
Photochemical Targeting of Mitochondria to Overcome 
Chemoresistance in Ovarian Cancer†

Brittany P. Rickard1, Marta Overchuk2, Girgis Obaid3, Mustafa Kemal Ruhi4, Utkan 
Demirci5, Suzanne E. Fenton1,6, Janine H. Santos6, David Kessel7, Imran Rizvi1,2,8,9,*

1Curriculum in Toxicology & Environmental Medicine, University of North Carolina School of 
Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

2Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel 
Hill, NC 27599, USA; North Carolina State University, Raleigh, NC 27606, USA

3Department of Bioengineering, University of Texas at Dallas, Richardson TX 95080, USA.

4Institute of Biomedical Engineering, Boğaziçi University, Istanbul, Turkey

5Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford 
University School of Medicine, Palo Alto, CA 94305, USA.

6Mechanistic Toxicology Branch, Division of the National Toxicology Program, National Institute of 
Environmental Health Sciences, Research Triangle Park, NC 27709, USA.

7Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI 48201, 
USA.

8Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, 
Chapel Hill, NC 27599, USA

9Center for Environmental Health and Susceptibility, University of North Carolina at Chapel Hill, 
Chapel Hill, NC 27599, USA

Abstract

Ovarian cancer is the most lethal gynecologic malignancy with a stubborn mortality rate of 

~65%. The persistent failure of multi-line chemotherapy, and significant tumor heterogeneity, 

have made it challenging to improve outcomes. A target of increasing interest is the 

mitochondrion because of its essential role in critical cellular functions, and the significance 

of metabolic adaptation in chemoresistance. This review describes mitochondrial processes, 

including metabolic reprogramming, mitochondrial transfer, and the state of mitochondrial 

networks, in ovarian cancer progression and chemoresistance. The effect of malignant ascites, or 

excess peritoneal fluid, on mitochondrial function is discussed. The role of photodynamic therapy 

(PDT) in overcoming mitochondria-mediated resistance, is presented. PDT, a photochemistry-

based modality, involves the light-based activation of a photosensitizer leading to the production 

of short-lived reactive molecular species and spatio-temporally confined photodamage to nearby 
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organelles and biological targets. The consequential effects range from sub-cytotoxic priming of 

target cells for increased sensitivity to subsequent treatments, such as chemotherapy, to direct cell 

killing. This review discusses how PDT-based approaches can address key limitations of current 

treatments. Specifically, an overview of the mechanisms by which PDT alters mitochondrial 

function, and a summary of preclinical advancements and clinical PDT experience in ovarian 

cancer are provided.

Graphical abstract

In metastatic ovarian cancer, chemoresistant tumor populations demonstrate increased metabolic 

flexibility, enhanced capacity for glycolysis and oxidative phosphorylation, increased numbers 

of mitochondria and of mitochondrial DNA through mitochondrial transfer, and altered 

mitochondrial dynamics (fission/fusion). Photodynamic therapy reverses chemoresistance in 

ovarian cancer and synergizes with conventional therapies. The role of mechanism-based 

combinations using photosensitizers that are, in part, synthesized in mitochondria, or localize 

to subcellular organelles, including mitochondria, is presented. The effects of photodamage to 

mitochondria leading to enhanced cell death, as well as priming for increased sensitivity to 

subsequent treatments, are discussed.

INTRODUCTION

Ovarian cancer is the most lethal gynecologic malignancy with a mortality rate of ~65% 

(1, 2). In 2022, it is estimated that in the United States there will be 19,880 new cases 

and 12,810 deaths (2). Worldwide, it is predicted that in 2022, there will be just under 

330,000 cases of ovarian cancer, and just under 220,000 patients will succumb to the disease 

(3). Further, the Global Cancer Observatory projects that by 2040, the number of ovarian 

cancer cases diagnosed will rise 30% to 428,966 alongside deaths, which are projected 

to increase by over 40% to 313,617 (1, 3). One of the major contributing factors to such 

high mortality associated with ovarian cancer is chemoresistance. Currently, the standard 

of care for ovarian cancer is a combination of platinum and taxane-based chemotherapy 

(4). While most patients initially respond to platinum-based chemotherapy, nearly 85% will 
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develop resistance and disease recurrence (5–7). Thus, there is a need to understand the 

mechanisms underlying platinum resistance, which in turn might be exploited as therapeutic 

targets. In this context, emerging evidence from recent studies suggests that alterations 

in mitochondrial function contributes to platinum resistance, making these organelles an 

attractive therapeutic target for ovarian cancer where conventional and targeted therapies 

have largely failed (8–11).

Photodynamic therapy (PDT), which uses light and light-activatable molecules to 

generate reactive molecular species (RMS), provides a unique opportunity to target 

various subcellular compartments, including mitochondria (12, 13). Benzoporphyrin 

derivative (BPD), Photofrin and protoporphyrin IX (PpIX) are among the clinically 

approved photosensitizers for which mitochondria have been shown to be sites of 

preferential localization or synthesis (14–16), and RMS-induced mitochondrial damage is 

a mechanism of PDT-mediated cell killing. Given the role of mitochondrial dysfunction 

in chemoresistance, PDT could be leveraged as an enabling modality to sensitize cancer 

cells to platinum-based chemotherapy through mitochondrial targeting. Moreover, emerging 

preclinical evidence suggests that PDT can be a suitable strategy for disseminated 

ovarian cancer treatment. (17–25). Notably, PDT can effectively target platinum-resistant 

ovarian cancer cells (26), and it has been shown to synergize with platinum-based 

chemotherapy in a variety of in vitro and in vivo models of ovarian cancer (27–29). 

Several clinical trials showed technical feasibility of PDT in patients with intraperitoneal 

carcinomatosis, including in patients with advanced ovarian cancer (30–33). In this review, 

we will discuss the role of mitochondrial dysfunction in chemoresistance, highlight 

the progress in implementing PDT for disseminated ovarian cancer and outline several 

promising photochemical approaches towards overcoming platinum resistance by targeting 

mitochondria.

Due to the lack of specific screening methods, ovarian cancer often remains undiagnosed 

until it is disseminated throughout the abdominal cavity. Primary tumors, which most 

commonly originate from the ovarian surface epithelium and secretory epithelial cells of the 

fallopian tube, can shed malignant cells directly into the peritoneum (34, 35). This process 

is often exacerbated by ascites, or excessive fluid buildup, which correlates with disease 

severity, metastatic spread, and poor treatment outcomes (36). Emerging evidence suggests 

that fluid shear stress generated by ascitic currents promotes epithelial-mesenchymal 

transition, chemoresistance and metastatic spread (26, 37). Additionally, our research 

group recently discovered that sub-cytotoxic doses of the select per- and polyfluoroalkyl 

substances (PFAS) promote resistance to carboplatin in ovarian cancer cells, suggesting that 

environmental contaminants contribute to chemoresistance (38). The standard of care for 

ovarian cancer involves cytoreductive surgery, or removal of the primary tumor and any 

detectable macroscopic lesions, followed by a combination treatment with platinum- and 

taxane-based chemotherapy (4, 10, 39, 40). Frequently, this treatment regimen involves the 

combination of cisplatin or carboplatin (platinum) and paclitaxel (taxane) (4, 5, 41). While 

most patients receiving this therapeutic regimen respond initially, ~85% of patients present 

with recurrent disease (5). Platinum resistance is a major barrier to the effective treatment 

of ovarian cancer (36, 38), and since recurrent ovarian cancer is rarely curable (42), other 
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therapeutic targets should be examined to limit disease progression and increase overall 

survival in these patients.

One potential therapeutic target worth exploring in the context of ovarian cancer is the 

mitochondrion. While the primary function of mitochondria is energy metabolism, they play 

an essential role in cell survival, proliferation, nucleotide, and amino acid metabolism, 

signaling as well as RMS detoxification. Multiple studies have linked mitochondrial 

dysfunction to ovarian cancer progression and therapy resistance. Specifically, it has been 

shown that platinum-resistant ovarian cancer cells display flexible bioenergetic profiles 

indicative of mitochondria that can effectively adjust to cell function under selection 

pressures exerted by chemotherapy (43). Moreover, horizontal mitochondrial transfer has 

been implicated in cell survival and metabolic reprogramming, enhanced metastatic potential 

and chemoresistance (44). Changes in mitochondrial dynamics such as mitochondrial fission 

and fusion have also been linked to chemoresistance (45). Interestingly, one platinum-

based chemotherapeutic agent currently used in the treatment of ovarian cancer, cisplatin, 

secondarily targets mitochondria (44, 46–50). Upon administration, the platinum atom of 

cisplatin forms covalent bonds with purine bases on nuclear DNA (nDNA), forming both 

intra- and inter-strand crosslinks and preventing DNA replication and transcription (10, 

44, 48, 51, 52). While this is one mechanism by which cisplatin leads to tumor cell 

death, studies have reported that a limited amount, as low as 1% of cisplatin interacts 

with nDNA (44, 46, 47). The remainder of the administered cisplatin will interact with 

sulfur donors, proteins, and mitochondria, including mitochondrial DNA (mtDNA) (44, 

46–50). Given this emerging evidence of the role of mitochondria in platinum resistance, 

the use of mitochondria-specific agents that can be administered alone or in combination 

with platinum-based chemotherapy may be effective at improving ovarian cancer patient 

outcomes.

