines, imidazole) [23, 24]
2. | Lean body mass and total body water =¥ | distribution and 1 plasma concentration and toxicity of hydrophilic antimicrobials
(e.g. aminoglycosides, p-lactams, glycopeptides) [25, 26]
3. 1 Interstitial fluid accumulation (e.g. edema, ascites) =¥ | concentration of hydrophilic antimicrobials with 1 risk of AMR [25,
26]
4. Hypoalbuminemia (e.g. malnutrition/proteinuria, sarcopenia) =%
1 concentration and toxicity of highly protein bound antimicrobials (e.g. ceftriaxone, clindamycin, penicillins, sulfonamides [27,
30]
Metabolism 1. | Hepatic blood flow and CYP enzyme activity =» 1 half-life and toxicity of antimicrobials undergoing liver metabolism (e.g.
azoles, antiretrovirals, fluoroquinolones, macrolides) [34-36]
2. | Availability of CYP hepatic metabolism (e.g. polypharmacy) =¥ 1 drug toxicity and risk of drug—drug interactions (e.g.
azoles, antiretrovirals, fluoroquinolones, macrolides) [37—41]
Excretion 1. | Renal blood flow and glomerular filtration rate =¥ 1 half-life, serum concentration, and toxicity of antimicrobials undergoing

renal excretion (e.g. aminoglycosides, B-lactams, fluoroquinolones, trimethoprim/sulfamethoxazole) [62-71]
2. Renal replacement therapy =¥ 1 antimicrobial drug removal with | serum concentration and 1 risk of AMR

AMR antimicrobial resistance, CYP cytochrome P450, PK pharmacokinetics, | indicates decreased, 1 indicates increased
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organs and reduced homeostasis plays a key role in the
pathophysiology of these age-related changes. However,
changes in PK may also result from the coadministra-
tion of selected drugs, as is the case for several antimi-
crobial agents. In this section, we summarize the most
relevant modifications in PK occurring during aging, and
PK interactions involving antimicrobial agents relevant
to older patients. We will also review the peculiar PD
processes involving antimicrobial agents and the impact
of PK alterations on PD.

2.1 Absorption

Aging is characterized by a reduction in esophageal peri-
stalsis, which contributes to the observed increase in the
prevalence of reflux disease in advanced age [5]. The
resulting increase in exposure of the esophageal mucosa
to acid secretions [6] may lead to an increased risk of
esophageal lesions caused by drugs [7]. Aging is also
characterized by a reduction of gastric acid secretion [8],
although such a reduction was not confirmed in subjects
without Helicobacter pylori infection or gastric mucosal
atrophy [9, 10]. In addition, no significant change in terms
of atrophy or intestinal metaplasia was detected during
long-term therapy with proton pump inhibitors [11], a very
common and often inappropriate practice among older
patients [12]. However, an increase in gastric pH, espe-
cially due to proton pump inhibitors or calcium carbonate
use, can alter both the solubility and chemical stability of
B-lactams, macrolides azoles, and atazanavir, thus reduc-
ing bioavailability [13]. Conversely, acidic drugs such as
raltegravir have shown to become more available in less
acidic environments, with potential increased bioavail-
ability and toxicity [14]. Gastric emptying and peristal-
sis are also slowed during aging [15, 16], and splanchnic
blood flow and bowel surface are reduced [17]; all these
factors can contribute to decrease the bioavailability of
amoxicillin and clavulanic acid when assumed after the
meal [18]. The proper use of these agents in elders with
altered gastrointestinal mobility needs to be addressed.
Reduced active transport function may also lead to a
significantly lower bioavailability of selected drugs [19,
20]. Drug interactions causing an inhibition of intesti-
nal P-glycoprotein (P-gp) may affect either absorption or
presystemic metabolism. For example, inhibition of P-gp
by clarithromycin or levofloxacin may increase the serum
concentration of sulfonylureas, such as glipizide, leading
to refractory hypoglycemia [21-23]. Similarly, inhibition
of intestinal P-gp by clarithromycin and erythromycin may
increase digoxin concentration and toxicity [24]. Finally,
specific antifungal agents, such as itraconazole and caspo-
fungin can also inhibit P-gp [25].

2.2 Distribution

Several changes in physiology occur in body composition
with aging and may significantly impact drug distribution
(Table 1). Aging is associated with an increase in body fat
mass by approximately 20-40% and a decrease in total body
water and lean body mass by approximately 10-15% [26].
These changes result in a significant increase of the vol-
ume of distribution (Vd) for lipophilic drugs, such as mac-
rolides, fluoroquinolones, rifampin, and tetracyclines, with
consequent prolongation of their half-life [27]. Similarly,
aging is associated with a significant reduction of the Vd
for water-soluble drugs, including f-lactams, glycopeptides,
aminoglycosides, and azoles, with a consequent more rapid
increase in plasma concentrations [28] and the need to start
with lower doses [29].

Aging-induced modifications of plasma protein binding
have shown to be less relevant for drug therapy, as com-
pensatory mechanisms of drug redistribution generally lead
to stable steady-state unbound drug concentrations [25,
30]. Indeed, changes in protein binding may influence the
area under the curve of the unbound fraction (f;, AUC) for
few drugs highly extracted by the liver, extensively protein
bound, and administered intravenously [31], such as halo-
peridol [32] and theophylline [33]. However, several dis-
eases frequently observed in older patients may lead to more
pronounced changes in protein binding capacity that cannot
be ascribed to the aging process [31]. Furthermore, some
antimicrobial medications may undergo protein binding drug
interactions that increase the risk of drug toxicity. In this
regard, cotrimoxazole may displace methotrexate and sulph-
onylureas from plasma protein binding sites, thus rising their
concentrations and leading to increased risk of hypoglyce-
mia and severe bone marrow depression [25], respectively.

Blood-brain barrier permeability undergoes significant
modifications during aging, which may alter drug PK in
the central nervous system (CNS). P-gp function declines
during aging, which may cause an increased influx of toxic
substances in the CNS, and a consequent increased risk
of developing neurodegenerative diseases [34], as well as
excessive cerebral levels of drugs and xenobiotics [35]. Until
now, antibiotics seem to have a less prominent inhibitory
effect on the blood—brain barrier P-gp activity: the rate of
transfer of verapamil from plasma to brain was unaffected
by the coadministration of clarithromycin, suggesting that a
clinical dose of clarithromycin does not affect P-gp activity
at the blood-brain barrier [36].

2.3 Metabolism
Relevant changes in metabolism occur during aging

(Table 1). A 20-30% reduction in liver volume is observed
with aging [37] and hepatic blood flow is reduced by
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approximately 20-50% [38, 39]. These anatomical and func-
tional changes lead to reduced hepatic first-pass effect, with
relevant consequences for specific drugs [20, 40]. For exam-
ple, drugs undergoing extensive first-pass metabolism may
have their bioavailability increased [41, 42], while drugs
that need to be activated in the liver may have their bio-
availability reduced [43]. In older patients, a reduction up
to 40% of the hepatic clearance of drugs undergoing flow-
limited metabolism has been observed [39, 44]. Cytochrome
P450 (CYP)-mediated phase I oxidization, reduction, and
hydrolysis reactions are impaired to a greater extent with
respect to phase II conjugation reactions, mainly due to the
reduced hepatic blood flow and overall liver size [39, 44].
The effects of aging on CYP activities are still to be elu-
cidated [45-47]. The aging process per se does not affect
most CYP enzymatic activities and enzyme affinity for their
substrates. Rather, the age-related reduced phase I hepatic
clearance is largely to be ascribed to the above morphologi-
cal and circulatory changes [37, 48]. Nevertheless, an age-
related reduction by approximately 20% has been observed
in the metabolism of CYP2D6 substrates [49, 50]. Such a
finding was not confirmed for CYP3A subfamily substrates
[51-53], and former evidence suggests that aging per se
has no relevant impact on the activation of some important
CYPs, including CYP3A4, CYP2D6 and CYP1A2 [54, 55].

