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SARS-CoV2 billion-compound 
docking
David M. Rogers   1 ✉, Rupesh Agarwal   2,3, Josh V. Vermaas   1,4, Micholas Dean Smith2,3, 
Rajitha T. Rajeshwar2,3, Connor Cooper2,5, Ada Sedova5, Swen Boehm1, Matthew Baker1, 
Jens Glaser1 & Jeremy C. Smith2,3 ✉

This dataset contains ligand conformations and docking scores for 1.4 billion molecules docked against 
6 structural targets from SARS-CoV2, representing 5 unique proteins: MPro, NSP15, PLPro, RDRP, 
and the Spike protein. Docking was carried out using the AutoDock-GPU platform on the Summit 
supercomputer and Google Cloud. The docking procedure employed the Solis Wets search method to 
generate 20 independent ligand binding poses per compound. Each compound geometry was scored 
using the AutoDock free energy estimate, and rescored using RFScore v3 and DUD-E machine-learned 
rescoring models. Input protein structures are included, suitable for use by AutoDock-GPU and other 
docking programs. As the result of an exceptionally large docking campaign, this dataset represents 
a valuable resource for discovering trends across small molecule and protein binding sites, training AI 
models, and comparing to inhibitor compounds targeting SARS-CoV-2. The work also gives an example 
of how to organize and process data from ultra-large docking screens.

Background & Summary
The COVID-19 coronavirus pandemic places enormous attention on the application of efficient in silico screen-
ing of small molecules via molecular docking to expedite the discovery of potential viral inhibitors. As a method, 
molecular docking uses physical models to produce 3D structures and binding energy estimates for small mole-
cules in binding pockets on proteins, which may interfere with protein activity1. By leveraging supercomputing 
resources, we generated large datasets containing the calculated binding modes and associated estimated bind-
ing free-energies energies of over one-billion small molecules to each of several SARS-CoV-2 protein targets2–4, 
as part of a larger effort to make use of supercomputing to accelerate drug discovery while also increasing our 
understanding of the biophysical behavior of several SARS-CoV-2 proteins5. This expansive virtual screening 
campaign provides an opportunity to provide a comprehensive view of the relevant chemical space and its inter-
actions with key coronavirus proteins. This manuscript compliments our raw data releases and provides details 
of the methods to generate the dataset and output formats for this dataset to facilitate further analysis.

Because of the approximations used in designing scoring functions, docking is most useful in the initial hit 
identification phase of the drug discovery pipeline6. Hits identified from docking provide inputs including com-
mon substructures (pharmacophores), novel chemical scaffolds, and molecular structures suitable for subsequent 
optimization by rational design. A critical review of the effectiveness of hit generation via docking noted a median 
hit rate of 13%, much better than random screening (whose hit is approximately 0.1%)7. Hit rates can vary between 
protein targets due to a combination of the approximate nature of scoring functions and protein ‘druggability’. 
Relevant to the first target present in this dataset, a recent comparison between multiple scoring functions8 showed 
that AutoDock9 identified a ligand pose within 2 Ang. RMSD of its crystal for only 40% of 193 crystal structures 
compared. Of those predicted correctly, the best scoring pose coincided with the crystal 75% of the time.

Typical virtual screening studies10–12 aimed at identifying compounds to modulate protein function and dis-
ease progression have tended to make use of libraries containing on the order of hundreds of thousands to mil-
lions of molecules. Currently, large scale efforts are limited primarily by available computing power, with large 
catalogs of synthetically available compounds and relatively high hit rates for computational drug discovery13.  
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Recent exceptions to this paradigm have begun to emerge, docking hundreds of millions of molecules against single 
protein targets4,14. Here we provide a data release description for docking results for over a billion compounds from 
the 2018 Enamine REAL dataset against six different protein structures encompassing five different SARS-CoV-2 
associated targets in a serial “gigadocking” campaign utilizing GPU-accelerated docking software. The docking pro-
cess followed for these billion molecule libraries explicitly calculates the location of each (flexible) ligand relative to 
each target protein’s (rigid) binding site (Fig. 1). This provides an estimated score for the binding free-energy of the 
predicted complex using well-known, currently established, docking protocols implemented in AutoDock-GPU15,16.