One approach that can directly target mitochondria is PDT. The PS molecular structure, the 

presence of targeting ligands (53), and nanoparticle encapsulation can influence subcellular 

localization and subsequent photodamage. Notably, several clinical PS have been shown to 

preferentially localize to mitochondria, which can be leveraged to combat chemoresistance. 

Above a certain threshold, photodamage to mitochondria results in a rapid loss of ΔΨm and 

cytochrome c release, which can induce apoptosis (54). However, sub-cytotoxic amounts of 

RMS can have profound effects on mitochondrial homeostasis, which may be sufficient to 

overcome the compensatory activation of mitochondrial activity in cancer cells and sensitize 

them to platinum-based chemotherapy (55, 56). Many preclinical studies have demonstrated 

the ability of PDT to enhance the efficacy of platinum chemotherapy in a broad range 

of light doses; however, whether this effect specifically relates to mitochondrial targeting 

remains to be elucidated. From the clinical standpoint, PDT offers a highly selective 

and minimally invasive approach to treat disseminated ovarian cancer, strengthening the 

rationale for exploring photochemical targeting of mitochondria to overcome platinum 

resistance.

In this review, we will outline several ways in which mitochondrial dysfunction contributes 

to chemoresistance in ovarian cancer and discuss how photochemical targeting of 

mitochondria might be utilized to overcome it. Further, we will discuss how PDT fits into 
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the current ovarian cancer treatment paradigms and analyze how recent advancements in 

photosensitizer design will facilitate its clinical translation. Given the multipronged nature 

of chemoresistance mechanisms, successful treatment regimens will likely consist of several 

complementary approaches with non-overlapping toxicities and mechanisms of action. In 

this context, mitochondria-targeted PDT has the potential to become an essential tool in 

combating chemoresistance in ovarian cancer.

THE ROLE OF MITOCHONDRIA IN THE DEVELOPMENT OF 

CHEMORESISTANCE

While mitochondria are best known for their role in bioenergetics, they are also involved 

in a plethora of cell signaling pathways responsible for cancer development, progression 

and chemoresistance. It has been shown that most cancer cells carry somatic and/or 

mtDNA mutations, leading to mitochondrial dysfunction and metabolic rewiring. On the 

most basic level, cancer cells that have undergone metabolic rewiring are more adept at 

adapting to changes in their environment (43). Interestingly, this adaptation can involve the 

activation of both glycolytic and oxidative phosphorylation (OXPHOS) pathways. Moreover, 

metabolic flexibility in ovarian cancer (i.e., the ability to switch between OXPHOS and 

glycolysis) to meet high metabolic demands, is associated with chemoresistance (44). The 

following sections will discuss how increased metabolic activity is implicated in resistance 

to platinum-based chemotherapeutic agents. We will also examine horizontal mitochondrial 

transfer, which typically involves the formation of cytoplasmic bridges, through which 

mitochondria are shuttled between cancer and stromal cells. Recent studies have shown 

that this process increases the mitochondrial respiratory capacity of cancer cells, facilitating 

cancer cell survival and promoting chemoresistance. Moreover, changes in mitochondrial 

dynamics, including fusion and fission, have been observed in chemoresistant cells. Finally, 

we will discuss how malignant ascites contributes to mitochondrial dysfunction, thereby 

promoting chemoresistance.

Metabolic state of ovarian cancer

One of the first working hypotheses for the role of mitochondria in cancer cell metabolism 

was proposed by Otto Warburg. Warburg hypothesized that tumor cells depend more on 

glycolysis for energy production compared to OXPHOS due to mitochondrial dysfunction 

(44). This hypothesis, which became known as the “Warburg effect”, formed the basis 

of the concept of metabolic reprogramming, although it is now accepted that, in cancers, 

mitochondria are not necessarily dysfunctional despite the metabolic switch to glycolysis 

(44, 57, 58). Metabolic reprogramming assists tumor cells in supporting their high 

proliferation rates and survival due to strong channeling towards anabolic processes (59, 

60). The ability of tumor cells to accelerate glycolysis to promote growth is primarily 

due to tumor suppressor dysregulation or oncogene activation that confers glycolytic 

enzyme hyperactivity (59, 61). For example, GLUT1, which is a glucose transporter, 

is often overexpressed in high-grade serous ovarian carcinomas, and is associated with 

increased metastatic potential (59, 62–64). Additionally, hexokinase (HK) is a glycolytic 

enzyme frequently upregulated in ovarian cancer that is associated with tumorigenesis and 
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cell survival (59, 65–67). Other glycolytic enzymes involved in the Warburg effect and 

implicated in ovarian cancer are summarized in Table 1.

While metabolic reprogramming remains a hallmark of cancer, recent studies have called 

for re-evaluation of the Warburg effect due to the limited efficacy of anti-glycolytic agents 

(83). As a result, the “reverse Warburg effect” has been proposed, which states that stromal 

cells adjacent to tumor cells have elevated levels of aerobic glycolysis and therefore supply 

energy and metabolites to rapidly proliferating cancer cells (83, 84). One type of stromal 

cell that may be involved in tumor progression and response to therapy is the cancer 

stem-like cell (CSC), which plays a key role in both disease initiation and recurrence and 

is inherently chemoresistant (83, 85). It has also been suggested that cancer cells induce 

aerobic glycolysis in nearby stromal fibroblasts, enabling their transformation into cancer-

associated fibroblasts (CAFs) that can provide cancer cells with energy and metabolites 

supporting tumor growth and angiogenesis (83, 86). CAFs can also be associated with 

chemoresistance, and in the context of pancreatic ductal adenocarcinoma, one study found 

that CAF-induced resistance could be reversed using a combination of oxaliplatin and 

metformin, a mitochondrial complex I inhibitor (87). The reverse Warburg effect has also 

been supported clinically, as women with high stroma proportions have significantly worse 

overall survival rates regardless of ovarian tumor subtype (83, 88).

Also contrary to the Warburg effect, recent studies have found that both glycolysis and 

OXPHOS pathways are elevated in cancer cells compared to healthy cells (59, 60, 89). 

This has led researchers to speculate that cancer cells are able to metastasize and evade 

therapeutic intervention due to their ability to switch between energy substrates and 

metabolic pathways (59, 90, 91). This bioenergetic flexibility in utilizing glycolysis and 

OXPHOS for energy production is particularly advantageous because many metabolites and 

products of glycolysis are required for downstream energy pathways like the tricarboxylic 

acid (TCA) cycle, pentose phosphate pathway, gluconeogenesis, and fatty acid or amino 

acid synthesis (59, 60, 92). Flexibility in energy production pathways is also observed in 

ovarian cancer cells in their enhanced ability to perform glutaminolysis, which converts 

glutamine into products able to fuel the TCA cycle and energy production. Notably, 

glutamine metabolism also contributes to antioxidant defenses and nucleotide metabolism, 

all of which can increase cell proliferation and resistance to oxidative stress. Compared to 

less invasive ovarian cancer cells, invasive ovarian cancer cells are glutamine-dependent and, 

in ovarian cancer patients, glutaminolysis is correlated with poor survival (93). Additionally, 

ovarian tumor cells that overexpress glutaminase, a glutaminolytic enzyme, are platinum-

resistant (94). As a result, targeting glutaminolysis has shown some success in mitigating 

ovarian tumor progression and chemoresistance. For example, Han et al. (95) reported that 

inhibiting ubiquitin-specific peptidase 13 (USP13), which upregulates enzymes critical for 

mitochondrial respiration and glutaminolysis, suppressed tumor progression and sensitized 

ovarian tumor cells to a PI3K/AKT inhibitor. Others have also shown that inhibition of 

glutaminase in glutaminase-overexpressing cells increased response to Olaparib, a poly 

(ADP-ribose) polymerase (PARP) inhibitor in mice (94). Similar results regarding the 

sensitization of ovarian cancer cells to treatment after administration of another glutaminase 

inhibitor have also been reported (96). While inhibiting glutaminolysis may be effective in 

suppressing tumor progression and mitigating chemoresistance, dual inhibition of glycolysis 
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and glutaminolysis appeared to be a promising route for the treatment of ovarian cancer. In 

a study by Sun et al. (97), the simultaneous inhibition of glycolysis and glutaminolysis by 

2-deoxyglucose and aminooxyacetate, respectively, led to a synergistic decrease in ovarian 

cancer cell proliferation.

