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Abstract: The development of new pharmaceutical solutions for treating various diseases results
from a growing understanding of the benefits of using essential oils. One of the most often used
volatile materials among essential oils is the oil of the citronella plant, termed citronella essential oil
(CITEO), which has potential for use in food and medicine. Its wide use is limited due to lipophilicity,
high volatility and poor physicochemical stability. With this background, the present study aims to
evaluate the properties of CITEO-nanoemulsion (CITEO-NE) by analyzing its antimicrobial activities
against Staphylococcus aureus (S. aureus) and Candida albicans (C. albicans) and its anticancer activity
against, human skin adenocarcinoma cell line (A431). The CITEO-NE was prepared and evaluated
for the size range of 130 ± 5 nm, polydispersity index (PDI) of 0.127 and zeta potential −12.6 mV.
The percentage % of entrapment efficiency (%EE) of nanoemulsions loaded with CIT was very
high at the beginning of the study, at 95.5 ± 4.775%. The MIC was observed to be 500 µg/mL for
CITEO and 250 µg/mL for CITEO-NE against S. aureus and 250 µg/mL for CITEO and 125 µg/mL
for CITEO-NE against C. albicans. The time-kill assay also suggests the effectiveness of CITEO-NE
against the test pathogens as a novel alternative therapy. The IC50 values of CITEO and CITEO-
NE exhibited significant cytotoxic properties against the A431 cell line, with 41.20 µg/mL and
37.71 µg/mL, respectively. Hence, our findings revealed that encapsulation of CITEO increased the
pharmacological properties.

Keywords: anti-cancer; antimicrobial; citronella; essential oils; nanoemulsion

1. Introduction

Essential oils (EOs) are also known as ethereal oils or volatile oils [1]. They are derived
from natural plants, including leaves, flowers, grains, and even flower buds, and belong
to a distinct class of heterogeneous secondary metabolites [2]. Natural volatile extracts of
plant substances known as EOs have great export potential due to their popularity in the
food and pharmaceutical industries. In the Middle and Far East, plant essences and extracts,
from which our current EOs have evolved, have been widely used in Rome, Greece, Egypt
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and other ancient civilizations for many centuries [3]. On the global market, there are at
least 150 different kinds of essential oils that are marketed [2].

In modern aromatherapy, the essential oils of a variety of herbs and spices are used be-
cause these oils have been shown to possess a wide range of biological activities, especially
the great potential to act as antimicrobial, antifungal, antiviral, analgesic, anticarcinogenic,
antiparasitic, anti-inflammatory, and antioxidant agents [4]. For this reason, the essential
oil chosen was that contained in the leaves of the test plant for this study, citronella, known
scientifically as Cymbopogon winterianus Jowitt [5]. Citronella essential oil (CITEO) has been
recommended for a variety of purposes, since the FDA, FEMA, and independent studies
have all agreed that citronella oil and its main ingredient geraniol are safe [6]. Citronella
oil and its constituents are used extensively in the manufacture of soaps, detergents, and
fragrances; it is also used as a flavoring in foods [7]. It is useful in medicine as an analgesic,
anticonvulsant, and anxiolytic, among other things, and it is also an agent for fighting off
infections caused by fungi, bacteria, parasites, and worms [8].

Essential oils are chemical substances that are easily destroyed by light or temperature
fluctuations. Consequently, encapsulating essential oils is a strategy used to prevent dete-
rioration and decrease unwanted interactions with other components of the formulation.
Encapsulation not only preserves the chemical properties and biological activity but also
allows them to be released into the medium in a controlled manner. This prevents the rapid
loss of substances that would otherwise occur due to the volatility of essential oils [8–10].
Although a significant amount of work has been published on the citronella plant, one of
the plant’s limiting issues is its high volatility, which makes it difficult to release CITEO in
a controlled way [11]. Recently, there has been a substantial amount of effort devoted to the
development of nanoemulsions as a delivery mechanism for bioactive compounds derived
from plants. Therefore, it has been proposed to use nanoscale CITEO emulsions to improve
their industrial use by lowering the required doses [12]. Despite the growing literature on
nanoemulsions, there are relatively few papers in which plant oils have been used; this
is probably because these oils are insoluble in water. This restriction can be overcome by
encapsulating these oils in water–oil emulsions or nanoemulsions [13].