This data will be useful both to compare the accuracy of new methods as well as to understand the limitations of 
established docking protocols. Since the docking dataset presented here covers an unprecedented range of chemical 
space for proteins that have elicited significant experimental attention, it represents a unique opportunity to compare 
with both experimental structures and binding affinities. Such comparisons together with rescoring docked poses 
might yield insights beyond those measured here, similar to rescoring efforts17 on the large VirtualFlow dataset18. The 
dataset may also be employed to improve current understanding of non-specific binding19. Further, owing to the vast 
chemical space represented here and the targets selected, the docking scores and poses may serve as a useful sample 
dataset for those interested in applying machine-learning technologies to analyzing protein-ligand datasets.

The SARS-CoV-2 proteins targeted using gigadocking were: (i) Main protease (Mpro), which has a important 
role in mediating viral replication and transcription20; (ii) Papain-like protease (PLpro), which is essential to 
cleave viral polyproteins and assemble the replicase-transcriptase complex21; (iii) Endoribonuclease (Nsp15), a 
uridine specific endoribonuclease, that processes viral RNA to evade recognition by host defense systems22,23; 
(iv) RNA-dependent RNA polymerase (RdRp) that regulates viral replication24; (v) the Spike protein, which is 
recognized by the ACE2 receptor to initiate membrane fusion that triggers cellular infection25,26.

Methods
The molecules described in the study are a subset of the 2018 Enamine REAL database27, prepared by 
VirtualFlow18. Molecules within the REAL database are readily synthesizable compounds that can be made 
on-demand using in-house validated procedures. For consumers of this dataset, it is important to note that 
Enamine offers a newer version of its database that is preferred for new projects27. The chemical structures of the  
1.4 billion compounds used for docking are identical to those inflated by VirtualFlow and made available at  
the beginning of the pandemic18, as these pdbqt files were used in the initial screen. All compounds were docked 
against binding sites of six SARS-CoV-2 proteins, selected for their potential as drug targets (Fig. 1).

Both ligand and protein structures were converted to AutoDock-compatible input formats (map files and 
pdbqt) using AutoDock Tools9. While the existing VirtualFlow ligand structures were provided in a AutoDock 
compliant format, inspection of pre-assigned partial charges in the existing library showed deviations from 
AutoDock standards. As a result all ligands were re-processed using AutoDock Tools for proper partial charge 
assignment. These inputs for AutoDock-GPU are included in the dataset. Docking was carried out using the 
Summit supercomputer and Google Cloud high performance computing resources using the AutoDock-GPU 
program as it stood June 202015,16. AutoDock-GPU computed 20 independent structures per small molecule 
ligand-protein combination using the Solis Wets search method15. In addition to the AutoDock estimated binding 
affinity, we also report the rescoring results for RFScore v328 and DUD-E29 machine-learned rescoring models.

Data generation protocol. 
	 1.	 Protein map files were prepared using AutoDock Tools9 with input from the entire team. The map files 

dictate the search space for where ligand-protein interactions may occur, and are chosen around selected 

Fig. 1  Workflow for creation of docked, scored molecule dataset. Illustrations show: (top left) examples of 
the initial molecule structures and information available from Enamine27, (center right) alternative generated 
molecular structures from Virtual Flow (VF)18, and (lower left) docked geometries. Virtual Flow’s generated 
geometries are labeled by two additional numbers. The first number enumerates stereocenters and ring 
puckering variations. The second tries to enumerate tautomerization states. In the example here, T1 and T2 
differ by re-interpreting a ketone oxygen as an alcohol–adding double-bonds and removing hydrogens from 
carbons in the central ring. The inputs are then passed to ligand preparation routines for AutoDock4 (AD4)9, 
which shares input requirements with AutoDock-GPU (AD-GPU)15. The docking results can then be rescored 
with machine learning (ML) techniques.
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regions of interest for each protein, such as enzyme active sites. In this way, the experimental design 
favored competitive inhibitors that could interfere with the protein-protein interface, rather than allosteric 
binders to cryptic sites which are only uncovered by additional simulation30.