Multiple antimicrobial medications, including fluoroqui-
nolones, macrolides and antifungal azoles, undergo first-pass
hepatic metabolism; after phase I oxidation and phase II
conjugation processes, these drugs are transformed into
hydrosoluble compounds that can be renally excreted [13,
56]. Among macrolides, erythromycin, clarithromycin, and
telithromycin, but not azithromycin, are able to inhibit both
intestinal and hepatic CYP3A4 [25, 57, 58]. Coadministra-
tion of these antimicrobials and other selected CYP3A4
substrates, including dihydropyridine calcium channel
blockers, simvastatin, atorvastatin, lovastatin, cyclosporine,
midazolam, and tacrolimus, may be harmful because of
drug—drug interactions and increased risk of adverse effects.
Careful evaluation of drug regimens is thus needed in order
to limit the risk of confusion, sedation and falls from benzo-
diazepines [59, 60], hypoglycemia from sulfonylureas [61],
rhabdomyolysis from statins [62], severe hypotension from
calcium channel blockers [63], nephrotoxicity from immu-
nosuppressive medications [25], and toxicity of phenytoin
and theophylline [25, 57, 58, 64]. Furthermore, erythromy-
cin, and to a smaller extent clarithromycin, and telithromy-
cin may increase the risk of bleeding in older patients tak-
ing warfarin [25, 57, 58]. Additionally, macrolide-induced
CYP3A4 inhibition may increase serum concentrations of
cholinesterase inhibitors such as donepezil, thus enhancing
vagal signaling and favoring dysregulation of sinus node
cardiac conduction, with subsequent risk of sinus brady-
cardia, bradyarrhythmias, and neurocardiogenic syncope
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[65, 66]. Despite the fact that recent evidence did not show
an increased risk of cardiac events in older patients taking
donepezil or clarithromycin, the use of antimicrobial medi-
cations other than clarithromycin in this population should
be preferred whenever possible [67]. Finally, prolongation
of the QTc interval potentially leading to torsade de pointes
and death may be caused by antimicrobial-induced CYP3A4
inhibition, with increased levels of some antiarrhythmics,
tricyclic antidepressants, and antipsychotic agents [25, 68].
Of note, several antimicrobial medications have been asso-
ciated with risk of QT prolongation: azoles, erythromycin,
clarithromycin, chloroquine, moxifloxacin and to a lesser
extent ciprofloxacin and levofloxacin. Among macrolides,
azithromycin does not inhibit CYP3A4 and was originally
considered of low cardiotoxic potential; however, recent evi-
dence showed a small increase in the risk of cardiac death
among older patients with pneumonia [69], while discordant
results in other settings need further investigation [70, 71].
To date, the macrolide/ketolide solithromycin has shown no
effects on cardiac repolarization and is considered well toler-
ated in patients with QT risk when a macrolide is indicated
[68, 72].

Inhibition of CYP3A4 and CYP1A2 enzymes by cipro-
floxacin, levofloxacin, and moxifloxacin may increase the
toxicity of several drugs commonly used in the geriatric
setting, such as benzodiazepines, fentanyl, carbamazepine,
simvastatin, lovastatin, atorvastatin, theophylline, haloperi-
dol, and warfarin [60, 73].

Conversely, rifampin induces CYP2C9, CYP2C19, and
CYP3A4 enzymes, thereby decreasing the bioavailability of
several drugs, including warfarin, phenytoin, valproic acid,
caspofungin, azoles, digoxin, amiodarone, simvastatin, ator-
vastatin, lovastatin, B-blockers, and sulfonylureas [25, 73].

2.4 Excretion

Renal excretion of drugs undergoes relevant modifications
during aging (Table 1). However, deterioration of kidney
function with advancing age can be exacerbated by poly-
pharmacy and multimorbidity, which are highly prevalent
in older populations and are known to affect renal function
independently of aging [74].

In general terms, a loss of renal mass up to 20-25% [75]
and a decrease of kidney length by 15% characterizes kidney
aging [76]. Histological changes in the aging human kidney
include increased interstitial fibrosis, tubular atrophy, arte-
riosclerosis, and glomerulosclerosis [77-79]. Such morpho-
logical changes result in relevant functional modifications
affecting the PK of either water-soluble drugs or water-
soluble metabolites of lipophilic drugs, with a consequent
increased risk of ADRs [80]. Indeed, the age-related reduc-
tion in the clearance of inulin ranges between 13% and 46%
[74, 77, 81-83]. Aging is also associated with important
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tubule-interstitial changes, including tubular diverticula,
atrophy and fat degeneration, reduced sodium reabsorption,
reduced potassium secretion, interstitial fibrosis, and medul-
lar hypotonicity [84].

Many antimicrobial agents can undergo drug—drug inter-
actions with renally excreted drugs. For instance, digoxin,
methotrexate, and amantadine may affect renal tubular secre-
tion of cotrimoxazole and increase its serum concentration
and toxicity [25]. Similarly, ciprofloxacin can decrease
tubular secretion and renal excretion of methotrexate,
potentially leading to severe hepatic, renal, bone marrow,
and dermatological adverse effects [25, 85]. Furthermore,
use of probenecid, methotrexate, aspirin, and indomethacin
can decrease tubular secretion of -lactams, thus increasing
their serum concentration. More specifically, probenecid
was shown to double the AUCs of amoxicillin, ampicillin,
ticarcillin and nafcillin, and increase the AUC of meropenem
by 55% [25]. In this regard, administration of probenecid to
boost B-lactam concentrations should be avoided in older
patients as well as individuals with renal impairment or a
history of seizure, as it may enhance the risk of antibiotic-
induced convulsions [25, 86].

2.5 Pharmacokinetics/Pharmacodynamics

Several PD changes occur with aging [87]. In this context,
PD processes involve the multiple relationships between
antimicrobial serum concentration and binding capacity to
microbial antigens, which in turn lead to cell growth inhibi-
tion or death, as measured by minimum inhibitory concen-
tration (MIC) [88, 89]. Antimicrobial drugs can have either
a concentration-dependent (e.g. aminoglycosides, metroni-
dazole, fluoroquinolones, daptomycin, and tetracyclines) or
time-dependent killing activity (e.g. f-lactams, clindamy-
cin, and vancomycin). While PD activity of concentration-
dependent antibiotics mainly depends on the maximum
plasma concentration reached, the killing activity of time-
dependent antibiotics depends on the amount of time during
which the plasma concentration exceeds the MIC for the
organism [88—90]. In particular, optimization of antibiotic
treatment in patients with decreased renal function should
take into consideration the type of bacterial killing. Indeed,
the risk of overdosing of concentration-dependent antibiot-
ics can be addressed by increasing the dosing intervals (e.g.
changing from 6 to 8 h or 12 to 24 h) and maintaining the
same dose, thereby maximizing the peak serum dose [91].
Conversely, reducing the dose of time-dependent antibiot-
ics in older patients with impaired renal function may be
performed by decreasing the dose and continuing with the
same dose interval [91].

Given the tight interconnections between PK and PD, the
two processes need to be considered when evaluating doses
and times of antimicrobial administration.

Indeed, the PK/PD ratio is used to estimate the antimi-
crobial effectiveness by correlating free drug (f) exposure
(area under the plasma concentration-time curve over 24 h
of dosing [fAUC24]) to measures of drug potency (MIC).
Other PK/PD parameters used in clinical practice are repre-
sented by fCmax/MIC, the fAUC,,/MIC (i.e. the area under
the inhibitory plasma concentration-time curve [AUIC]),
and the time above the MIC (T/MIC) [88]. In this regard,
several studies have yet shown the benefits of an integrated
approach combining PK and PD parameters in patients with
infectious diseases. For instance, Preston et al. showed that
among hospitalized patients with respiratory, skin, or com-
plicated urinary tract infections, high fAUC,,/MIC values
were associated with lower rates of clinical failure and low
prevalence of adverse effects [92]. PK/PD parameters may
also be used to monitor antimicrobial concentrations and
clinical course of infections, thus assisting the clinician to
intercept early antimicrobial resistance and the development
of harmful adverse effects [93]. Furthermore, PK/PD mode-
ling was adopted to tailor the dosing regimen of gentamycin
to decreased renal function in patients with end-stage renal
disease (ESRD) [94]. In other studies, PK/PD modeling
was used to test the susceptibility of emerging strains of
multidrug-resistant bacteria to traditional antibiotics, such as
p-lactams and carbapenems [95, 96]. Integration of PK and
PD can then be necessary to tailor antimicrobial treatments
that may help achieve therapeutic goals, prevent selection
of drug-resistant bacteria, and minimize toxic effects in the
geriatric population [89, 93, 96].