While bioenergetic flexibility assists with maintaining the high proliferation rate of tumor 

cells, it also helps tumor cells confer resistance to chemotherapeutic agents. One way 

that this occurs is through the excess production of reactive oxygen species (ROS) 

and upregulated levels of antioxidants in tumor cells with elevated levels of OXPHOS. 

During OXPHOS, ROS are produced within the electron transport chain (ETC), and to 

combat these elevated ROS levels, tumor cells upregulate superoxide dismutase, glutathione, 

thioredoxin, and peroxiredoxins (44). An important mechanism by which chemotherapeutic 

drugs work is through the production of ROS (44, 98, 99), meaning that the efficacy of 

chemotherapeutic drugs may be decreased in tumor cells with elevated OXPHOS levels due 

to increased levels of ROS and antioxidants. Likewise, cancer cells that activate glycolysis 

or glutaminolysis can also increase antioxidant defenses by impacting the pentose phosphate 

pathway and glutathione synthesis, respectively. Under normal conditions, ROS induced by 

chemotherapy can alter ΔΨm and damage the mitochondrial respiratory chain, leading to 

apoptosis (44). The same has not been observed in chemoresistant tumor cells, as resistant 

cell populations with elevated levels of antioxidants are able to counteract drug-induced 

ROS production and promote their survival (44, 100–104).

Studies examining the ability of cisplatin to reduce ovarian cancer cell populations found 

that cisplatin-sensitive cell lines (OVCAR-3, OVCAR-4, and IGROV-1) had higher relative 

mitochondrial content and basal oxygen consumption rates (OCRs) post-cisplatin exposure 

compared to resistant cell lines (OVCAR-5, OVCAR-8, and A2780) (41). However, 

increased OCRs have also been reported in cisplatin-resistant cell lines. Zampieri et al. 

(10) found that cisplatin-resistant SKOV-3-R cells had higher respiratory spare capacities 

and increased ETC complex I activity while an additional cisplatin-resistant cell line, 

COV-362-R, had higher respiratory spare capacities, increased OCR, and increased citrate 

synthase activity compared to their platinum-sensitive counterparts (SKOV-3 and COV-362, 

respectively). Additionally, SKOV-3-R cells consumed more glucose and produced more 

lactate compared to SKOV-3 cells, indicating increased rates of anaerobic glycolysis, and 

suggesting that cisplatin-resistant cells have an increased capacity for performing OXPHOS 

and/or glycolysis compared to cisplatin-sensitive cells (10). Kleih et al. (41) also found 

that platinum-sensitive ovarian cancer cell lines had increased levels of mitochondrial ROS 

(O−
2) following cisplatin exposure compared to platinum-resistant cells. Further exploring 

the role of ROS in cisplatin-mediated cell death, OVCAR-3 and OVCAR-4 cells incubated 

with cisplatin in the presence of glutathione, a ROS scavenger, demonstrated significantly 

increased cell viability. As mitochondrial ROS appear to play an integral role in cisplatin-

mediated apoptosis, understanding how to increase mitochondrial ROS levels in platinum-

resistant cells may reveal mechanisms to overcome cisplatin resistance. To evaluate one 

potential mechanism to increase ROS production to overcome cisplatin resistance, Kleih et 

al. (41) inhibited uncoupling protein 2, since mitochondrial ROS induce uncoupling protein 

activation, and found that platinum-resistant OVCAR-8 cells had significantly increased 

cisplatin-induced mitochondrial ROS and apoptosis. This finding illustrates that increasing 
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mitochondrial ROS levels through inhibition of uncoupling proteins may be effective at 

overcoming cisplatin resistance in ovarian cancer cells.

Bioenergetic adaptions have also been implicated in ovarian cancer cell resistance to 

chemotherapy by Dar et al. (9). In this study, bioenergetic profiles were measured for 

a variety of different cell lines, and while most had equal glycolytic properties, as 

measured by extracellular acidification rate (ECAR), and OXPHOS, measured by OCR, 

PEO1 and A2780 cells preferred glycolysis while SKOV-3, SKOV-3-IP, and Caov-3 

cells favored OXPHOS. Other studies have also reported variable bioenergetic profiles 

across ovarian cancer cell lines (105). Additionally, in cells with increased glycolysis, 

proliferation increased, which has been observed previously as well (106). When comparing 

chemosensitive A2780 and PEO-1 cells with their chemoresistant counterparts, C200 and 

PEO-4, chemo-sensitive cells had lower overall OXPHOS and glycolysis levels, indicating 

that chemoresistant cells are more highly metabolically active. Chemoresistant cells also 

displayed higher mRNA and/or protein levels of OXPHOS and glycolytic genes including 

cytochrome c oxidase subunit Vb, GLUT1 and LDH. Increased bioenergetic capacities 

of chemoresistant cells were also demonstrated by increased ΔΨm, ROS levels, and 

mitochondrial density as well as decreased sensitivity to glucose deprivation, further 

demonstrating a higher level of “cellular fitness” (9, 105, 107, 108). To determine whether 

chemotherapy exposure induced a highly metabolically active phenotype in chemosensitive 

cells, Dar et al. (9) exposed A2780 cells to cisplatin or paclitaxel and found that after 

cisplatin, but not paclitaxel exposure, cells shifted from a glycolytic phenotype towards a 

highly metabolically active phenotype.

While the findings reported in the previous two paragraphs resulted from the use of 

ovarian cancer cell lines, Bindra et al. (109) performed mitochondrial profiling on high-

grade ovarian cancer and benign ovarian mass tissues to better understand the role of 

mitochondrial metabolic function in human ovarian tumors. Results showed that compared 

to benign tissue, high-grade ovarian cancer tissue had significantly elevated levels of citrate 

synthase, succinate dehydrogenase, and cytochrome c oxidase activity, as well as increased 

mitochondrial health indices, computed by dividing the ratio of respiratory chain activity 

by markers of mitochondrial content. When examining mitochondrial enzyme levels across 

different stages of ovarian tumors, respiratory chain enzyme activity significantly decreased 

in stage IV tumors and had approximately half the levels of citrate synthase, succinate 

dehydrogenase, and cytochrome c oxidase compared to stage I tumors (109).

Overall, these studies support the notion that, to promote survival and evade 

chemotherapeutic treatment, ovarian cancer cells can adapt their bioenergetic profiles 

and develop a highly metabolically active phenotype in which cells can preferentially 

use glycolysis or OXPHOS for energy production. This metabolically active profile has 

been implicated in resistance to platinum-based chemotherapeutic agents. Thus, preventing 

bioenergetic shifting in ovarian cancer cells may re-sensitize tumor cells to treatment 

through limiting their means of energy production.
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Mitochondrial transfer in ovarian cancer progression

The shuttling of mitochondria and mtDNA from stromal cells to cancer cells has been 

implicated in disease progression and the development of chemotherapy resistance. This 

horizontal transfer permits cancer cells, which typically have limited mtDNA, and therefore 

limited capacity for performing mitochondrial functions including energy production, to 

gain mtDNA or complete mitochondria from surrounding cells thereby promoting their 

survival (44, 110–114). The first study to demonstrate the impact of mitochondrial 

transfer on cellular function was performed by Spees et al. (112), who found that adult 

nonhematopoietic stem/progenitor cells from human bone marrow effectively transferred 

mitochondria to A549 r° recovering their mitochondrial respiratory capacity. Rho 0 (r°) 

are those depleted of mtDNA that are generally generated by subchronic treatment with 

low doses of ethidium bromide; as such, they are unable to respire using non-fermentable 

carbon sources. Other studies have reported similar findings, supporting the notion that 

mitochondrial transfer rescues the function of damaged mitochondria through the shuttling 

of necessary molecules or organelles (110, 115). In addition to promoting bioenergetic 

adaptations in recipient cells, mitochondrial transfer has also been shown to initiate stem cell 

differentiation and activate inflammatory pathways (44, 110, 116–118). By facilitating these 

processes, mitochondrial transfer may play a key role in facilitating disease progression 

(110, 116, 119–122).