MPro.  The active site of the MPro protein has previously been shown to have a large amount of conformational 
plasticity31; to account for this two MPro structures were chosen for docking. The two structures chosen for 
docking are found in the protein databank32, with accession codes 5R8433 and 6WQF31. The 6WQF structure 
was chosen as one starting point as it represented a “thermalized” structure, having been solved at high temper-
ature. The 5R84 structure was selected as an alternative structure with a relatively accessible active site due to the 
bound ligand. These two structures were aligned to the 5R84 structure, with the selected region for docking cho-
sen to be located at (−8, 6, 8) relative to Cα on Pro39. This box center was chosen to include bound ligands from 
existing crystal structures near the active site while minimizing the box size to maximize throughput. Thus, the 
input grid for AutoDock-GPU was a 65 × 65 × 65 gridpoint cube, with spacing between gridpoints of 0.375 Å.

PLPro.  The initial structure for the papain-like protease (PLPro) was taken from the protein databank entry 7JIR34  
with ligands and Zn2+ removed. Two crystallographic waters located near Tyr273 and Thr301 were retained 
from the original crystal structure. An additional strongly bound water at Asp164 was considered, but not 
retained during docking. To properly orient the crystallographic waters, a short energy minimization (1000 
steps) was performed using the CHARMM36 force-field35 in NAMD2.1436. The docking search box, following the 
same protocol noted above for MPro, was constructed with the center taken to be located at (51.51, 32.16, −0.55)  
in the PDBQT file, which corresponded to the center of the original ligand present in the crystal structure. The 
C111S mutation was preserved in our gigadocking screen.

RdRp.  An initial structure for the SARS-CoV2 RNA-Dependent RNA Polymerase (RdRp) was obtained from the 
protein databank (6YYT)24; however, the initial structure lacked the reasonable placement of Mg2+, Zn2+, and 
ATP within its active site. To correct for this deficiency a series (1,000) of alternative models derived from distance 
restraints taken from a similar RdRp found in the Hepatitis C virus (4WTD)37 was generated using the Rosetta 
homology modeling package38,39 and the top performing, as determined by the Rosetta energy score, was selected 
for alignment with the PDB code 4WTD to refine the placement of ATP. Following the addition of ATP and ions, an 
energy minimization/structure optimization calculation, performed with a gradient descent and with a convergence 
target of 0.0001 RMS kcal/mol/Å2 using MOE201940 with the Amber14:EHT41 force-field, was performed. To ensure 
the ions did not drift too far during the minimization, harmonic tethers were used to restrain ion positions to within 
0.5 Å. Additionally, the MOE option to optimize OH positioning was also used. The final relaxed structure was used 
for the docking and the docking box center was taken as (93.88, 83.08, 97.29), near the center of the RNA binding site.

NSP15.  For Non-structural protein 15 (NSP15), the initial structural model used for docking was derived 
from the crystal structure (PDB 6WLC) of SARS-CoV2 NSP15 Endoribonuclease in complex with substrate 
Uridine-5′-monophosphate42. The docking search box was centered near Tyr343 (93.93, −16.14, −30.06) with 
identical input grid dimensions as in the previously described proteins, a 65 × 65 × 65 gridpoint cube, with 
0.375 Å spacing between gridpoints. The center and size of the box were chosen to include the enzyme active site 
(i.e., residues around the bound ligand).

Spike protein.  The protein structure (PDB 6M0J) of the SARS-CoV2 Spike protein subunit S1 in complex with 
Angiotensin-converting enzyme 2 (ACE2)26 was used for docking. The ACE2 and coordinating ions were removed. 
The box was centered at XYZ coordinate of −34.968, 25.439, 3.367 with a 64 × 64 × 59 input grid and 0.375 Å 
gridspacing. In this design, bound ligands would be predicted to interfere with the Spike-ACE2 binding interface.

Grids for C, N, OA, HD, A, NA, F, SA, S, Cl, P, I, Br, and Fe atomtypes were generated using AutoGrid 4 for all 
proteins. The grids themselves were generated with the smooth parameter set at 0.5, and the distance-dependent 
dielectric factor set at −0.146543, as is the default for AutoDock49.

	 2.	 The pre-computed 3D structures of the Enamine 2018 REAL library provided by VirtualFlow4 were 
pre-processed, using the prepare_ligand.py tool from the AutoDock Tools suite9, to re-assign 
partial charges to AutoDock standards. Following charge re-assignment, the ligand library was split into 
tarball archives. Following the initial docking of MPro 6WQF, preliminary analysis of docked poses found 
several ‘broken’ ligands (about 0.1%). A full description is present in the section on ‘Data Integrity’. Invalid 
molecules were removed from the input library when screening all docking targets other than MPro.

