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ABSTRACT: Herein, an efficient, scalable, and concise approach to an advanced pyrroloiminoquinone synthetic intermediate (6b)
by way of a Larock indole synthesis is reported. The synthetic utility of this intermediate is demonstrated by its ready conversion to
makaluvamines A (1) and K (4).

Numerous natural products containing pyrroloiminoqui-
none core structures have been isolated from marine

sponges, and several of these, due to their potent biological
activities and unique structural features, have captured the
attention of the synthetic community.1 In particular, the
makaluvamines, isolated from Fijian sponges of the genus
Zyzzya, were found to possess inhibitory activity toward
topoisomerase II along with cytotoxic activity against HCT-
116 human colon cancer cells.2−4 Representative members of
this family are shown in Figure 1.

To date, the synthetic approaches toward pyrroloiminioqui-
nones have, in most cases, proceeded via aminolysis of a
corresponding vinylogous imidate (e.g., 6a, Scheme 1) with an
appropriate amine.5−10 The imidate has generally been
accessed from the corresponding tryptamine (7, Y = NH) or
tryptophol 7 (Y = O) by oxidation to an indoloquinone
followed by cyclodehydration to form the C-ring. The requisite

3-substituted indoles (7) are typically prepared from the indole
precursors (8) by regioselective electrophilic aromatic
substitution at C3.
Although the previous synthetic approaches have proven

effective for preparing an array of makaluvamines, they have
typically required several linear steps to install the proper alkyl
chain at the C3 position of the indole and oxidation pattern on
the aromatic ring.7−10 The shortest synthesis, reported to date,
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Figure 1. Members of the makaluvamine family.

Scheme 1. Common Synthetic Approach to Makaluvamines
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of pyrroloiminoquinones was reported by Ishibashi and co-
workers starting from commercially available 6-methoxy indole
(1 g/$170).7 Although this synthetic route required only nine
steps to prepare makaluvamine A and K, we were reluctant to
utilize this approach due to the cost of the starting material.
Therefore, as part of a program targeting the preparation of
pyrroloiminoquinone-containing alkaloids of greater structural
complexity, we set out to investigate alternative strategies to
access 6. Herein, we report the highly efficient preparation of a
versatile pyrroloiminoquinone intermediate (6b) and demon-
strate its synthetic utility via the total synthesis of makaluv-
amines A (1) and K (4).
Our approach to common advanced intermediate 6b is

illustrated retrosynthetically in Scheme 2. As illustrated, we

envisioned accessing 6b from azide 9 utilizing a Staudinger
reduction to generate a transient primary amine, which we
hoped would undergo spontaneous cyclodehydration to form
the tricyclic pyrroloiminoquinone skeleton. The azide 9 would,
in turn, be prepared from indole 10 by oxidation of the
trimethoxy arene to the indoloquinone and subsequent
azidation. We envisioned assembling indole 10, with the
desired functionality at the C3 position and oxidation pattern
about the aromatic ring, in a convergent fashion by combining
iodoaniline 11 and silylated internal alkyne 12 via Larock’s
indole synthesis. Although the Larock approach has been
utilized in the synthesis of several tryptophan analogues and
natural products, to the best of our knowledge it has not been
employed in the preparation of pyrroloiminoquinone alka-
loids.11−15 This was surprising given the flexibility and
efficiency this approach provides in accessing an array of C3-
substituted indoles.
In accord with our retrosynthetic analysis, we initially turned

our attention to the synthesis of iodoaniline 11. As shown in
Scheme 3, treatment of commercially available 5-nitrovanillin
(13) under Dakin oxidation conditions provided hydro-
quinone 14 in excellent yield.16 Subsequent methylation of
14 furnished 15 which, upon silver mediated iodination,
produced 16 as the sole regioisomer.17 Overall, this three-step
sequence proved highly efficient and was readily performed on

multigram scale in a single pass. Reduction of 16 proceeded
smoothly with iron powder in a mildly acidic medium to
provide the desired aniline 11 in 85% yield.17 Notably, this
final reduction was the only step requiring chromatographic
purification. All the previous intermediates were isolated and
carried forward after simple aqueous workup and/or filtration.
Having developed an efficient, scalable, and operationally

simple sequence to 11, we focused our attention on the
preparation of alkyne 12. As shown in Scheme 4, 12 was

prepared from commercially available 3-butyn-1-ol (17) via a
two-step sequence. In the event, TBS-protection of the primary
alcohol of 17 was found to provide a near-quantitative yield of
TBS ether 18, which upon conversion to the lithium acetylide
with n-BuLi, followed by quenching with TESCl, afforded 12
in sufficient purity to be used directly in the forthcoming
Larock sequence.18

With both coupling partners in hand, we directed our
attention to constructing indole 10 under Larock conditions
(Scheme 5). Although a survey of the literature revealed
numerous applications of the Larock chemistry, there were
relatively few examples utilizing similar electron-rich ani-
lines.19,20 Thus, our expectations were tempered as we
speculated that aniline 11 may perform poorly due to sluggish
oxidative addition of the active Pd catalyst to the aryl iodide.

Scheme 2. Retrosynthetic Analysis of Common Advanced
Intermediate 6b

Scheme 3. Synthesis of Iodoaniline 11

Scheme 4. Synthesis of Silylated Internal Alkyne 12
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In the event, we were delighted to observe that the coupling
of 11 and 12, under standard Larock conditions, proceeds
smoothly to give the desired indole (10) in excellent yield.19,21

Moreover, in contrast to previous reports employing electron-
rich anilines, we observed that lowering the catalyst loading
from 20 to 5 mol % Pd and shortening the reaction time from
24 to 18 h did not adversely affect the yield.19 Additionally, no
loss in efficiency was observed when the reaction was
conducted on decagram scale.
Having accessed indole 10, which contains all the requisite

carbon atoms, the stage was set for accessing common
intermediate 6b via a series of functional group interconver-
sions. As illustrated in Scheme 6, these efforts began with

methylation of indole 10 under standard conditions to give 19
in quantitative yield.11 Subsequent treatment of 19 with CAN
induced not only oxidative demethylation of the trimethoxy
arene to the corresponding methoxyquinone but also
desilylation of the primary TBS-ether to deliver indoloquinone
20.22 Conversion of alcohol 20 to the corresponding tosylate
(21) followed by exposure to sodium azide provided
azidoindoloquinone 9.
Much to our delight, subjection of 9 to Staudinger reduction

conditions led directly to the desired vinylogous imidate 6b.22

This was an interesting outcome, as several literature examples
of similar cyclodehydrations were conducted under either
acidic or forcing conditions.9,24−27,29

With 6b in hand, we turned our attention toward completing
the synthesis of makaluvamines A (1) and K (4). As illustrated
in Scheme 7A, aminolysis of 6b with NH4Cl furnished
vinylogous amidine 22. Gratifyingly, desilylation of 22 with
TBAF, in contrast to 6b, proceeded smoothly and subsequent
acidification with TFA produced makaluvamine A (1) as a
TFA salt.2,28 A similar sequence (Scheme 7B), wherein NH4Cl

is replaced with tyramine, was found to deliver the TFA salt of
makaluvamine K (4).8,30

In conclusion, we have developed an efficient and scalable
approach to access intermediate 6b by way of the Larock
indole synthesis. In addition, we have demonstrated the
synthetic utility of this intermediate by advancing it to the
tricyclic pyrroloiminoquinone natural products makaluvamines
A (1) and K (4).
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