Mitochondrial transfer can occur through a variety of mechanisms including through the 

formation of tunneling nanotubules (TNTs), microvesicles, gap junctions, and cell fusion 

(110, 123–125). While there are several different mechanisms by which mitochondrial 

information can be transferred, it is thought that the predominant mechanism is through 

an active process involving TNTs (44, 123, 124, 126–131). TNTs can be formed through 

two main mechanisms: 1) two adjacent cells diverging, or 2) fusion of filopodium-like 

membrane actin protrusions between cells (132–137). Both mechanisms leave a fine 

tunnel-like structure connecting both cells, known as a TNT (110, 132). After TNTs 

are formed, mitochondrial transfer between cells is facilitated by Miro1 and Miro2, 

which are Rho-guanosine triphosphatases (GTPases) that assist mitochondrial movement 

through the TNT (110, 122, 123, 132, 138–141). These proteins play a critical role 

in TNT formation, and studies have shown that in mesenchymal stem cells (MSCs), 

overexpression of Miro1 enabled mitochondrial transfer via TNTs to injure epithelial 

cells. Conversely, downregulation of Miro1 has been shown to inhibit TNT formation and 

therefore mitochondrial transfer (123, 142).

While many studies have examined the benefits of mitochondrial transfer on recipient cells, 

TNT trafficking has been shown to be both unidirectional and bidirectional depending 

on cell type and cell state (121, 132, 143–155). For example, studies have reported the 

unidirectional transport of mitochondria between rat pheochromocytoma cells, while other 

studies have demonstrated bidirectional transport between macrophages connected by a 

nanotube (132, 133, 143, 156, 157). Understanding the directionality of mitochondrial 

transfer is critical to understanding how donor and recipient cells are affected by this 

process.
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Cells containing dysfunctional mitochondria can promote the formation of TNTs through 

various mechanisms, one of which is by sending cell stress signals to adjacent cells. 

Studies have shown that in injured endothelial cells, phosphatidylserine exposure triggers 

the formation of TNTs from MSCs (110, 156). The formation of TNTs can also arise from 

other chemical exposures, including doxorubicin, ethidium bromide, or cigarette smoke as 

well as by certain medium conditions, such as depleted serum or acidification (110, 124, 

145, 146, 158, 159). In certain types of cells, tumor necrosis factor and NF-kB have been 

shown to induce TNT formation (123, 126, 127), suggesting that a variety of signaling 

pathways may be involved in this process.

Transfer of mitochondria can be particularly advantageous in conferring cell survival and 

metabolic reprogramming, thereby enhancing tumor aggression and metastatic potential. 

It is thought that the transfer of low copy numbers of mtDNA can restore normal 

mitochondrial function in tumor cells, conferring a major growth and survival advantage 

(110, 160). Several studies have shown that mitochondrial transfer can be used in vitro 
and in vivo to promote alterations in bioenergetic profiles in recipient cells (44, 113, 120, 

156, 161–163). Other studies have also shown that gap junction channels may play critical 

roles in mitochondrial transfer. In a study by Islam et al. (120), bone marrow-derived 

stem cells (mBMSCs) formed connections with alveolar cells through the formation of 

connexin-43-based gap junction channels. These gap junction channels led to increased 

calcium communication and the formation of both nanotubules and microvesicles which 

were not formed in mBMSC cells loaded with a calcium chelator. According to the authors, 

this suggests a pivotal role of gap junction channel-mediated calcium communication in 

the formation of nanotubules and microvesicles, which enabled the restoration of ATP 

and surfactant secretion in injured alveolar cells. Other studies have also implicated 

connexin-43 gap junctions and related signaling pathways in the formation of TNTs 

(130, 164–166). Additionally, a recent report by Norris (167) also demonstrated that gap 

junction internalization is a mechanism by which mitochondrial transfer can occur, thus 

the multifaceted role of gap junctions and gap junction-mediated signaling in mitochondrial 

transfer warrants further investigation.

While mitochondrial transfer can facilitate cancer cell survival and increase bioenergetic 

capacity, it can also facilitate the development of chemoresistance. For example, Pasquier 

et al. (144) reported that mitochondrial transfer via TNTs from endothelial cells to breast 

cancer cells significantly enhanced cell resistance to doxorubicin treatment. Similar findings 

related to chemoresistance have been reported by Moschoi et al. (121), who found that the 

in vivo transfer of mitochondria from bone marrow-derived stem cells to acute myelogenous 

leukemia cells conferred chemoresistance. Mitochondrial transfer from MSCs to acute 

lymphoblastic leukemia cells has also been reported to protect against chemotherapeutic 

agents like cytarabine and daunorubicin (152). In the context of ovarian cancer, where 

resistance to platinum-based chemotherapies remains problematic, targeting mitochondrial 

transfer as a means of overcoming platinum resistance warrants further investigation. Thus, 

better understanding of how and when mitochondria transfer occurs in ovarian cancer and 

whether such events would increase or decrease chemoresistance are areas that certainly 

deserve further exploration.
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Mitochondrial dynamics (e.g., fission/fusion) in ovarian cancer

To effectively perform key cellular functions relating to energy generation, ROS production, 

and regulation of cell signaling and apoptosis (168), mitochondria can adapt their function 

and organization. These functional or organizational adaptations often lead to differences in 

mitochondrial morphology, which can vary from small, round, isolated mitochondria < 0.5 

mm in length, to elongated, hyperfused mitochondrial networks extending to tens of microns 

(169, 170). Alterations in the size or shape of mitochondria result from processes known 

as fission and fusion. Mitochondrial fission occurs when a single mitochondrion divides 

into two daughter organelles and requires the involvement of specific proteins that localize 

at the outer mitochondrial membrane including dynamin-related protein 1 (DRP1) and 

fission protein homolog 1 (FIS1) (44, 171). Conversely, mitochondrial fusion occurs when 

two mitochondria merge and form one single mitochondrion and is regulated by dynamin 

family GTPases, outer membrane-anchored dynamin family proteins mitofusins 1 and 2 

(MFN1/2), and an inner membrane-anchored protein known as optic atrophy type 1 (OPA-1) 

(44, 172–176). Fission and fusion also segregate damaged mitochondria for mitophagy as 

dysfunctional organelles cannot fuse; they also facilitate mitochondrial redistribution during 

cell division and assist in mitigating cellular stresses (44, 172, 176–180).

As fission and fusion are critically involved in mitochondrial morphological and functional 

features and can be influenced by microenvironmental cues (59, 181–183), these processes 

have been implicated in carcinogenesis and therapy resistance (44, 171, 184–190). In the 

context of therapy resistance, elongated mitochondria are often associated with pro-survival, 

highly metabolically active cells, and chemoresistant cell populations (179, 191). It is 

thought that elongated mitochondria can also form during starvation, which can occur during 

carcinogenesis, to protect the cell against oxidative stress and to maintain ATP production 

under stress (170, 192–194). Interestingly, increased oxidative stress levels have been 

associated with membrane depolarization and mitochondrial fission (170, 195). Fragmented 

mitochondria are often associated with apoptotic cell death and are more commonly found 

in quiescent cells that depend on glycolysis over OXPHOS (170, 179, 196–198). Studies 

have found that inhibiting mitochondrial fission led to decreased cytochrome c release 

and cell death, suggesting that fission plays a critical role in mediating apoptosis (179, 

199, 200). Interestingly, mitochondria need to be larger than a certain minimum size for 

the pro-apoptotic function of the BCL-2 family of proteins to be enabled, providing a 

potential mechanistic justification for the presence of highly fragmented mitochondria in 

chemoresistant cells (201).

In the context of ovarian cancer, studies examining the role of mitochondrial dynamics 

in therapy response have reported somewhat differential findings; however, all studies 

agree that mitochondrial dynamics are critical in determining ovarian cancer response to 

chemotherapy. A study by Zampieri et al. (10) showed that compared to cisplatin-sensitive 

cells (COV-362), cisplatin-resistant cells (COV-362-R) have more individual mitochondria 

and mitochondrial networks, defined as interconnected mitochondria with at least two 

branches. Additionally, in COV-362-R cells, cisplatin appeared to increase the numbers 

of individual mitochondria and mitochondrial networks (10). Other studies have shown that 
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chemotherapy resistant tumor cells of gynecologic or breast origin display increased levels 

of mitochondrial fusion compared to chemotherapy sensitive cells as well (44, 202, 203).