	 3.	 Docked compounds moved to Google Cloud Storage were aggregated into groups and sequentially 
re-numbered to make batch sizes around 1024 molecules. This new batch size decreased the docking time 
per batch to around 10 minutes.

	 4.	 Docking was carried out on the six systems using slightly different workflows based on the available high 
performance computing resources:

	 (a)	 MPro_5R84 used a Fireworks-based workflow run on Summit and Marble
	 (b)	 MPro_6WQF, NSP15_6WLC and Spike_6M0J used launchad on Summit. (see code availabil-

ity below)
	 (c)	 PLPro_7JIR and RDRP used launchad customized for running using on-demand compute 

nodes on Google Cloud
Additional workflow and analysis tools developed for MPro docking are described in Ref. 44.
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	 5.	 For runs on Summit, docked/nn.pq files were created by post-processing docking log-files using  
pymapreduce (see code availability below) from the Rhea and Andes systems at the Oak Ridge Lead-
ership Computing Facility (OLCF). Then rescoring (generating scored/nn.pq) was accomplished by 
running the pmake parallel make manager45 with rescore.py (present in the secondary dataset). This 
version parallelized over single input files. The yaml files in the top-level directory of the primary dataset 
document its run inputs.

	 6.	 For runs on Google Cloud, docked/nn.pq files were output directly by launchad and rescoring using 
launchad’s rescore.py function to create scored/nn.pq outputs.

Note that the batch sizes after re-scoring also differ between Summit and Google Cloud runs. For Summit, all 
the compounds in docked/nn.pq files correspond to scores in scored/nn.pq files (same nn). However, 
for Google Cloud runs, the compounds in docked/nn.pq correspond to scores in scored/$(nn/4).pq. This 
difference in batch sizes for docked compound outputs explains why there are 4 times more docked/nn.pq 
files for the Google Cloud runs.

The highest score from each molecule is the usual criterion used to rank the data. Even though 20 conform-
ers were generated by the docking output, only the best 3 docked geometries for each molecule were saved in 
this dataset. Others can always be re-generated by docking again. Every record contains one molecule with all 
three scores. They are numbered in order of AutoDock “score”15. For PLPro_7JIR, the “best 3” AutoDock 
scores were used. For all other proteins, one pose from each of the “best 3” AutoDock pose clusters was used. 
AutoDock performs this clustering based on ligand atom RMSD9. The pose clusters recognize that docked poses 
often find the same energy minimum. So, using one result from each cluster increases the variability between 
bound ligand conformations.

Data Records
The outputs of this work are divided into primary46 (output) and secondary47 (derived, summary, and compar-
ison) data-tables.

Primary data.  Primary data include data describing the input molecules, as well as two datasets for each 
docked protein–one containing full molecular structures, and another containing only docking scores. Each data-
set is split into multiple numbered files in Apache Parquet format48.

To describe input molecules, we include SMILES strings49 in files named Enamine_2018/smiles0.
pq… Enamine_2018/smiles999.pq. Each record of each parquet file has both a name and a SMILES 
string49. For example, the molecule with name Z979400128_1_T1 is defined by the SMILES string begin-
ning with O = C(CN1C( = O)CCC1 = O)N1CCN(CC1)C( = O)[C@@H]1CCCN… .

As for the data on each docking target, we provide an individual directory for each target with a high-level 
README describing the data layout. Within this directory is also where the input pdbqt and AutoDock com-
patible grid data are stored, with the latter compressed for efficiency. Although the number of files and batch 
sizes vary from target to target based on which computing resource carried out the docking, the data layouts are 
consistent between all targets.

Within each protein target, the docked dataset contains multiple numbered files in Apache Parquet  
format48. Each individual file represents a batch of approximately 150,000–500,000 ligands docked to a target, 
with the following typical columns:

•	 name: extended molecule name, formatted as enamine-id_conformer_id. For example PV-
001921702752_1_T1, has conformer id 1_T1.