3 Clinical Profile of Older Patients at Risk
of Adverse Events and their Consequences

Older individuals are particularly prone to develop adverse
drug events (ADEs) related to antimicrobial medications
[60, 73]. Polypharmacy, comorbidities impacting renal and
liver functioning, and reduced adherence to therapy due to
cognitive and functional barriers (e.g. dysphagia), as well as
age-related changes in PK and PD, contribute significantly to
the higher incidence of antimicrobial ADEs in older patients
[60, 73]. In this section, we describe the most important
conditions whose early diagnosis and constant monitoring
may intercept those segments of the elderly population at
major risk of antimicrobial-associated ADEs.

3.1 Chronic Kidney Disease

Antimicrobial prescription in chronic kidney disease (CKD)
represents a twofold clinical challenge, as inappropriately
low or high doses are both deleterious. Underdosing is
indeed associated with therapeutic failure and increased
antimicrobial resistance, which is more common in CKD
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[97, 98]. Conversely, overdosing may lead to toxicity and
ADEs [99]. Inadequate estimation of renal function in older
patients is one of the factors that complicate antimicrobial
appropriateness [100]. Indeed, decreased serum creatinine
levels secondary to muscle wasting, sarcopenia, and pro-
tein catabolism may lead to overestimation of estimated
glomerular filtration rate (eGFR) calculated by creatinine-
based Modification of Diet in Renal Disease (MDRD),
Cockgroft—Gault, and Chronic Kidney Disease Epidemiol-
ogy Collaboration (CKD-EPI) equations [101], which are
generally reported in product labels. Direct measurement
of creatinine clearance or measured GFR (mGFR) should
then be used to avoid overdosing of hydrophilic medica-
tions [102], especially in patients with mild—moderate CKD.
Alternatively, recent guidelines have advocated the incorpo-
ration of innovative biomarkers such as serum cystatin C to
improve the estimation of GFR among older patients in the
‘creatinine-blind range’ [103]. In these individuals with an
eGFR between 45 and 70 mL/min/1.73 m? and urine albu-
min/creatinine < 30 mg/g, GFR estimation based on serum
creatinine levels frequently leads to overestimation of renal
function, potentially causing increased drug bioavailability
and toxicity [103].

However, appropriate eGFR estimation is not always
accompanied by correct antimicrobial dosing, despite the
fact that dosage modifications of most renally cleared anti-
microbials are implemented in most clinical guidelines.
Indeed, non-adherence with dosing guidelines is common
in patients with CKD, especially in critically ill patients
in intensive care units where physicians often do not tailor
antimicrobial dosing to eGFR in order to avoid underdosing
and limit antimicrobial resistance, which is very common in
these settings [104, 105]. Studies assessing the use of anti-
biotics at higher than recommended doses led to contrasting
results, depending on the drug used and the dose reached.
Indeed, a recent study evaluating the effects of overdosing
of cephalosporins in advanced CKD did not find any asso-
ciation with increased adverse effects or treatment failure
in older adults with eGFR <30 mL/min/1.73 m? [106]. In
contrast, older patients treated with higher doses of fluoro-
quinolones reported to have increased 14-day hospitalization
rates due to altered mental status [107]. However, the defini-
tion of appropriate dosing of antimicrobial medications in
CKD is likely contrasted by the limited number of studies
specifically conducted in patients aged 65 years or older,
which mainly evaluated dosage adjustment of levofloxacin
and meropenem [73]. However, the use of dosages tailored
to renal function does not always limit the risk of over- and
underexposure to antimicrobial treatments, as revealed by a
recent study conducted in older hospitalized patients treated
with appropriate doses of levofloxacin [108]. In this context,
implementation of therapeutic drug monitoring (TDM) in
an acute care setting when dealing with older patients with
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CKD may be useful to approach antimicrobial dosage adjust-
ment and prevent antimicrobial adverse effects and toxicity
[109].

3.2 Liver Disease

Antimicrobial treatment in patients with liver diseases is
a clinical challenge, as these patients are often character-
ized by a high risk of serious infections and a less favorable
risk/benefit profile [110, 111]. Infections represent the most
common and life-threatening complication of liver cirrhosis,
with an overall incidence ranging from 25 to 40% in patients
with decompensated cirrhosis [112]. The most frequent
type of infections in patients with liver cirrhosis are repre-
sented by spontaneous bacterial peritonitis, followed by uri-
nary tract infections, pneumonia, and soft tissue infections
[113]. According to recent evidence, even mild impairment
of liver function may increase the susceptibility to infec-
tions. Indeed, patients with non-alcoholic fatty liver disease,
whose prevalence increases with advancing age, are more
vulnerable to infections [114]. Treatment of patients with
liver dysfunction is also challenging as many factors con-
cur to impair antimicrobial metabolism. Liver dysfunction
directly affects clearance of several antibiotics that undergo
phase I metabolism, have a high protein binding, or are asso-
ciated with a high prevalence of hepatotoxicity [115, 116]. In
the presence of hypoalbuminemia related to impaired protein
synthesis, highly bound antimicrobials undergo an increase
in their free fraction with a high potential of adverse side
effects and drug-related toxicity. Furthermore, their serum
concentration tends to decrease more easily over time, thus
potentially leading to antimicrobial resistance when fac-
ing bacterial infection from organisms with a high minimal
inhibitory concentration (MIC) [117]. Prescription of cef-
triaxone, vancomycin, ertapenem, and aztreonam, which are
commonly used in acute care settings, should be carefully
considered because of the high affinity with serum albumin
[118]. Furthermore, most f-lactams that are not metabolized
by the liver can undergo indirect fluctuations in their serum
concentration related to increased Vd in patients with third-
space retention and those with renal dysfunction, which is
commonly associated with liver cirrhosis [115]. On the other
hand, many lipophilic antibiotics, including fluoroquinolo-
nes, macrolides, tetracyclines, oxazolidinones, and metro-
nidazole, are less affected by Vd but can shift from cells to
plasma in patients with hypoalbuminemia [101]. Current
evidence suggests antibiotics that can be safely prescribed
in cirrhotic patients of all ages, with the Child—Pugh score
guiding dosage [115, 119]; however, despite the fact that
TDM would help achieve the optimal concentrations in this
population, to date no study has been specifically conducted
in patients older than 65 years of age.



Safety and Tolerability of Antimicrobial Agents in the Older Patient

505

3.3 Polypharmacy

The high prevalence of multimorbidity and polypharmacy
among older adults contributes to the relatively high risk
of interactions between antimicrobials and other drugs [60,
73]. Drug—drug interactions put the patients at risk of ADEs
and negative health outcomes [60, 73] but are not easily
predictable. As such, prescription of antimicrobials should
always be preceded by a review of a patient’s medication
list for sources of potential drug—drug interactions (Table 2)
[120-142]. Some interactions are particularly bothersome
and deserve special attention.

Prescription of trimethoprim and sulfamethoxazole
inhibits resorption of potassium in the distal renal tubule,
resulting in increased risk of hyperkalemia and hospi-
talization [143]; caution is needed when used along with

Table 2 Drug—drug interactions

angiotensin-converting enzyme inhibitors (ACEi) and
potassium-sparing diuretics. Additionally, trimethoprim/
sulfamethoxazole increases the toxicity of phenytoin [144]
and sulfonylureas [145], leading to neurological symptoms
(confusion, vomiting and coma) and increasing the risk of
hypoglycemia, respectively. Another important interaction
involves antibiotics able to suppress bacterial growth and
production of vitamin K in the gastrointestinal tract, thereby
potentiating the effect of warfarin. Indeed, prescription of
warfarin with some medications, including quinolones, flu-
conazole, trimethoprim-sulfamethoxazole, and amoxicillin,
may increase the international normalized ratio (INR) and
the risk of bleeding [146]. Similarly, some antimicrobi-
als interfere with the activity of the P-gp transporter and
CYP3A4 enzyme, thus leading to potential interactions with
direct oral anticoagulants (DOACs) [147, 148]. Rifampin

Antimicrobial agent

Interacting drugs =¥ adverse side effect

Aminoglycosides [120]
ity
Amoxicillin, ampicillin [121, 122] Allopurinol =¥ rash
Fluoroquinolones [123-126]
of fluoroquinolones

Ciprofloxacin

Ampbhotericin B, cyclosporin, cisplatin, loop diuretics, tacrolimus, vancomycin =% 1 nephrotoxic-

Medications containing aluminum, iron, magnesium, or zinc; antacids; sucralfate =¥ | absorption

Antiarrhythmics = ventricular arrhythmias

Calcium-containing supplements | absorption of ciprofloxacin

Theophylline =% 1 theophylline concentration

Warfarin =¥ 1 bleeding risk
Serotoninergic drugs (MAOIs, TCAs, SSRIs) =¥ serotonin syndrome

Drugs containing aluminum or magnesium =¥ | azithromycin absorption

Linezolid [127]
Azithromycin [128]

Clarithromycin and erythromycin [129-131] Calcium channel blockers, HMG-Co-A reductase inhibitors, cyclosporine, digoxin, theophylline,
and warfarin; DOACs =¥ 1 concentration of interacting drugs; 1 concentration of the antibiotic
(calcium channel blockers).