Conversely, mitochondrial fragmentation in malignant cells has been reported by Grieco 

et al. (204), who found that mitochondria were fragmented in the spheroid core of 

malignant MOSE-LTICv cells, and that while the levels of fission and fusion protein 

were lower in malignant cells compared to benign cells, the ratio of fission to fusion 

proteins (DRP1:MFN1) increased with malignancy. The authors suggested that the observed 

mitochondrial fragmentation in malignant spheroids may assist tumor cell aggregates in 

surviving hypoxic conditions (204). Exploring ovarian cancer cell mitochondrial dynamics 

under hypoxic conditions, Han et al. (183) reported that mitochondrial fragments, indicative 

of fission, increased under hypoxic conditions, and that these cells displayed MFN1 

downregulation alongside DRP1 activation. Hypoxia-induced fission in ovarian cancer 

cells was accompanied by increased levels of ROS that decreased upon treatment with 

antioxidants. Interestingly, when examining the relationship between hypoxia-induced 

fission and resistance to chemotherapy, Han et al. (183) reported that, treatment with 

Mdivi-1, a DRP1 GTPase inhibitor, prior to hypoxic exposure prevented hypoxia-induced 

fission and increased susceptibility of hypoxic ovarian cancer cells to cisplatin. Similar 

findings were reported in tumor spheroids from malignant ascites, which are known to 

have enhanced mitochondrial fission (183, 205), post-Mdivi-1 pretreatment, highlighting 

the value of DRP1 inhibition in preventing mitochondrial fission and increasing tumor cell 

sensitivity to platinum-based agents (183). It is important to point out that Mdivi-1 has 

non-fission related effects (206), making it unclear whether the effects of mitochondrial 

dynamics are driving the phenotypes. While more work is still needed, collectively these 

findings are in accordance with other studies showing that chemoresistant ovarian cancer 

cells display fragmented mitochondria compared to chemosensitive lines and that DRP1 

inhibition can re-sensitize ovarian cancer cells to treatment (206, 207). Overall, while studies 

are inconsistent regarding whether fusion or fission is more critical for understanding 

platinum response, targeting aspects of mitochondrial dynamics and organization may 

improve response to conventional therapies.

Contribution of malignant ascites to mitochondrial dysfunction in ovarian cancer

Malignant ascites, or the accumulation of excess fluid containing malignant cells, is 

present in the majority of stage III and stage IV ovarian cancer patients (36). Often, 

this fluid contains cellular components – tumor cells, fibroblasts, and inflammatory cells, 

as well as acellular factors – cytokines and metabolites, that create a tumor-promoting 

microenvironment (36). In fact, the various cellular and acellular factors present in 

malignant ascites have been implicated in tumor growth, invasion, and chemoresistance 

(208, 209). Interestingly, recent studies have also suggested a role for malignant ascites, 

and its components, in mitochondrial dysfunction. For example, a study by Asem et 

al. (210) reported that the peritoneal compression induced by ascites and the resulting 

increased intraperitoneal pressure led to enhanced cell adhesion as well as the formation 

of TNTs between ovarian tumor cells and peritoneal mesothelial cells and increased 

transport of mitochondria via TNTs from mesothelial cells to tumor cells. Other studies 

have also reported that malignant ascites can enhance the tumor-promoting nature of 
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peritoneal mesothelial cells by increasing mitochondrial oxidative stress (211). In addition 

to mesothelial cells, immune cells present in the ascites have also been linked to 

mitochondrial dysfunction in ovarian cancer. In CD4+ T cells, which represent the 

predominant leukocyte population in ascites (212–215), exposure to ascites led to IRE1a/

XBP1-mediated mitochondrial dysfunction (216). The IRE1a/XBP1 pathway is a conserved 

branch of the unfolded protein response which is activated by endoplasmic reticulum 

stress and influences several key regulators of tumorigenesis (217). In addition, ascites 

exposure decreased glucose uptake, thereby reducing glycolytic capacity, and decreased 

OCR in a dose-dependent manner (216). Taken together, these findings suggest the ability 

of cellular components of malignant ascites to contribute to mitochondrial dysfunction in 

ovarian cancer. Acellular factors, such as cytokines and chemokines, have also been shown 

to contribute to ovarian cancer cell senescence, which is associated with increased ROS, 

oxidative DNA damage, and mitochondrial dysfunction (218).

Another way in which malignant ascites can alter mitochondrial function is through the 

dysregulation of mitochondria-related genes. Sirtuin 3 (SIRT3) is involved in nutrient stress 

sensing and mitochondrial antioxidant regulation and is suppressed in many tumor types 

(219–224). Conversely, in detached ovarian tumor cells or tumor cells derived from the 

malignant ascites of ovarian cancer patients, Kim et al. (224) found that SIRT3 activity 

was increased. As a result of the increased SIRT3 activity, these cells also displayed 

increased levels of superoxide dismutase 2 (SOD2) and low levels of mitochondrial 

superoxide, suppressed glycolytic capabilities, and protection against anoikis. These findings 

suggest that increased SIRT3 and SOD2 activity are necessary for the survival of anchorage-

independent cells, such as those found in malignant ascites, and for metastatic colonization 

of the peritoneal cavity via the transcoelomic route (224).

Since malignant ascites contains a milieu of cellular and acellular factors known to 

contribute to ovarian tumor progression, metastatic potential, and response to therapy, 

it is not surprising that it may also contribute to mitochondrial dysfunction. Although 

there have been some studies evaluating the effects of ascites fluid and its components 

on mitochondrial endpoints, further evaluation is warranted as therapeutic targets may be 

revealed.

PHOTOCHEMICAL TARGETING OF MITOCHONDRIA AS A STRATEGY TO 

OVERCOME CHEMOTHERAPY RESISTANCE IN OVARIAN CANCER

Localization of a photosensitizer (e.g., subcellular, extracellular, vascular) is among the 

determinants of the biological mechanisms of PDT (225). There are several mechanisms 

by which mitochondrial-targeting PDT can change metabolic and signaling states, which 

may render the cell more susceptible to subsequent treatments (226). Activation of a 

mitochondria-targeted photosensitizer by light, leads to the production of RMS, damage 

to the mitochondrial membrane, and photodamage to Bcl-2, an anti-apoptotic regulatory 

protein (227, 228). Destruction of Bcl-2, combined with the preservation of cytoplasmic 

pro-apoptotic proteins, tips the balance towards apoptosis (225, 229, 230). Additionally, 

several studies reported that PDT can alter mitochondrial membrane potential and decrease 
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the activity of mitochondrial enzymes (16, 54). While these PDT effects have not been 

directly linked to PDT-induced chemosensitization, they could be relevant given the role of 

mitochondria in chemoresistance. This section provides an overview of various exogenous 

or endogenous PS that have been shown to localize to, or are partially synthesized in, 

mitochondria (Fig. 1). We will also discuss how the subcellular localization of a PS can 

be tuned through its structural modifications, the introduction of targeting ligands and 

nanoparticle encapsulation. Finally, we will discuss the translational aspects of PDT in 

the context of disseminated ovarian cancer and highlight the preclinical findings that will 

improve PDT safety and efficacy profiles.

Photochemical targeting of mitochondria with exogenous photosensitizers and 
nanoformulations

The efficacy of PDT for cancer control depends on the selective initiation of death pathways 

by photosensitization and light. Mitochondria are high priority targets since a minor amount 

of photodamage can result in the release of a sufficient level of cytochrome c into the 

cytoplasm to initiate an apoptotic response. Apoptosis is an ideal route to cell death since 

the process results in DNA fragmentation and the formation of apoptotic bodies that are 

then engulfed and digested by macrophages. This prevents the inflammatory effect of 

necrosis where plasma membrane rupture results in the release of the entire cell contents 

into the environment of the tumor. It is important to note that the prioritization of one cell 

death pathway over another to maximize tumor destruction remains an area of discovery. 

While some tumor types are characterized by apoptosis impairment (231–233), evasion 

of apoptosis appears to be rare, as indicated by the many clinical successes reported for 

treatment of different tumor types with PDT. The pathway from the release of cytochrome 

c into the cytoplasm to apoptosis was first reported by Jiang and Wang (234) and is a 

well-conserved route to cell death. In addition to inducing mitochondria-mediated apoptosis, 

PDT can directly impact mitochondria by affecting ΔΨm and cellular respiration enzymes. 

For example, BPD-PDT induced a rapid loss of the ΔΨm in 1c1c7 murine hepatoma cells 

(54). Importantly, the loss of ΔΨm was transient, and cells recovered within an hour 

unless treated with a supralethal PDT dose. Another clinical photosensitizer Photofrin 

has been shown to impact mitochondrial function by decreasing the activity of succinate 

dehydrogenase and cytochrome c oxidase, which are the key components of the respiratory 

electron transport chain (16). We hypothesize that these transient changes in the metabolic 

state may temporarily sensitize or re-sensitize cells to chemotherapy and contribute to the 

observed reversal of platinum resistance and synergism with platinum-based agents. Many 

clinically approved PS have mitochondria among their targets: the list includes Photofrin, 

benzoporphyrin derivative (BPD), and several others (235). The inherent propensity of 

some PS to localize to mitochondria stems from their porphyrin structure. Porphyrins are 

structurally similar to heme and can be efficiently shuttled into mitochondria from cytosol 

with help of several known transporters (236). While this is true for most PS, there is 

a group of photosensitizing agents that generally spare mitochondria but do target ER, 

lysosomes, or other sub-cellular sites; this can also initiate an apoptotic response along with 

other routes to cell death.
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It was reported in 1996 that a combination of two photosensitizing agents could significantly 

promote PDT efficacy and increase the tissue depth of photokilling in a rat model (237). 