•	 atoms: number of atoms in this molecule*
•	 tors: number of rotatable bonds*
•	 conf, conf2, conf3: pdbqt-formatted docked poses
•	 score, score2, score3: AD-GPU docking scores corresponding to the poses above.

The conformers and scores are presented in ranked order (lowest energy first). For all targets except PLPro-
7JIR, the docked conformers (conf1-3) represent the best pose from a group (determined by AutoDock’s 
RMSD-based ligand clustering9). For PLPro-7JIR, the conformers were not clustered, leading to overlapping 
poses in its dataset. Entries atoms and tors are starred (*) above because data for PLPro and RDRP targets 
lack these columns. They can be easily recovered from the text of the conf column by counting the number of 
ATOM and BRANCH lines. Source code that accomplishes this is included in the file dash/data/add_
counts.py (from secondary data). The method does not rely on parsing TORSDOF from the conformer’s 
pdbqt, as there are a few molecules for which TORSDOF is an over-estimate.

The scored dataset contains only score values:

•	 name, atoms, tors, score, score2, score3: same as for dataset above
•	 vs_dude_v2, vs_dude_v22, vs_dude_v23: Virtual-Score DUD-E score based on v2 descriptors 

for molecule poses 1, 2, and 3.
•	 rf3, rf32, rf33: Random Forest v3 (RF3) score for molecule poses 1, 2, and 3.
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Secondary data.  We have generated a variety of smaller, secondary datasets in the process of analyzing the 
docking results. They are made available for direct download at ref. 47. These include:

•	 Top-10,000 lists using multiple scoring criteria (see Table 1).
•	 Source code for working with the dataset (including write_confs.py for extracting top-10k lists).
•	 Summary histograms to describe the docking score distribution. (see Fig. 3)
•	 Selected compounds (for MPro) corresponding to experimental measurements from ref. 50.

Top-10,000 lists were produced for all dockings. These lists are in the same parquet format as the docked 
and scored lists above, but contain the union of docked and scored data. Every record has both scores and 
structures for the top 3 ligand conformational poses. Our methodology for creating these lists was to compute 
percentiles based on the score histograms (Fig. 3), find the cutoff score corresponding to that percentile, and 
then retain all molecules from the dataset above the cutoff. This created list sizes that differed slightly from 
10,000 (Table 1). In cases where two scoring functions are listed, the cutoff criteria required that molecules be in 
the top Nth percentile for both scores. Cutoffs were determined so that the percentile, N, was the same (to within 
a histogram bin width) for both scoring functions. The score cutoffs, percentile ranks, and resulting list sizes are 
listed in Table 1.

We also created a ‘random’ list containing around 10,000 ligands. The selection criteria used was based on a 
10-byte blake2b hash-digest of the molecule’s name, interpreted as a big-endian number modulo 231—1. 