Metronidazole [132]

Warfarin =» 1 bleeding risk

Alcohol =¥ disulfiram-like reaction

Rifampin [133]

Antacids =¥ | rifampin concentration

Antiarrhythmics, benzodiazepines, calcium channel blockers, corticosteroids, digoxin, enalapril,
estrogens and/or progestins, methadone, phenytoin, tamoxifen, theophylline, valproate, voricona-
zole, warfarin, DOACs =¥ | concentration of the interacting drugs

Tetracyclines [134—138]
absorption

Drugs containing aluminum, calcium, iron or magnesium; bismuth subsalicylate = | tetracycline

Digoxin = 1 digoxin toxicity

Triazole antifungals [139-141]

Carbamazepine, phenobarbital, phenytoin and rifampin =% | concentration of antifungals

Antiarrhythmics, benzodiazepines, calcium channel blockers, corticosteroids, digoxin, HMG-CoA
reductase inhibitors, sulfonylureas, warfarin, DOACs =% 1 concentration of interacting drugs

Itraconazole, ketoconazole
Voriconazole
Trimethoprim-sulfamethoxazole [142]

Antacids, H2-receptor antagonists, PPIs =¥ | antifungal absorption
Phenytoin, PPIs = 1 concentration of interacting drugs
Phenytoin =¥ 1 phenytoin concentration

Sulfonylureas =¥ hypoglycemia

Warfarin =¥ 1 bleeding risk

ACE inhibitors, potassium-sparing diuretics =¥ hyperkalemia

ACE angiotensin-converting enzyme, DOACs direct oral anticoagulants, HMG-CoA 3-hydroxy-3-methylglutaryl coenzyme A, MAOIs monoam-
ine oxidase inhibitors, PPIs proton pump inhibitor, SSRIs selective serotonin reuptake inhibitors, TCAs tricyclic antidepressants
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is both a cytochrome inducer and a P-gp inducer. Indeed,
its coadministration with DOACs will accelerate their
metabolism, thus causing a reduction of bioavailability of
anticoagulants, with subsequent increased thrombotic risk.
Conversely, administration of DOACs with inhibitors of
CYP or P-Gp will slow the metabolism of DOACsS, thus
increasing their serum concentration and, consequently, the
risk of bleeding. Antimicrobial CYP inhibitors include itra-
conazole, fluconazole, ketoconazole, clarithromycin, and
erythromycin, while antimicrobial P-gp transporter inhibi-
tors include azithromycin, clarithromycin, erythromycin,
itraconazole, and ketoconazole [147, 148].

3.4 Cognitive Impairment

Cognitive impairment represents a risk factor for poor anti-
microbial medication adherence and development of several
infectious diseases, including respiratory and urinary tract
infections, skin and soft tissue infections, and sepsis [149,
150], which are both associated with increased mortality in
this setting [151, 152].

The diagnosis of infections in patients with cognitive
impairment of varying degree and severity still represents
a clinical challenge because of several factors. First, a diag-
nosis of infection is often delayed as cognitive dysfunction
affects patients’ ability to communicate their symptoms and
physicians’ capacity to clinically monitor the course of the
disease [149]. Furthermore, typical symptoms of infections
such as fever, chills, and urinary complaints, are often lack-
ing in patients with low cognitive reserve, while atypical
symptoms often include neurological symptoms that may
contribute to worsen cognitive function, as well as to delay
diagnosis and appropriate management. In this regard, both
urinary tract and respiratory tract infections often manifest
with confusion, dizziness, memory complaints, and coma
[153-155]. In outpatient settings, appropriate diagnosis is
also complicated by difficulties in obtaining high-quality
clinical specimens from patients unable to collect these
samples because of poor cognitive function [149].

Even when infections are promptly recognized and
diagnosed, their appropriate management can be difficult
because of decreased adherence to therapeutic regimens
and potential drug—drug and drug—disease interactions
[156-158]. Memory impairments and forgetfulness may
affect both timing and taking adherence, which have
distinct impacts on clinical outcomes depending on the
pharmacologic properties of the administered drugs [159].
Indeed, for time-dependent antibiotics, administering mul-
tiple doses over the course of the day is necessary to reach
the clinical effectiveness, especially for short half-life mol-
ecules such as f-lactams. As a consequence, both timing
and taking adherence are equally important. Conversely,
for concentration-dependent antibiotics, taking adherence
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is more important than timing adherence, especially for
long half-life antibiotics, as reaching the peak serum con-
centration is necessary to ensure clinical success [159].
In any case, simplification of complex drug regimens and
communications between clinicians, patients, and caregiv-
ers may help increase adherence and improve clinical out-
comes to antimicrobial regimens.

Another factor of concern is represented by the
increased vulnerability of cognitively impaired individuals
to the neurotoxic effects of antimicrobials [160]. Indeed,
several antibiotics, including penicillins, levofloxacin,
macrolides, metronidazole, and antimycobacterial agents,
as well as antivirals and antimalarials, may cause cognitive
adverse effects ranging from mild cognitive problems to
encephalopathy and coma [149]. Many neurological dis-
orders such as epilepsy and stroke can increase the per-
meability of the blood—brain barrier and further enhance
B-lactam neurotoxicity [161]. Furthermore, prolonged
administration of some antimicrobial medications, such
as vancomycin, ampicillin, and streptozocin, may induce
profound changes in the gut microbiota composition, alter-
ing the gut—brain axis involved in the pathogenesis of sev-
eral neurodegenerative disorders [162—-165]. A cumulative
duration-dependent relationship between dementia inci-
dence and days of antibiotic exposure recently emerged
in a retrospective cohort study [166]. The association was
significant after adjustment for several confounding factors
potentially related to cognitive decline, including infec-
tious diseases and dysphagia [166]. Furthermore, exposure
to long-term antibiotic use during mid-life was recently
associated with decline in cognitive performance [167]. In
a study conducted among patients with Alzheimer’s dis-
ease, a 12-month treatment with doxycycline and rifampin
compared with placebo caused a decline in cognitive func-
tion [168]. However, to date the evidence supporting these
associations is still limited and needs further studies to be
confirmed.

4 Adverse Events from Antimicrobial Agents
among Older Patients

All classes of antimicrobials, such as antibiotics, antifun-
gals, antimycobacterial agents, and antivirals, may cause
adverse reactions that can involve one or more organ sys-
tems (Tables 3, 4). Older patients using antimicrobials have
a higher risk of ADRs due to age-related changes in PK and
PD, multimorbidity, and polypharmacy. Although the use of
antimicrobials is widespread among older adults, high-qual-
ity data on ADRs in the older population are often lacking
and only limited information is available on specific ADRs
and their prevalence.