This was initially attributed to the simultaneous targeting of tumor and tumor vasculature, 

but it is now known that the enhanced effect was caused by promotion of mitochondrial 

photodamage by concurrent effects on lysosomes. This resulted in an increase in the efficacy 

of photons impinging on photosensitized mitochondria, resulting in a greater photokilling 

efficacy, leading to an increased treatment depth. The mechanism involves a somewhat 

circuitous route. Photodamage to lysosomes can result in release of lysosomal calcium ions 

into the cytoplasm where they can activate the protease calpain. Activated calpain can cleave 

the autophagy-associated protein ATG5 into a truncated form that can bind to mitochondria 

and promote cytochrome c release after photodamage (238, 239).

Since most PS are fluorescent, their sub-cellular localization can often be visualized directly 

using widefield or confocal fluorescence microscopy. There is now a series of fluorescent 

probes for mitochondria that have diverse fluorescence emission spectra that facilitate the 

selection of a probe that does not fluoresce at the same wavelength as the photosensitizer 

being examined. There are also probes that can detect changes in ΔΨm. Among the more 

useful are Mitotracker Red (MTR) and Mitotracker Deep Red (MTDR), which are probes 

whose fluorescence is dependent on the maintenance of this potential. If the fluorescence 

of MTR happens to coincide with that of the photosensitizer being examined, there are 

alternate choices, e.g., Rhod123. Mitotracker green (MTG) fluorescence is independent 

of ΔΨm and is therefore a good probe for photosensitizer localization since its green 

fluorescence can readily be distinguished from the red fluorescence of most photosensitizing 

agents. With fluorescence microscopy, it is therefore possible to explore localization of 

photosensitizing agents and to detect their effect on ΔΨm. Co-labeling with any of the 

probes and the photosensitizer in the dark will reveal mitochondrial affinity of the latter. If 

a probe for ΔΨm is used after irradiation, this will quickly reveal whether there has been a 

photodynamic effect resulting in a decrease or loss of ΔΨm.

While mitochondrial photodamage is very effective at initiating apoptosis, photodamage 

to other sites, e.g., lysosomes and ER can confer additional benefits (240–242). Targeting 

lysosomes has been shown to antagonize the cytoprotective effect of autophagy (239, 240, 

243, 244). The subcellular localization of PS offers unparalleled precision in controlling 

death modes, therefore combining several subcellular photochemical targeting approaches 

can lead to synergy. One way of tuning photosensitizer subcellular localization is to use 

nanoformulations. Nanoformulations allow to increase PS delivery payloads, improve PS 

pharmacokinetic properties, and serve as platforms for molecular targeting and multiagent 

delivery (245). In some instances, the nanoformulation serves as a carrier for a drug 

with a natural affinity for mitochondria. When associated with cells, the drug diffuses 

out of the formulation into the cell and subsequently accumulates in the mitochondria. 

This is the case for liposomal formulations of the photosensitizer BPD, which in the 

presence of cells, diffuses out of the liposome and rapidly diffuses into cells, ultimately 

localizing mitochondria (246–248). Alternatively, when a liposome is used to formulate 

lysophospholipid conjugates of BPD that stably anchors the photosensitizer to the liposome, 

the construct enters the cell through phagocytosis and becomes sequestered in the 

compartments of the endo-lysosomal pathway (246, 248, 249). This intracellular re-routing 
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of PS by lipidation and respective nanoformulation offers unique advantages in selectively 

inducing differential and synergistic mechanisms of cell death as described above for PS 

with discrete subcellular fates.

Nanoformulations in and of themselves can be targeted to mitochondria specifically, 

given that the agent is stably entrapped in the nanoconstruct and amenable to 

intracellular shuttling by the nanoformulation. The most common approach for targeting 

nanoformulations to the mitochondria involves their surface functionalization with the 

lipophilic triphenylphosphonium (TPP) cation and its derivatives (250). TPP has a 

natural propensity to bind and penetrate mitochondrial membranes due to the electrical 

potential difference at the mitochondrial membrane. As such, TPP derivatization of 

drugs, imaging agents, therapeutics and nanoformulations has been shown to allow such 

entities to target mitochondria. TPP derivatization of photosensitizing nanoformulations 

has been shown to enhance mitochondrial oxidative stress as a therapeutic strategy 

(251). One of the earliest reports of using TPP as a mitochondrial targeting strategy for 

photosensitizing formulations was demonstrated in ovarian cancer cells by Cuchelkar et 
al. (252). While not strictly a nanoformulation, the authors prepared conjugates of the 

copolymer N-(2-hydroxypropyl)methacrylamide (HPMA; 48 kDa) with the photosensitizer 

mesochlorin e6 (Mce6). It was found that TPP derivatization of the polymer-photosensitizer 

conjugate resulted in its mitochondrial localization in SKOV-3 cells and improved its 

phototoxicity by up to 3-fold. More recently, nanocomposites comprising silica coated 

Fe3O4 nanoparticles were loaded with a platinum diamine complex photosensitizer and 

were functionalized with TPP (253). Derivatization with TPP resulted in 14–17-fold greater 

phototoxicity in HCT116 and A549 cells, as compared to underivatized nanoparticles. 

Macrophage membrane camouflaged gold nanodendrites have been functionalized with 

the photosensitizer indocyanine green and have also been targeted to the mitochondria by 

TPP functionalization (254). TPP functionalization led to increased co-localization with 

Mitotracker Green in MDA-MB-231 cells. PDT was induced by 808 nm laser irradiation 

and photothermal therapy was induced by a 1064 nm laser. The combined effect of 

photodynamic and photothermal therapy led to optimal cytotoxicity in vitro and in vivo.

In general, targeting mitochondria with agents either directly or by formulation procedures 

has been shown to be an effective strategy for promoting cancer cell destruction via 

apoptosis. A valuable facet to this approach is the opportunity to augment cytotoxicity by 

non-overlapping cell death mechanisms. This can be helpful where one mechanism, e.g., 

apoptosis, is impaired. With implications in circumventing chemoresistance specifically, 

targeted damage to mitochondria can open new approaches to design of combination 

therapies with unique and largely unexplored mechanisms of action.

Targeting mitochondria in ovarian cancer using protoporphyrin IX (PpIX)-mediated PDT in 
combination with platinum-based chemotherapy

Heme biosynthesis is among the important cellular functions that occur, in part, in 

mitochondria (255). Heme forms the prosthetic group of many hemoproteins, including 

hemoglobin and cytochromes (255–257). The heme biosynthesis pathway starts with the 

generation of aminolevulinic acid (ALA, 5-ALA) from glycine and succinyl CoA by 
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ALA synthase in mitochondria and continues through multiple enzymatic conversions in 

the cytosol (255). The pathway intersects again with mitochondria as coproporphyrinogen 

leaves the cytosol and is converted by coproporphyrinogen oxidase into protoporphyrinogen 

in mitochondria. Protoporphyrinogen is then converted by protoporphyrinogen oxidase into 

protoporphyrin IX (PpIX), the penultimate molecule of the heme the biosynthesis pathway. 

The final major step in the pathway involves the insertion of ferrous iron, by ferrochelatase, 

into PpIX to produce heme (255, 256, 258). Dysregulation, in many cancers, of key 

heme biosynthetic enzymes, such as ferrochelatase, provides a mechanism for selective 

accumulation of PpIX in tumor tissue. PpIX is a photoactive molecule, excitation of which, 

by visible light, leads to the generation of cytotoxic RMS or fluorescence emission for 

photodynamic therapy (PDT) or fluorescence imaging, respectively (257–259). PpIX levels 

in target cells can be further enhanced using a variety of methods: administration of 

exogenous ALA, inhibition of ALA efflux, iron chelation, and differentiation of cancer 

cells with a concomitant change in metabolism (255). Clinical applications of ALA for 

PDT (ALA-PpIX-PDT), fluorescence imaging and guided-resection include basal cell 

carcinomas, actinic keratosis, Bowen’s disease, bladder cancer, and recently glioma (258, 

260–262).

Mitochondria also play an important role in cell death mechanisms (263). The release of the 

mitochondrial protein cytochrome c activates a cascade of caspases that leads to apoptosis. 