List Cutoff Percentile Cutoff Score 1 Cutoff 2 intersection size

MPro 5R84

AutoDock-GPU (AD) 99.999 −13.220 11,754

RF3 (RF) 99.999 8.032 10,168

AD-RF 99.874 −11.786 7.768 15,843

VS-RF 99.978 6.714 7.874 14,124

VS-AD 99.866 6.460 −11.668 10,910

MPro 6WQF

AutoDock-GPU (AD) 99.999 −12.865 10,167

RF3 (RF) 99.999 7.954 12,009

AD-RF 99.903 −11.474 7.722 10,731

VS-RF 99.984 6.618 7.825 12,745

VS-AD 99.891 6.369 −11.332 10,984

PLPro 7JIR

AutoDock-GPU (AD) 99.999 −15.261 11,804

RF3 (RF) 99.999 8.176 10,530

AD-RF 99.976 −14.062 7.961 10,153

VS-RF 99.813 6.349 7.800 12,128

VS-AD 99.865 6.359 −13.327 11,979

NSP15 6WLC

AutoDock-GPU (AD) 99.999 −13.534 11,593

RF3 (RF) 99.999 7.984 11,211

AD-RF 99.719 −11.551 7.597 13,795

VS-RF 99.919 6.194 7.701 15,750

VS-AD 99.823 6.161 −11.663 10,332

Spike 6M0J

AutoDock-GPU (AD) 99.999 −11.739 10,277

RF3 (RF) 99.999 7.970 12,005

AD-RF 99.766 −10.078 7.459 12,364

VS-RF 99.576 6.106 7.352 12,692

VS-AD 99.895 6.148 −10.330 11,869

RDRP

AutoDock-GPU (AD) 99.999 −12.435 11,679

RF3 (RF) 99.999 8.021 16,604

AD-RF 99.905 −11.032 7.722 13,462

VS-RF 99.905 6.329 7.722 11,858

VS-AD 99.871 6.304 −10.813 10,271

Table 1.  Scoring Cutoffs for Single and Intersection Lists. Intersections are taken as the logical ‘and’ of top-n 
molecules from both functions listed. These are output by plot_score_hist.py and used for selection in 
sublists.py.
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Molecules with a value less than (2 1)31 10300
1 3 109−

. ⋅
 were included in the random list. This process ensured that the 

random list would contain the same molecules between dockings, while membership in the random list was 
testable. The implementation code is in the function dataset.sublists:rand_10k.

Fig. 2  Molecule atom and torsion count 2D histograms, plotted on a natural logarithmic scale to emphasize the 
tails of the distribution. Columns contain, from left to right, (atoms,tors), (atoms,score) and (tors,score). Score 
refers to AutoDock-GPU’s score. Atoms refers to the count of heavy atoms plus polar hydrogens present in the 
pdbqt file used for docking. Tors refers to the count of torsion degrees of freedom marked in that pdbqt. Marked 
points show our data values for all compounds listed in ref. 50 (pooling all isomers and geometries).
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Ref. 50 carried out experimental measurement of candidate molecules from several large virtual screening 
experiments on MPro. The rossetti2022.csv file in our summary dataset47 collects the Supplementary 
information tables from that work, and adds annotations for the experimental inhibition measurements present 

Fig. 3  Docking score 2D histograms, plotted on a logarithmic scale to emphasize the tails of the distribution. 
Columns contain, from left to right, (score,r3), (v2,r3) and (v2,score). Score refers to AutoDock-GPU’s score, r3 
and v2 refer to re-scoring of each docked pose based on random-forest functions parameterized from RF3 and 
Virtual-Score DUD-E, respectively. Lines and boxes mark the score cutoffs used for creating top-10k lists based 
on single and joint-score criteria, respectively. Marked points show our data values for all compounds listed in 
ref. 50 (pooling all isomers and geometries).
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in its figures and main text. The 1148 unique compounds tested there were divided into three sets: nonbinders 
(1131), hits (13), and nonspecific hits (4). Hits are defined as all compounds whose affinities were reported, 
excluding nonspecific hits. Nonspecific hits are compounds with reported affinities, but which ref. 50 mentioned 
were nonspecific binders.

Output score histograms are shown in Fig. 3. Lines on these plots mark the cutoff scores for top-N lists based 
on one scoring function only. Shaded boxes on those plots map the cutoff criteria for lists based on cut-offs 
from two scoring functions simultaneously. Because the set of all docked molecules represents a very large, 
random, selection from chemical space, these histograms illustrate chemical space as seen from the receptor. 
Interestingly, none of the receptors show a distinct cut-off between strong and weak binders. Rather, most of 
chemical space has an average docking score.

The plotted points on Fig. 3 allow us to validate the usefulness of docking scores for MPro. We are essen-
tially interested in four regions: true positives (hits with good docking scores), true negatives (nonbinders with  
poor docking scores), false positives (nonbinders with good docking scores), and false negatives (binders with poor  
docking scores). We see strong enrichment of nonspecific binders in the high-scoring range. It also appears that 
the Autodock score is better correlated with separating binders from non-binders, and that the wider range of 
Autodock scores for 6WQF makes this separation more pronounced. The Virtual-Score DUD-E and RF3 scores 
show a high rate of false positives. It should be noted that the compounds selected for experimental testing were 

Fig. 4  Redocking RMSD distribution against the Mpro Fragalysis dataset (left) and the AutoDock-GPU set 
of 42 (right), measuring the deviation between a predicted docking pose and an actual crystal structure. The 
fragalysis dataset (left) docks 426 ligands where bound crystal structures are available from the Diamond 
dataset, and compared the displacement for only the top-scoring pose from AutoDock Vina (blue)52, the 
current version of AutoDock-GPU (red, 1.5.3)15 and the version of AutoDock-GPU used to generate the 
dataset (black, June 2020). Beyond the top poses, the distribution for all 20 predicted poses for both versions 
of AutoDock-GPU are given as a dashed line. The set of 42 (right) similarly compares the cumulative RMSD 
distribution generated after redocking.