Safety and Tolerability of Antimicrobial Agents in the Older Patient

507

Table 3 Adverse drug reactions to antibiotics

Antimicrobial agents

Common adverse reactions

Adverse reactions at increased risk in older adults

Aminoglycosides [170-174]
Tetracyclines [176, 177]

Sulfonamides and trimethoprim [171-173]
Polymyxins [101, 169]

Oxazolidinones [101, 172]
Macrolides [102, 175, 176]

Glycopeptide [171, 175]
Lipopeptides [179]

B-Lactams [171, 173, 180-188]

Fluoroquinolones [189-191]

Nitroimidazoles [172]
Nitrofurans [101, 172]
Lincosamides [175, 183]

Nephrotoxicity, ototoxicity

Nephrotoxicity, ototoxicity

Photosensitivity, cutaneous infections, esophagi- —

tis, hepatotoxicity, pancreatitis

Nephrotoxicity, gastrointestinal intolerance,
hypersensitive reactions, dermatologic reac-
tions

Nephrotoxicity and neurotoxicity
Thrombocytopenia, neurotoxicity

Gastrointestinal intolerance, hepatotoxicity,
cardiotoxicity, ototoxicity

Nephrotoxicity, ototoxicity, red man syndrome

Nausea, muscle toxicity, eosinophilic pneumo-
nia

Hypersensitive reactions, gastrointestinal
intolerance

Tendinopathy, Clostridioides difficile infection,
cardiotoxicity

Neurotoxicity, cardiotoxicity
Neurotoxicity
Clostridioides difficile infection

Nephrotoxicity, neurotoxicity

Nephrotoxicity

Ototoxicity, neurotoxicity

Nephrotoxicity

Nephrotoxicity, neurotoxicity

Clostridioides difficile infection (broad-spectrum
penicillins and combinations, third/fourth-gen-
eration cephalosporins, carbapenems)

Tendinopathy, neurotoxicity, Clostridioides dif-
ficile infection

Neurotoxicity
Clostridioides difficile infection

Table 4 Adverse drug reactions to antifungals, antimycobacterial agents, and antivirals

Antimicrobial class/agent

Common adverse reactions

Adverse reactions at
increased risk in older adults

Echinocandins [139-141]
Triazoles [139-141]
Amphotericin B [141, 192, 194]

Flucytosine [141]
Isoniazid [175, 184, 195, 196]
Rifampin [171, 175, 184]

Nucleosides/nucleotides excluded reverse transcriptase

inhibitors [198-203]
Derivatives of phosphonic acid [171, 204]
Neuraminidase inhibitors [205, 206]
Interferon-a [207, 208]

Nucleoside/nucleotide reverse transcriptase inhibitors

[209, 210]

Non-nucleoside reverse transcriptase inhibitors [211,

212]
Protease inhibitors [213, 214]

Nausea, hepatotoxicity, skin rash, phlebitis -

Gastrointestinal intolerance, skin rash, hepatotoxicity
Infusion-related reactions, hepatotoxicity, hematologi-

cal effects, nephrotoxicity

Hepatotoxicity, neurotoxicity
Nephrotoxicity

Inhibition of the bone marrow, hepatotoxicity -

Hepatotoxicity

Red-orange discoloration of urine, tears, and sweat

Nephrotoxicity
Gastrointestinal intolerance

Nephrotoxicity, gastrointestinal intolerance

Hepatotoxicity, neurotoxicity

Nephrotoxicity, hepatotox-
icity (association with
isoniazid)

Neurotoxicity

Nephrotoxicity

Influenza-like symptoms, nausea, headache, depression, —

alopecia
Mitochondrial toxicity

Nephrotoxicity, bone toxicity

Dermatologic reactions, hepatotoxicity -

Hyperlipidemia, lipodystrophy, hyperglycemia, insulin  —

resistance
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4.1 Adverse Drug Reactions to Antibiotics
4.1.1 Aminoglycosides

Aminoglycosides can potentially cause ototoxicity and
nephrotoxicity [169, 170]. Older patients are more vul-
nerable and have a greater risk of toxicity with prolonged
length of therapy (>3 days) and concomitant use of oto-
toxic or nephrotoxic agents [101, 171]. Ototoxicity occurs
as both vestibular (e.g., dizziness, ataxia, nystagmus) and
cochlear (e.g., hearing loss) dysfunction in up to 15%
and 2-25% of patients, respectively [172]. Nephrotoxic-
ity is more common than ototoxicity, affecting between
10 and 30% of patients and presenting as acute tubular
necrosis [171, 173]. Chinzowu et al. analyzed the abso-
lute risk of acute kidney injury among older adults due
to aminoglycoside exposure. Among 1853 patients across
eight studies, 15.8% developed acute kidney injury after
treatment with aminoglycosides. The absolute risk was
15.1% (95% confidence interval [CI] 12.8—17.3%) and was
significantly higher than the average risk among younger
patients (10.5%, 95% CI 10.1-10.8%) [174].

4.1.2 Tetracyclines

All tetracyclines such as doxycycline, minocycline, and
tigecycline can potentially cause adverse reactions, includ-
ing photosensitivity, cutaneous infections, esophagitis, and
hepatotoxicity [175, 176], but the prevalence among older
adults has not been specifically investigated.

4.1.3 Sulfonamides and Trimethoprim

Sulfonamides are among the most common drugs associ-
ated with nephrotoxicity, presenting as acute interstitial
nephritis and crystal nephropathy [171, 173]. Other com-
mon toxicities induced by trimethoprim-sulfamethoxazole
are gastrointestinal, hypersensitivity, and dermatologic
reactions [172]. Although rare, the risk of neurotoxicity
induced by sulfonamides is higher among older adults.
Symptoms of neurotoxicity include delirium and psy-
chosis, and more commonly, headache and drowsiness.
The mechanisms are unknown but seem to be related to
glutathione deficiency that is often present in geriatric
patients [101, 169, 172].

4.1.4 Polymyxins
Polymyxins are frequently associated with nephrotoxic-

ity and neurotoxicity. Colistin induces nephrotoxicity, and
particular attention is required among older patients [101].
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Among neurotoxic symptoms, headache, dizziness, and
lower limb weakness are the most common [169].

4.1.5 Oxazolidinones

Thrombocytopenia is the major adverse effect after linezolid
treatment. Duration of treatment and low baseline platelet
count are associated with a higher risk of this ADR [101].
Symptoms of neurotoxicity have also been documented.
Among these symptoms, headaches and peripheral neuropa-
thy seem to be the most common but the incidence in older
patients is unknown. The concomitant use of linezolid and
agents that stimulate the CNS should be avoided due to the
higher risk of neuropsychiatric events [172].

4.1.6 Macrolides

It is well-known that this class of drugs might cause gastro-
intestinal intolerance, hepatotoxicity, cardiotoxicity, and oto-
toxicity [172, 175, 176]. Ototoxicity presents as hearing dec-
rements and tinnitus. For these reasons, macrolides should
be avoided in older patients with baseline hearing problems
[176]. Several studies reported a high risk of QT prolon-
gation leading to cardiac arrhythmias, underlying that this
ADR is limited to patients with higher-risk baseline such as
pre-existing cardiovascular conditions and concomitant use
of drugs, leading to arrhythmias [73, 176, 177]. However,
other studies did not confirm the risk of arrhythmias [101].
Neurotoxicities such as delirium and psychosis are rare, but
although the association is still not clear, neurotoxic events
may occur more easily in older patients [172]. A recent sys-
tematic review by Chinzowu et al. highlighted an overall risk
of acute kidney injury among older patients of 0.3% (95%
CI10.3-0.3%) [174].

4.1.7 Glycopeptides

Nephrotoxicity, ototoxicity, and, more rarely, red man syn-
drome (hypersensitivity reaction with signs of flushing and/
or erythematous rash on the upper torso, neck, and face) are
typically associated with glycopeptides [171]. Nephrotoxic
events are the most feared of these adverse events because
they occur with a high risk in older patients [101]. A recent
meta-analysis by Hirai et al. highlighted that among 634
patients across eight studies treated with teicoplanin, the
overall incidence was 11.0% (95% CI 8.0-13.0), with a
higher risk in patients aged > 65 years [178]. Chinzowu
et al. analyzed the risk of acute kidney injury among older
adults in treatment with glycopeptides across eight studies
(total of 23,431 participants), finding an overall absolute risk
of 19.1% (95% CI 15.4-22.7%) [174]. The nephrotoxicity
occurs as acute tubular necrosis but the mechanism of ADR
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is unknown [171, 173]. Ototoxicity occurs as hearing loss
and/or tinnitus and is generally reversible [169, 175].

4.1.8 Lipopeptides

Common mild ADRSs are constipation, nausea, and vomiting,
while other less frequently reported but severe ADRs include
myopathy and rhabdomyolysis, eosinophilic pneumonia,
drug reaction with eosinophilia and systemic symptoms
(DRESS), tubulointerstitial nephritis, peripheral neuropathy,
and neutropenia [179]. Unfortunately, no data are available
referring to the older population.