Additionally, the Bcl-2 family of proteins located on the outer membrane of mitochondria 

play a key role in the regulation of apoptosis (234). Considering the role of mitochondria 

in both cellular function and cell death, mitochondria have become a therapeutic target for 

the treatment of various diseases including neurodegenerative disease and cancer. Current 

research in mitochondrial targeting is focused on drug delivery systems using nanocarriers 

such as liposomes and polymeric nanoparticles (264–266).

Since PpIX is synthesized, in part, in mitochondria, ALA-PpIX-PDT can be used as 

a mitochondria-targeted treatment method (267). Several studies have examined the 

effectiveness of ALA-PpIX-PDT in the context of ovarian cancer. For example, Spörri et 

al. compared the effect of ALA incubation, as well as the efficacy of ALA-PpIX-PDT, 

on an endothelial cell line, HUVEC, and on tumor cells derived from human ovarian 

cystadenocarcinoma (268). One of the major findings of the study was that tumor cells 

accumulate at least 500 times more PpIX compared to HUVEC cells, which was in 

accordance with previous findings revealing that PpIX selectively accumulates in malignant 

cells. Evaluating the effectiveness of ALA-PpIX-PDT in ovarian cancer further, an in vivo 
study by Ascencio et al. showed that ALA-PpIX-PDT using both green (532 nm) and red 

(630 nm) light promoted tumor necrosis on peritoneal metastatic ovarian cancer models 

(269).

Cells can also acquire resistance to PDT, including ALA-PpIX-PDT (270). Yokoyama et 

al. conducted an in vivo study to investigate the efficacy of ALA-PpIX-PDT, as well as 

the mechanism of resistance to ALA-PpIX-PDT in the context of ovarian cancer (271). 

The results of the study revealed that subcutaneous ovarian cancer tumors developed 

using MCAS and TOV21G cell lines were resistant to ALA-PpIX-PDT, while the tumors 

developed using other cell lines could be successfully treated with ALA-PpIX-PDT. Further 
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analysis showed that the ALA-PpIX-PDT-resistant cell lines expressed significantly lower 

levels of glutathione transferase Omega-1 (GSTO1) compared to the ALA-PpIX-PDT 

sensitive cell lines. Previous research has shown that GSTO1 is associated with the 

inhibition of the conversion of PpIX to heme. Considering that cellular PpIX levels are a key 

determinant for the efficacy of ALA-PpIX-PDT, these results suggest that decreased GSTO1 

expression can be associated with resistance to ALA-PpIX-PDT in ovarian cancer. In 

another study investigating the efficacy of ALA-PpIX-PDT on ovarian clear cell carcinoma 

cell lines, Teshigawara et al. showed that resistance to ALA-PpIX-PDT is associated 

with the expression ATP-binding cassette super-family G member 2 (ABCG2) protein, a 

transmembrane transporter protein that exports PpIX from mitochondria to the cytoplasm 

(272). Based on the findings of Yokoyama et al. and Teshigawara et al., the efficacy of 

ALA-PpIX-PDT may be increased by transferring the GSTO1 gene to tumor cells or by 

using ABCG2 inhibitors, respectively, to promote PpIX accumulation in ovarian tumor cells.

Although resistance to chemotherapy and PDT pose challenges to cancer treatment, minimal 

cross-resistance (resistance to platinum-based chemotherapy concurrent with resistance to 

PDT) has been reported (270). Combining mitochondria-targeted PDT with chemotherapy 

can, therefore, be an effective strategy to complement the mechanisms of conventional 

agents with non-overlapping toxicities (29, 273–275). While this approach has been 

explored in the context of various photosensitizers, ALA-PpIX-based priming in the context 

of ovarian cancer remains understudied.

Translational considerations and clinical scenarios

Robust preclinical evidence of PDT synergy with platinum-based chemotherapy creates 

a strong rationale for the integration of PDT with current ovarian cancer treatment 

protocols (27, 226). Oncology-related applications of PDT were initially limited to largely 

superficial cancers and premalignant conditions that were easily accessible by light. Recent 

advancements in fiber optics and integration of these technologies with laparoscopic 

surgery workflows have enabled light delivery to deeper, or less readily accessible, 

malignancies (276, 277). In the case of disseminated ovarian cancer, light can be delivered 

intraperitoneally using a flat-cut fiber or a diffusion wand. Notably, the tissue penetration 

depth of visible light ranges from 3–10 mm, depending on the wavelength (278), which 

may be advantageous when treating intraperitoneal carcinomatosis to help spare the deeper 

layers of the abdominal wall (279). Given that most disseminated ovarian cancer nodules 

are confined within the peritoneum, PDT provides an opportunity for locoregional priming 

of metastatic tumor nodules to enhance the efficacy of platinum-based therapy with non-

overlapping toxicities. This section will summarize the progress towards PDT clinical 

translation for disseminated ovarian cancer treatment and discuss how recent advances in 

photosensitizer design may address existing clinical challenges.

The first Phase I trial was conducted at the National Cancer Institute (NCI) to test PDT 

feasibility and safety in patients with disseminated intraperitoneal malignancies, including 

ovarian carcinomatosis (31). Patients were intravenously injected with Porfimer sodium 48 

hours before the treatment, after which the disseminated lesions were resected or debulked. 

The peritoneal cavity was then irradiated with 630 nm light using a flat-cut fiber. Light 

Rickard et al. Page 18

Photochem Photobiol. Author manuscript; available in PMC 2024 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dosimetry was performed using several photodiodes placed into various areas within the 

peritoneum, including the right and left upper quadrants, right and left peritoneal gutters, 

and pelvis. This photodiode placement enabled real-time light dosimetry, ensuring that 

each relevant area within the peritoneum received adequate irradiation. The peritoneum 

was filled with 0.2% Intralipid™, which served as a light-scattering medium. While this 

study showed that intraperitoneal PDT is feasible in a clinical setting, it also revealed 

significant adverse effects. Four out of forty-six patients who received light irradiation 

developed intestinal fistulae and bowel perforation, which were the main dose-limiting 

toxicities. Another significant adverse effect was the capillary leak syndrome, which 

necessitated fluid resuscitation for the first 4–5 days postoperatively, and, in some cases, 

mechanical ventilation (280). Despite these toxicities, PDT slightly prolonged a median 

survival time, and three out of 25 ovarian cancer patients remained disease-free 36 months 

post-treatment. These results warranted a Phase II trial at the University of Pennsylvania, 

which included 33 ovarian cancer patients, 37 patients with gastrointestinal malignancies, 

and 30 sarcoma patients (32, 33, 280–287). This study followed a similar treatment 

approach, wherein patients underwent cytoreductive surgery followed by Porfimer sodium 

PDT at the maximum tolerated dose determined in Phase I. Similar to the NCI trial, patients 

suffered from capillary leak syndrome, bowel fistulae/anastomotic leaks and other adverse 

effects. Consistent with the Phase I trial, PDT in ovarian cancer patients resulted in a 

prolonged median failure-free survival from 2.1 to 3 months and overall survival from 20.1 

to 22 months, suggesting some benefit from this treatment. Despite the overall treatment 

feasibility and a minor increase in overall survival, the lack of treatment selectivity and 

adverse toxicities halted any subsequent trials.

The suboptimal PDT therapeutic window observed in these studies stems from the 

insufficient photosensitizer tumor-to-tissue ratio (281, 282). Clinical studies showed that 

the ~2.31 ratio of mean Porfimer sodium concentration in tumor versus bowel, a toxicity-

limiting organ for intraperitoneal PDT, was insufficient to achieve PDT selectivity (281). 

These results suggest that preclinical cancer models overestimated the photosensitizer 

tumor-to-tissue ratio, and more sophisticated targeting methods are needed to enhance PDT 

selectivity in humans (21). Over the past few decades, considerable progress has been 

achieved in targeted photosensitizer design, including the development of photosensitizer-

antibody conjugates, as well as molecular and nanophotosensitizers that preferentially 

accumulate in cancer cells and/or localize to the desired subcellular compartments.