Fig. 5  Static image of molecular viewer. Each point on the scatter-plot of AD-GPU, RF3, and VS-DUDE-v2 
scores represents one molecule. Selecting the scored point shows its three docked poses in the 3D structure at 
left, along with information boxes showing the molecule name and numerical data below.
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pre-selected using docking or chemical similarity to other experimental hits. We can’t draw immediate con-
clusions from the wide range of our docking scores for this compound set as a whole, because this may reflect 
variability in the computationally enumerated chemical states for a given compound.

Technical Validation
Data integrity.  Parquet data has been stored using the SNAPPY51 compression algorithm, which provides 
an internal checksum to verify data integrity. All data manipulation steps during docking and scoring retained 
unmodified molecule names within each row of each table. Since molecules were processed in batches of thou-
sands of molecules, lists of batch numbers were compared before and after each batch processing step. Missing 
batches were re-run until all batches were output. An exception is in the case of MPro 5R84, which used a differ-
ent batch processing scheme that did not permit identification of missing batches. Despite this effort, total mol-
ecule counts vary by about 0.1% between dockings to different targets. These small differences reflect molecules 
that dropped out due to errors during formatting or docking. Where possible, files named errors.parquet (in the 
primary dataset) document the types of errors found on parsing scores and conformers from the docking output. 
These errors are, 0: molecule has no atoms (97%), 1: AutoDock-GPU score is larger than 100 or nan/inf, indicat-
ing that the molecule did not end in the docking region (0.5%), 2: coordinate records could not be parsed (0.5%), 
and 3: atoms overlapped (2%). Ligands lacking atoms or overlapping significantly were traced back to pre-existing 
errors in the pdbqt files input to the docking from the original VirtualFlow dataset18.

Histograms of the number of heavy plus polar hydrogen atoms and torsion degrees of freedom in the output 
molecules are shown in Fig. 2. Both atom and torsion counts fall into a relatively narrow range around 25 atoms 
and 10 torsions because the input database used was built to represent drug-like molecules. The number of mol-
ecules with small atom counts is somewhat surprising. Figure 2 also includes joint histograms with AD-GPU 
score. As expected, there is a positive correlation between atoms and number of torsion degrees of freedom. 
There is also a correlation between atom count and docking score, with more atoms tending to enable more 
favorable (negative) scores. There is not a clear correlation between torsion number and docking score. These 
trends are chemically reasonable and show consistent trends between all protein targets.

Cross-validation.  Prior to the beginning of the docking campaign, we evaluated AutoDock-GPU perfor-
mance for a set of 42 protein-ligand interactions with known structure as a sanity check for methodological 
consistency. The results for the AutoDock-GPU CUDA-port were comparable to prior OpenCL-driven imple-
mentations, and this gave us the confidence to attempt the first billion compound docking campaign in June 
2020. The version of AutoDock-GPU used in the docking described above still performs well on the small set of 
42 test receptors and ligands when compared to newer versions of AutoDock-GPU (Fig. 4), with a small median 
deviation from the crystal stucture (1.18 Å). This is comparable to recent versions of AutoDock Vina52,53, which 
uses a different scoring function, and newer versions of AutoDock-GPU15,16.

A more stringent test for docking quality may be using the same docking methods against crystal structures 
for MPro with bound ligands. The Fragalysis dataset54 from the Diamond lightsource contains a few hundred 
bound ligands to the MPro structure for comparison. The state of docking programs has advanced considerably 

>>> import pandas as pd
>>> from openbabel import openbabel, pybel
>>> df = pd.read_parquet(’NSP15_6WLC/docked_lists/ADrf3.out.pq’)
>>> len(df)
13795
>>> pat = pybel.Smarts(’[CX3](=[OX1])[NX3H0]([#6])[CX3](=[OX1])’)
>>> ck = df.conf.map(lambda s: len(pat.findall(pybel.readstring(’pdbqt’, s))))
>>> (ck>0).sum()
708
>>> df.loc[(ck>0)].rf3.sort_values()
name
Z451291008_1_T1 6.313930
Z2032924593_1_T1 6.572909
Z1101910174_2_T1 6.661130
Z2174540215_37_T1 6.666326
Z1383812098_1_T1 6.729802