4.1.9 B-Lactams

B-Lactam antibiotics are among the most prescribed drugs in
both community and hospital settings [180]. These antibiot-
ics are grouped together based on the f-lactam ring in their
chemical structure, and subdivided into four families: peni-
cillins, cephalosporins, carbapenems, and monobactams.
Hypersensitive reactions are common and frequent ADRs
associated with the use of penicillins, involving approxi-
mately 10% of the population, and with higher rates reported
among older and hospitalized patients [180]. Patients who
are allergic to penicillins may show cross-reactivity towards
the other class. Nevertheless, the cross-reactivity seems to be
overestimated [180, 181]. f-lactam antibiotics are commonly
associated with nephrotoxicity (acute interstitial nephritis),
especially in older patients [73, 171, 173]. Gastrointesti-
nal reactions such as nausea, vomiting, and diarrhea are
frequently associated with f-lactams, more often in older
patients than in adults [182]. Penicillins (broad spectrum),
cephalosporins (third/fourth-generation) and carbapenems
may induce Clostridioides difficile diarrhea and colitis with
a higher risk in patients > 65 years of age [183]. Hepato-
toxicity presenting as cholestasis and jaundice is commonly
associated with the use of amoxicillin-clavulanic acid and
flucloxacillin, with older age and longer duration of treat-
ment as risk factors [181, 184]. Piperacillin/tazobactam may
exacerbate heart failure, delivering a high sodium load [185].
Although rare, serious neurotoxicity related to p-lactam anti-
biotics are described in the literature [186—188], with a high
risk in older patients using piperacillin/tazobactam, cephalo-
sporins (particularly cefepime), and carbapenems [101, 172,
181]. Neurotoxic symptoms include seizures, encephalopa-
thy, myoclonus, tremors, hyperexcitability, and hyperactivity
[101, 172, 181, 186—188]. The ability of p-lactam antibiotics
to induce neurotoxicity seems to be linked to the -lactam
ring [169, 186]. Although this adverse reaction may be
difficult to recognize in critically ill patients, Payne et al.
analyzed the neurotoxicity of cefepime (median age of 69
years), finding that 26% of patients experienced neurotoxic-
ity despite appropriate dosing [188].

4.1.10 Fluoroquinolones

In general, fluoroquinolones are well tolerated; however,
it is well-known that tendinopathy such as Achilles tendon
rupture and Achilles tendinitis are correlated with their use
[189]. The US Food and Drug Administration (FDA) and
European Medicines Agency (EMA) regulatory authorities
recommended special caution in older adults because these
patients are at higher risk of tendon injury and it is sug-
gested they avoid concomitant treatment with a fluoroqui-
nolone and a corticosteroid [190, 191]. CNS effects such as
dizziness, hallucinations, and seizures are not frequent but
seem related to older age [172, 189], particularly in patients
aged > 80 years [175]. Fluoroquinolones can rarely cause
cardiotoxicity, inducing prolongation of the QT interval and
increasing the risk of arrythmia [101, 189]. Furthermore, an
increased risk of Clostridioides difficile infection is well-
documented among older patients in treatment with fluoro-
quinolones [176, 183].

4.1.11 Nitrofurans

Common adverse reactions of nitrofurantoin include neuro-
toxicity, such as headache, dizziness, and drowsiness. The
risk is higher in older adults [101, 172].

4.1.12 Nitroimidazole

Metronidazole can cause neurotoxicity and cardiotoxicity
with prolonged use but the ADRs occur across all ages and
are not specific for older adults [73, 172].

4.1.13 Lincosamide

The most well-known ADR of clindamycin is its disruptive
effect on gut flora and the resultant diarrhea and colitis due
to the overgrowth of Clostridium difficile [175, 183].

4.2 Adverse Drug Reactions to Antifungals

4.2.1 Echinocandins

Echinocandins are reportedly well tolerated [141]. The most
common ADRs of echinocandins are mild and reversible,
such as nausea, elevated hepatic enzymes, rash, and phlebitis
[139-141]. Caution should be advised in older patients with
liver dysfunction.

4.2.2 Triazoles

ADRs of triazoles include abdominal pain, nausea, vom-

iting, diarrhea, skin rash, and sometimes hepatotoxicity
ranging from elevation of serum aminotransferases to fatal
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hepatic failure, especially in patients with pre-existing
hepatic dysfunction [139-141]. Itraconazole and flucona-
zole can potentially cause cardiotoxicity for prolongation
of the QT interval [73] and itraconazole can occasionally
cause worse heart failure. Voriconazole can cause neuro-
toxicity, including visual and auditory hallucinations. The
safety of voriconazole is similar in older patients compared
with adults, but in clinical trials, voriconazole plasma con-
centrations were 80-90% higher in the former group [141].

4.2.3 Amphotericin B

Infusion-related reactions, hepatotoxicity, hematological
effects, and nephrotoxicity are typically associated with the
use of amphotericin B [141, 192]. Nephrotoxicity is the most
feared of these because it can occur in most older patients,
presenting with an increased creatinine level, hypokalemia,
and/or hypomagnesemia [139-141, 192]. Although the lipid
formulations have been shown to be substantially less toxic
than conventional amphotericin B, particularly with respect
to nephrotoxicity [193], concomitant use of other nephro-
toxic drugs should be avoided [141, 192]. Furthermore,
amphotericin B may cause heart failure but symptoms nor-
malize with discontinuation of therapy [194].

4.2.4 Flucytosine

High plasma levels of flucytosine, maintained for a long
time, cause reversible inhibition of the bone marrow and
hepatic dysfunction. The concurrent use of flucytosine and
nephrotoxic drugs should be avoided due to the risk of accu-
mulation of flucytosine [141].

4.3 Adverse Drug Reactions to Antimycobacterial
Agents

4.3.1 Isoniazid

It is well-known that isoniazid is hepatotoxic and the risk of
hepatotoxicity increase with the age [175, 184, 195, 196].
Among antituberculosis drugs, isoniazid is the most hepato-
toxic and patients aged > 60 years are 3.5 times more likely
to have liver injuries [184]. The risk increases with the asso-
ciation of rifampin [184]. Neurotoxic effects are common
and include peripheral neuropathy [175], ataxia, restless-
ness, and insomnia [197].

4.3.2 Rifampin
Rifampin frequently causes red-orange discoloration of
urine, tears, and sweat [175]. Nephrotoxicity is common

in older adults [73] and the incidence varies from 1.8 to
16%, but the discontinuation of therapy leads to recovery in
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about 3 weeks [171]. As explained above, the combination
of rifampin with isoniazid increases the risk of hepatotoxic-
ity [184].

4.4 Adverse Drug Reactions to Antivirals

4.4.1 Nucleosides/Nucleotides Excluded Reverse
Transcriptase Inhibitors

Acyclovir and ganciclovir are antiviral drugs used in the
treatment of infections against herpes simplex virus and
varicella zoster and against cytomegalovirus, respectively
[198]. These drugs may be associated with nephrotoxic-
ity by crystallization, precipitation, and obstruction of the
renal tubule. In particular, the nephrotoxicity indication of
acyclovir ranges from 12 to 48% [171]. Acyclovir is well
tolerated but can cause gastrointestinal upset and headache
[199]. Neurotoxicity (signs of confusion, hallucinations,
and agitation) is a rarer ADR and occurs mainly in older
patients or patients with renal dysfunction [200]. Given the
high risk of neurological ADRs, older patients should be
carefully monitored for these effects, which are generally
reversible once treatment is discontinued [199]. The ADRs
of ganciclovir are neutropenia, thrombocytopenia, mucosi-
tis, and hepatic dysfunction, and should be administered in
older patients under close renal supervision to avoid toxicity
[201]. Remdesivir and molnupiravir are antivirals for the
treatment of coronovairus disease 2019 (COVID-19). The
most commonly encountered ADRs with the use of remdesi-
vir are nausea, vomiting, and transaminase elevations [202].
Molnupiravir can frequently cause headaches, diarrhea, and
nausea [203]. Unfortunately, the prevalence of ADRs of
remdesivir and molnupiravir in older patients is unknown.

4.4.2 Derivatives of Phosphonic Acid

Foscarnet is a direct-acting antiviral derived from phos-
phonic acid. When present, ADRs are severe and include
nephrotoxicity due to renal tubule obstruction [171] and neu-
rotoxicity. Therefore, foscarnet should be used with caution
in older patients with impaired renal function [204].

4.4.3 Neuraminidase Inhibitors

Oseltamivir and zanamivir are neuraminidase inhibitors of
influenza A and B viruses. Gastrointestinal disturbances can
occur with oseltamivir. Zanamivir can cause cough, sore
throat, and, in asthmatic patients, bronchospasm [205, 206].