One of the targeted PDT approaches that have been gaining momentum in the clinic 

is photoimmunotherapy, or the use of photosensitizer-antibody conjugates. Photochemical 

targeting of the epidermal growth factor receptor (EGFR) with photosensitizers conjugated 

to anti-EGFR antibodies and antibody fragments has been particularly successful (19–

21, 27). For example, a chlorin derivative conjugated to OC 125 antibody showed an 

increased tumor photosensitizer concentration by 2 times compared to its free version, 

resulting in a more favorable tumor-to-intestine ratio of 3.5 (21). This enabled highly 

effective photoimmunotherapy, leaving only 5% of cancer cells viable in an OVCAR-5 

model of malignant ascites. EGFR-targeting antibody-photosensitizer conjugates not only 

enhance cancer-specific photosensitizer accumulation and improve tumor-to-tissue ratio 

but also exert additional cytotoxicity by inhibiting ligand binding and preventing receptor 
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dimerization (288). Moreover, next-generation photosensitizer-antibody conjugates enable 

tumor-selective photosensitizer activation. In a seminal study, Savellano and Hasan produced 

BPD-C225 anti-EGFR antibody conjugates with improved chemical purity and aqueous 

solubility by first conjugating a small number of lysine residues to polyethylene glycol 

chains (289). This method reduced BPD-antibody aggregation, improved solubility and 

facilitated BPD conjugation. Importantly, photosensitizer loading ratios could be precisely 

controlled, and it was found that higher BPD-antibody ratios corresponded to a higher 

degree of fluorescence self-quenching. In a more recent study, Spring and co-authors utilized 

this elegant approach to activatable photoimmunoconjugate design using BPD and an anti-

EGFR antibody Cetuximab (25). By tuning the photosensitizer-to-antibody ratio, the authors 

yielded agents with a varying degree of self-quenching. Specifically, conjugating one BPD 

molecule to one Cetuximab did not affect BPD’s fluorescence and PDT activity. However, 

conjugating seven BPD molecules to a single antibody resulted in fluorescence and PDT 

quenching, which could be restored upon cell internalization and lysosomal proteolysis. 

This unique approach resulted in low PS background fluorescence and PDT activity 

outside the EGFR-expressing micrometastasis, enabling highly selective tumor detection 

and PDT. Importantly, this study showed a favorable tumor-to-bowel ratio of 9.2 based on 

fluorescence, resulting in safer and more effective treatment.

The advancements in targeted photosensitizer design have already been partially 

implemented in the clinic. EGFR-targeted photoimmunotherapy using an IRDye 700DX-

Cetuximab immunoconjugate has recently been evaluated in a global Phase III trial in 

patients with unresectable recurrent head and neck cancer, including patients that failed 

on platinum-based therapies (ClinicalTrials.gov Identifier: NCT03769506). Another rapidly 

developing direction is the use of targeted fluorescent agents for more complete and accurate 

fluorescence-guided tumor resection. For example, intraoperative visualization of ovarian 

cancer nodules was conducted with a folate receptor-targeting fluorescein isothiocyanate 

conjugate (290). Fluorescence guidance with a targeted agent enabled more sensitive 

cancerous lesions detection compared to bright-field illumination. Since most PS are 

fluorescent, combining targeted PDT with the standard of care workflows would not only 

potentiate chemotherapy but also enable surgical guidance. Overall, recent clinical success 

of targeted PDT combined with the preclinical evidence of PDT synergy with platinum-

based chemotherapy creates a strong foundation for its clinical translation in the context of 

disseminated ovarian cancer.

SUMMARY AND CONCLUSIONS

Mitochondria play a critical role in cancer cell survival, energy production and 

chemoresistance, therefore, they represent an important therapeutic target. Recent evidence 

suggests that mitochondrial dysfunction is one of the critical drivers of platinum resistance 

in ovarian cancer, a key factor in the high mortality associated with this deadly disease. 

In this review, we discussed the role of mitochondria in ovarian cancer progression and 

therapy response and outlined several promising therapeutic strategies that could counteract 

it. Specifically, the upregulation of mitochondrial transfer in platinum-resistant ovarian 

cancer cells suggests the development of inhibitory therapies targeted at TNT formation 

may be useful in overcoming therapy resistance. We discussed reported methods of 
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mitochondrial transfer and its effect on resistance, however, there are also other potential 

means of mitochondrial transfer such as through extracellular vesicles that remains to be 

further explored in the context of resistance. Additionally, mitochondrial transfer promotes 

bioenergetic flexibility in cancer cells, which has been linked to invasive potential and 

onset of platinum resistance. Although targeting glycolysis alone has not proven effective 

in ovarian cancer, inhibiting the ability of ovarian cancer cells to switch between OXPHOS 

and glycolysis for energy production may render the cells susceptible to platinum-based 

chemotherapy. Recent studies identified several potential pharmacological approaches to 

target mitochondrial function. For example, genetic silencing of the mitochondrial BNIP3 

protein or pharmacological inhibition of autophagosome formation was sufficient to re-

sensitize ovarian cancer cells to cisplatin (291). Alternatively, mitochondrial dynamics may 

also be exploited for the treatment of ovarian cancer, since studies have shown that inhibitors 

of regulatory proteins involved in mitochondrial fission enhance cisplatin-mediated death 

(292). However, these approaches have not been tested in vivo, and their cancer selectivity 

and clinical utility remains to be investigated.

PDT represents a mechanistically distinct alternative to pharmacological targeting 

approaches that can trigger mitochondrial damage with exquisite spatial and temporal 

precision. PS that preferentially localize to mitochondria can be used to generate RMS, 

induce mitochondrial membrane damage and photodamage to Bcl-2, and trigger cytochrome 

C release into the cytoplasm, thereby promoting an apoptotic response. For tumor 

eradication, mitochondria are a particularly good target because the small amount of 

damage inflicted by PDT yields a major result in apoptosis, as this is an irreversible death 

pathway. While some clinical PS have the inherent ability to localize to mitochondria, many 

mitochondrial targeting strategies have been explored preclinically, including the design 

of targeted small molecules, peptides and nanoformulations (293). A plethora of studies 

have demonstrated that PDT potentiates platinum chemotherapy in ovarian cancer in vitro 

and in vivo, resulting in more effective destruction of disseminated intraperitoneal nodules. 

However, the role of mitochondrial targeting in these outcomes remains to be elucidated. 

From a clinical perspective, intraperitoneal PDT is feasible in patients with advanced 

ovarian cancer, and we believe that recent advances in targeted photosensitizer design have 

the potential to address key dose-limiting toxicities noted in previous studies. Moreover, 

since most PS are fluorescent, PDT can be readily combined with fluorescence-guided 

surgery, resulting in more complete and accurate tumor resection. Overall, there is a strong 

mechanistic and clinical rationale for exploring photochemical targeting of mitochondria as 

a means of overcoming chemoresistance and improving the management of ovarian cancer.
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Figure 1. 
Mitochondria-localized endogenous precursors, exogenous molecule, and nanoformulations 

can enhance PDT efficacy. Endogenous photosensitizer precursors (blue panel) such 

as 5-ALA can be administered for ALA-PpIX-PDT. Once 5-ALA is administered, it 

is transported into malignant cells via the PEPT1/2 transporter and is converted into 

coproporphyrinogen III. It is then shuttled into the mitochondrion by ABCB6 where it 

is converted into PpIX. PpIX is an inherently fluorescent molecule, thus irradiation of 

PpIX can assist with fluorescence-guided resection or PDT-related cytotoxicity. Exogenous 

photosensitizers (green panel) like BPD can also be used for PDT. Once BPD is 

administered, it passively diffuses across the cell membrane and preferentially localizes to 

mitochondria and the endoplasmic reticulum. When irradiated with red or green light, BPD 

becomes activated and simultaneous photodamage to the mitochondrion and endoplasmic 

reticulum occurs. In addition to endogenous and exogenous agents, photosensitizer 

nanoformulations can also be used to enhance PDT efficacy. For example, liposomal BPD, 

which is endocytosed across the cell membrane, in combination with free BPD, which 

diffuses across the cell membrane, can be used to cause simultaneous photodamage to the 

mitochondrion (free BPD), endoplasmic reticulum (free BPD), and lysosomes (liposomal 

BPD). Other nanoformulations can involve conjugating a mitochondria-localized PS to 

the lipophilic TPP cation. TPP derivatization enhances mitochondrial oxidative stress and 

therefore phototoxicity when the PS is activated.
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Table 1.

Glycolytic Proteins/Enzymes Involved in Cancer Progression

Glycolytic Proteins/Enzyme Normal Function Role in Cancer

Glucose transporter 1 (GLUT1) Facilitate glucose transfer across a membrane 
(69)

Facilitates metastasis, indicative of a poor prognosis, 
marker of hypoxia (63, 64)

Hexokinase II (HKII) Converts glucose to glucose-6-phosphate (60) Promotes tumorigenesis, survival, chemoresistance, 
and shift toward glycolytic metabolism (66–68, 70–
72)

Phosphofructokinase 1 (PFK1) Converts fructose-6-phosphate to fructose 1,6 
bisphosphate (73, 74)

Inhibits apoptosis (73)

Pyruvate Kinase Converts phosphoenolpyruvate to pyruvate (60) Promotes tumorigenesis, macromolecule synthesis, 
and metabolic adaptations (75–79)

Lactate Dehydrogenase-A (LDH-
A)

Converts pyruvate to lactate and NADH to 
NAD+ (60)

Promotes increased oxidative metabolism and tumor 
microenvironment acidification (80–83)
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