...
Z246677764_2_T1 7.861579
Z31294074_2_T1 7.864661
Z1070220228_4_T2 7.865045
Z203118496_1_T1 7.866667
Z199890926_1_T1 7.875987
Name: rf3, Length: 708, dtype: float64
>>> df2 = df.set_index(pd.MultiIndex.from_tuples([

name.split(’_’,1) for name in df.index], names=[’mol’, ’conf’]))
>>> df2.head()

atoms tors score ... rf33 v2 r3
...fnoclom

PV-002011588447 2_T1 33.0 5.0 -11.66 ... 7.688049 6.026097 7.897075
Z2033629261 1_T2 36.0 9.0 -12.34 ... 7.064977 6.026417 7.602731
Z1317886888 1_T2 33.0 7.0 -11.56 ... 7.535030 6.001054 7.777196

2_T2 33.0 7.0 -12.03 ... 7.522105 5.992279 7.657700
PV-001962410714 1_T2 33.0 5.0 -11.82 ... 7.160236 5.989919 7.638023

[5 rows x 16 columns]

Fig. 6  Use of pandas57 and pybel58 to select hit molecules containing dicarboximide functional groups. After 
loading a top-N dataset, molecules are parsed by openbabel59 and then a SMARTS60 pattern search is applied 
to each row. The last line of the program shows an example of changing the index of the dataset to separate 
molecules and enumerated rotamers.
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as part of a wider drug discovery effort driven by the pandemic. The typical RMSDs for redocking the bound 
ligands within the fragalysis dataset using the older version for AutoDock-GPU are much larger, with a median 
redocking RMSD of 6.6 Å. By comparison, the median redocking RMSD can be as low as 2.1–3 Å (Fig. 4) for 
docking codes newer than the AutoDock-GPU version used to generate this dataset.

Clearly, the accuracy for docking methods has been improved and refined since June 2020, and 
billion-compound scale dockings should use these newer methods. However 13% of top scoring redocked poses 
are within 3 Å RMSD of the crystallographically determined binding pose within this dataset. While the RMSD 
can be quite large, the contacts made between protein and ligand are largely similar, allowing rescoring tech-
niques to be used. The median center of geometry difference between the docked and crystallographic ligand 
poses are within 2 Å of one another using AutoDock-GPU versions from 2020. Recent implementations improve 
the median center of geometry error to just below 1 Å.

Usage Notes
The dataset release contains two components–the main dataset46, and the summary47. A python-dash55 viewer pro-
gram is included as part of the git repository (Fig. 5). For convenience, protein structure files exist in both places. 
All ligand data files are packaged in the Apache Parquet48 file format. They can be opened using fastparquet56,  
as well as many data science libraries such as pandas57.

The dockingdata/src directory contains a set of scripts for loading data and running map-reduce oper-
ations, like computing histograms. The dash directory contains a viewer that can be run by executing the 
program and connecting to it from a web browser. It is straightforward to view alternative subsets of the data by 
directing it to load different input files.

Following the example scripts present, researchers can quickly run simple queries on the top-N subset lists. 
Figure 6 gives a code listing showing how to select hits containing dicarboximide functional groups from the set 
of molecules with high AutoDock and rf3 scores.

Code availability
The primary version of AutoDock used to generate the primary dataset is available from https://github.com/
jvermaas/autodock-gpu. As noted in Fig. 4, this is not recommended for new docking calculations. Instead, new 
projects should use current versions of AutoDock-GPU15 such as 1.5.3, available from https://github.com/ccsb-
scripps/AutoDock-GPU. To generate the Vina data for Fig. 4, we used Vina 1.2.352 from https://github.com/ccsb-
scripps/AutoDock-Vina.

As described in the ‘Data Generation Protocol’ section, several custom software packages were developed and 
used in this project, including

1. https://code.ornl.gov/99R/launchad/-/tags/v1.2
2. https://code.ornl.gov/99R/pymapreduce
3. https://code.ornl.gov/99R/pmake45

4. https://github.com/frobnitzem/mpi_list
5. https://github.com/frobnitzem/sars_docking47
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