4.4.4 Interferon-a

Interferon-a could be used in older patients for the treat-
ment of hepatitis B and C. Common ADRs include fever,
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influenza-like symptoms, nausea, headache, depression, and
alopecia that may be more severe in older adults [207, 208].

4.4.5 Nucleoside/Nucleotide Reverse Transcriptase
Inhibitors

Although rarely reported, the risk of causing mitochon-
drial toxicity is a hallmark of this class of drugs. Toxicity
is manifested by symptoms of myopathy, neuropathy, and
lactic acidosis with fatty liver, particularly with lamivudine.
Even at low doses, the use of adefovir-dipivoxil can cause
nephrotoxicity. Tenofovir can cause renal and bone toxic-
ity in HIV-infected patients. Particular caution should be
exercised in older patients at risk of renal dysfunction and
osteoporosis [209, 210].

4.4.6 Non-nucleoside Reverse Transcriptase Inhibitors

First-generation non-nucleoside reverse transcriptase inhibi-
tors such as nevirapine and efavirenz have been associated
with skin erythema and hepatotoxicity [211]. Efavirenz can
cause neurotoxicity and cardiotoxicity, but unfortunately
the prevalence among older adults has not been specifically
investigated [212].

4.4.7 Protease Inhibitors

Typical ADRs of this class of drugs are the risk of hyper-
lipidemia, lipodystrophy, hyperglycemia, and insulin resist-
ance, but limited information is available on their prevalence
among older adults [213]. Nirmatrelvir is a protease inhibi-
tor antiviral used in combination with ritonavir for the treat-
ment of COVID-19. The most common ADRs reported with
this treatment are dysgeusia, headache, and gastrointestinal
disturbances, but no studies have been performed in older
patients [214].

5 Interventions to Improve Safety
and Tolerability

Appropriate use of antimicrobials in the elderly can be life-
saving given the high prognostic impact of infections in this
population. Inappropriate antimicrobial prescriptions in
older patients are instead associated with increased risk of
antimicrobial resistance, adverse side effects, morbidity, and
mortality [215]. A barrier for the diagnosis and prevention
of antimicrobial inappropriate prescriptions in clinical prac-
tice is currently represented by the lack of a gold-standard
tool to evaluate antimicrobial inappropriateness. This is
partly related to the different definitions of inappropriate
antimicrobial treatment found in the literature and to the
paucity of studies specifically conducted in elderly patients

(Table 5) [216-226]. Some studies have defined inappropri-
ateness based on clinical variables (presence of signs and/
or symptoms of infection despite antimicrobial treatment
[217, 219], while others have considered the appropriateness
of diagnosis, dosage, route of administration, or duration
of antimicrobial treatment [222, 224-227]. More objective
methods to evaluate appropriateness are based on positivity
of microbiological testing results but they are time-consum-
ing and are not always available [218]. Finally, some studies
used multiple criteria to evaluate appropriateness, based on
clinical examination, laboratory evaluations, and adherence
to guideline-based recommendations [220, 221, 223]. Recent
studies comparing distinct criteria for inappropriate antimi-
crobial prescriptions have shown limited agreement among
them [228, 229]. The proportion of inappropriate antimicro-
bial treatment varied widely across studies and care settings,
as a likely result of heterogeneity of criteria used to evalu-
ate appropriateness and inappropriateness of antimicrobial
prescriptions; however, despite the fact that the definition
of a gold-standard measure for inappropriate antimicrobial
use has not yet been provided, inappropriate antimicrobial
prescribing deserves to be addressed because it is associated
with poor outcomes among older individuals [230]. In order
to improve the appropriateness of antibiotic prescriptions
in acute and long-term care settings, several antimicrobial
stewardship (AMS) strategies have been implemented and
taken into consideration (Table 6) [166, 230-238]. AMS is
defined as the careful and responsible management of anti-
microbial medications used to treat or prevent infections,
in order to provide a prescription of the right drug, at the
right time, at the correct dose, and for the appropriate dura-
tion [239]. The objectives of AMS include the containment
of infectious diseases, appropriate antimicrobial use, and
reduction of the emergence and spread of multidrug-resist-
ant microorganisms. Despite these goals being universally
recognized, standardized methods for their implementation
and monitoring across different settings are still undefined.
Distinct interventions are included in AMS programs; for-
mulary modifications, including the choice of monotherapy
targeting the more likely microorganism at the site of infec-
tion should be preferred over combination therapy whenever
possible [240]. Combination therapy using narrow-spectrum
antibiotics enhances the synergism of distinct antimicrobial
compounds and is particularly active against Gram-negative
bacteria [241]. Use of antibiotic resistance breakers, such as
B-lactamase inhibitors, can be used to improve the efficacy
of antimicrobials against multidrug resistance microorgan-
isms. Another two AMS interventions used to contrast anti-
microbial resistance are antimicrobial cycling and de-escala-
tion; antimicrobial cycling consists of antimicrobial rotation
aimed at decreasing the selective pressure on a particular
drug in order to limit antimicrobial resistance [242], and
antimicrobial de-escalation consists of antimicrobial switch
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Table 5 Criteria used to evaluate drug inappropriateness

Study

Appropriateness criteria

Prevalence of drug inappropriateness

Cantudo-Cuenca et al.; hospitalized older patients
(N =184) [217]

Pharmacist-guided diagnosis based on Loeb’s
consensus criteria

Emergency department: 85%
Hospital or primary care: 46%
Long-term care facilities: 42%

Chandrasekhar et al.; hospitalized adults in India Adherence to national guidelines and Gyssens’ 70%
(N=90) [216] criteria

Kadri et al.; older patients with HIV (N = 175) Concordance between prescription and blood 67%
[218] cultures

Loeb et al.; older patients in long-term care facili- ~ Assessment of prescriptions based on clinical 42%

ties (N = 646) [219]

Magill et al; hospitalized adults in the US
(N = 1566) [220]

Antimicrobial use defined as supported if:
1. there was a clinical indication;

symptoms and signs

46% for fluoroquinolones
27% for vancomycin

2. antimicrobial selection was consistent with inter-
national guidelines and/or microbiological data;
3. duration was consistent with international guide-

lines recommendations

Nguyen-Hoang et al.; hospitalized older patients
with sepsis (N = 134) [226]

Adherence to recommendations about dosage and ~ 43%
route of administration

Nuiiez-Nuiiez et al.; hospitalized older patients with Adherence to recommendations about dosage and ~ 49%

antibiotic prescriptions (N = 1600) [227]

route of administration

Rutten et al.; nursing home residents with suspected Integrated electronic tool for antibiotic prescribing  38%

UTIs (N = 114) [221]

in urinary tract infections:

1. symptoms and signs;

2. urinalysis;

3. antibiotic treatment;

4. comorbidities

Saatchi et al; community-dwelling older individuals Prescription of antimicrobials associated with 50%
(N =5,460,270) [222] indication
Tobia et al.; older outpatients (N = 153) [223] Medication Appropriateness Index (MAI): 35%

presence of symptoms;
drug effectiveness, dosage, route of administration,

adherence;

drug—drug and drug—disease interactions

van Buul et al; older patients in long-term care
facilities (N = 208) [224]

Vergidis et al.; older patients in long term care
facilities (N = 752) [225]

Indication-based

Clinical algorithm for appropriateness in respira- 14%
tory tract infections

21%

UTIs urinary tract infections

from broad- to narrow-spectrum molecules, when labora-
tory findings of culture and sensitivity are available [243];
however, despite these opportunities, antimicrobial rotation
and de-escalation are poorly studied in older patients. On
the other hand, promotion of education and the importance
of timely and appropriate microbiology sampling, as well
as TDM with feedback, have been shown to be effective in
decreasing antibiotic consumption and inappropriate use in
long-term care settings [244, 245]. Dose optimization using
PK and PD properties is also important. Several antibiot-
ics need dosing modification according to renal and hepatic
function to increase the benefits and limit the risk of toxic-
ity and ADEs (Table 7) [121-138, 142, 246-268]; however,
despite the importance of dosage adjustments in patients
with renal and liver function impairment, these adjustments
are rarely made and non-compliance with dosing guidelines

A\ Adis

is common [60]. In these cases, TDM-guided dosing is the
most effective way to ensure optimal drug exposure for sev-
eral antibiotics [269]. Despite the absence of studies spe-
cifically conducted in older patients, current literature has
shown benefits of TDM in preventing hematologic toxicity
of linezolid, nephrotoxicity of aminoglycosides and vanco-
mycin, and neurotoxicity of -lactams [269]. However, while
there are many barriers to be overcome, AMS interventions
have been shown to significantly improve different phases
of the prescribing process and mitigate the effects of inap-
propriate antimicrobial prescribing in both long-term care
and acute care older patients [226, 244, 270, 271]. There
is then an urgent need to deliver effective and standardized
AMS interventions and to find the best way to implement
AMS programs in order to maintain their benefit over time.
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Table 7 Recommended dose adjustments of antibiotics according to various degrees of creatinine clearance

Antibiotic

Route of
administra-
tion

CrCl (mL/min/1.73 m?) and recommended dosage

p-Lactams
Amoxicillin [121]

Amoxicillin/clavulanate [246]

Ampicillin/sulbactam [122]

Cefazolin [247]

Cefepime [248]

Cefotaxime [249]

Cefoxitin [250]

Ceftazidime [251]

Ceftriaxone [252]

Cefuroxime [253, 254]

Cephalexin [255]

Ertapenem [259]

Imipenem and cilastatin [260]

Meropenem [262]

Oxacillin [265]

PO

v

v

v

v

v

v

v

PO
v

PO

v

v

1A%

v

>30: 250-1000 mg q8h
10-30: 250-500 mg q12h
< 10: 250-500 mg q24h

>30: 875/125 mg q12h

10-30: 250-500/125 mg q12h

<10: 250-500/125 mg q24h

>30: 1.5-3 g q6-8h

15-29: 1.5-3 g q12h

<15:1.5-3 gq24h

>54:1-2 g q8h

35-54:1-2gql2h

11-34:0.5-1gql2h

<10: 0.5-1 g q18-24h

>60: 0.5-2 g q8-12h

30-60: 0.5-2 g q12-24h

11-29: 0.5-2 g q24h

<10: 0.25-1 g q24h

>20: 1-3 g q6—-12h

< 20: Change maintenance dose to 1-2 g q24h
>50: 1-2 g q8-12h

30-50: Change maintenance dose to 1-2 g q12-24h
10-29: Change maintenance dose to 0.5-1 g q12-24h
< 10: Change maintenance dose to 0.5-1 g q24-48h
>50: 1-2 g q8h

31-50: 1 g q12h

16-30: 1 g q24h

6-15: 500 mg q24h

<6: 500 mg q48h

No adjustment needed
1-2 g q12-24h
250-500 mg q12h. No adjustment needed

>20:0.75-1.5 g q8h

10-20: 750 mg q12h

<10: 750 mg q24h

>30: 0.25-1 g q6h

15-29: 250 mg q8-12h
6-14: 250 mg q24h

<6: 250 mg q48-60h

>30: 1 g q24h

<30: 500 mg q24h

>90: 500-1000 mg q6—8h
60-89: 400-750 mg q6-8h
30-59: 300-500 mg q6-8h
15-29: 200-500 mg q6-12h
< 15: Contraindicated unless dialysis is instituted within 48 h
> 50: 500-1000 mg q6-8h
26-50: 500-1000 mg q12h
10-25: 250-500 mg q12h
<10: 250-500 mg q24h

No adjustment needed
250-1000 mg q4—-6h
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Table 7 (continued)

Antibiotic Route of CrCl (mL/min/1.73 m?) and recommended dosage
administra-
tion

Piperacillin/tazobactam [263] v Traditional infusion

>40: 3.375 qbh or 4.5 g q8h
20-40: 2.25 g q6h
<20:2.25 gq8h

Extended 4-h infusion
>20:4.5gq8h
<20:4.5gql2h
Antipseudomonal infusion
>40: 4.5 g q6h

20-40: 3.375 g q6h
<20:2.25 g g6h

Ticarcillin [266] v >60: 3 g q24h
30-60: 2 g g4h
10-30: 2 g q8h
<10:2gql2h
< 10 and hepatic dysfunction: 2 g q24h
Quinolones
Ciprofloxacin [123, 124] PO >50: 250-750 mg q8-12h
30-50: 250-500 mg q12h
5-29: 250-500 mg q18h
<5:250-500 mg q24h
v >30: 200400 mg q8-12h
5-29: 200-400 mg q18-24h
Levofloxacin [125] PO/IV >50: 250-750 mg q24h
20-49: 250-750 mg q24-48h
<20: 250-500 mg g48h
Moxifloxacin [126] PO/IV No adjustment needed
400 mg q24h
Macrolides

Azithromycin [128] PO/MTV No adjustment needed
250-500 mg q24h

Clarithromycin [129] PO >30:0.5-1 gql2h
<30:0.25-0.5 g q12h

Erythromycin [130, 131] PO >10: 250-800 mg q6-12h
< 10: 125-400 mg q6-12h
v >10: 15-20 mg/kg divided q6-8h
< 10: 50% total dose at the same interval

Tetracyclines

Doxycycline [135, 136] PO/IV No adjustment needed

50-100 mg q12h
Minocycline [137] PO No adjustment needed

Loading dose of 200 mg q24h followed by 100 mg q12h
Tetracycline [134] PO >50: 250-500 mg q6-12h

10-50: 250-500 mg q12-24h
<10: 250-500 mg q24h
Tigecycline [138] v No adjustment needed

100 mg followed by 50 mg q12h (decrease maintenance dose to 25 mg in hepatic dys-
function, Child—Pugh C)

Others
Clindamycin [256, 257] PO No adjustment needed
150-450 mg q6-8h
v No adjustment needed
600-1200 mg q6-12h
Daptomycin [258] v >30: 4-6 mg/kg q24h

<30: 4-6 mg/kg q48h
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Table 7 (continued)
Antibiotic Route of CrCl (mL/min/1.73 m?) and recommended dosage
administra-
tion
Isoniazid [261] PO No adjustment needed
5 mg/kg up to 300 mg q24h
Linezolid [127] PO/IV No adjustment needed
400-600 mg q12h
Metronidazole [132] POV >10: 500 mg q8h
< 10, or severe hepatic impairment: consider 250 mg q8h if duration > 14 days
Nitrofurantoin [264] PO >60: 100 mg q12h
< 60: Not recommended (poor effect and increased toxicity)
Rifampin [133] PO/MTV No adjustment needed
10 mg/kg up to 600 mg q24h
Trimethoprim/sulfamethoxazole [142] PO >30: 800/160 mg q12h
15-30: 400/80 mg q12h
< 15: Not recommended
v >30: 8-20 mg/kg (based on trimethoprim component) administered in 2—4 doses q6—8h

15-30: Half the usual regimen
< 15: Not recommended

Vancomycin [267, 268] PO No adjustment needed
125 mg q6bh
v >90: 15-20 mg/kg q12h

70-89: 15-20 mg/kg q8h

46-69: 15-20 mg/kg q12h

30-45: 15-20 mg/kg q18h

15-29: 15-20 mg/kg q24h

< 15: Monitor levels to determine when to dose

CrCl creatinine clearance, IV intravenously, PO orally, gxh every x hours

6 Conclusions

Inappropriate prescription of antimicrobials to older patients
represents a clinical challenge and a global issue that con-
tributes to the spread of multidrug resistant microorganisms.
Age-related changes in PK and PD processes increase the
risk of drug underexposure that predisposes to the emer-
gence of resistance, as well as of drug overexposure with
potential adverse effects and drug discontinuation for poor
tolerability. Multiple chronic diseases and polypharmacy
complicate the choice of proper antimicrobial treatment
and further increase the risk of adverse effects. Selected
AMS interventions addressing adherence to guidelines,
dosage adjustment in liver and kidney dysfunction, as well
as formulary adaptations and TDM can be life-saving and
can improve the safety and effectiveness of antimicrobial
treatments. However, standardization of AMS strategies is
necessary for their implementation in clinical practice across
distinct settings of care. Prospective clinical trials involving
older patients are required, ideally focusing on the popula-
tion older than 80 years of age, which is often neglected and
poorly represented. In the meanwhile, clinicians are advised
to prescribe judiciously to prevent unnecessary treatment
and decrease the risk of inappropriate prescriptions in older
patients with infectious diseases.
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