In response to this, throughout the course of the last several decades, growing research
efforts have concentrated on the investigation of nanoemulsions as well as the formu-
lation processes involved in nano-emulsification [14–16]. A nanoemulsion is a colloidal
dispersion of two immiscible liquids that is both isotropic and kinetically stable due to the
presence of a surfactant. Its droplet size range of 20–200 nm indicates promising industrial
applications and excellent stability for months [17]. The low complexity of these systems
as well as their easy formulation procedures, potential for industrial scaling up, lack of
toxicity, and promising biomedical or nanomedical applications are the primary reasons
for this. Nanoemulsions are made of very tiny oil droplets that are maintained in aqueous
environments by surfactants [18].

Agrawal et al. [11] successfully used cavitation-assisted techniques to synthesize
nanoemulsion formulations of citronella. However, owing to their limited water solubility,
the efficacy of CITEO nanoemulsion in antibacterial and anticancer applications has not
yet been evaluated. Therefore, the aim of the present study was threefold: first, the
development and evaluation of a CITEO-incorporated nano-sized emulsion suitable for
application; second, comparative antimicrobial activities against Staphylococcus aureus (S.
aureus) and Candida albicans (C. albicans); third, the evaluation of anti-cancer activity against
human skin adenocarcinoma cell line (A431).

2. Results and Discussion
2.1. Morphological Study

The morphology and size of emulsion droplets are known to be affected by the emul-
sifier used, the type of oil, and the manufacturing method [19]. The SEM images obtained
from the surface of the CITEO-loaded nanoemulsions in this study are depicted in Figure 1.
The dried CITEO-loaded nanoemulsions had a non-uniform structure and aggregation
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among the particles. This shape is likely attributed to the drying process of the sample
prior to SEM imaging. Aggregates of droplets were also observed, which might be caused
by droplet flocculation or insufficient sublimation of water during sample preparation.
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Figure 1. The SEM image of CITEO-loaded nanoemulsions.

2.2. Size Distribution, Particle Size, and Zeta Potential

The DLS technique was used to accomplish measurements of the size and polydis-
persity index of CITEO-loaded nanoemulsions; the results of these measurements are
shown in Figure 2A. The mean hydrodynamic diameter of CITEO-loaded nanoemulsions
were found to be less than 200 nm. The CITEO-loaded nanoemulsion displayed small
oil droplet size, with the particle size of 130 ± 5 nm and a polydispersity index (PDI) of
0.127. The PdI indicates that bacterial samples are generally quite polydispersed, with
a broad size distribution. The globule size of CITEO-loaded nanoemulsions observed in
dynamic light scattering (DLS) studies are in agreement with what we observed in the
scanning electron microscopic evaluations. The Zetasizer nano ZS (Malvern, UK) was
used to experimentally determine the Zeta potential of loaded CITEO nanoemulsions by
evaluating the electrophoretic mobility of the oil globules or the rate at which they move
towards opposing electrodes when subjected to electric fields. As shown in Equation (1), a
higher zeta potential means a higher electrophoretic mobility or speed.

µe =
2zε f (ka)

3η
(1)

The zeta potential of CITEO-loaded nanoemulsions was found to be −12.6 mV, as
shown in Figure 2B. The presence of a high surface charge is thought to be the cause
of the nanoemulsions’ excellent stability at high zeta potential values, since particles
with potentials greater than +30 mV and lower than 30 mV are regarded to be stable.
This minimizes the likelihood of coagulation owing to electrostatic repulsion between
particles with identical electric charges, prolongs the system’s stability, and facilitates
re-dispersion [20].
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2.3. Percentage Entrapment Efficiency (%EE)

The percentage EE of nanoemulsions loaded with CITEO was very high at the be-
ginning of the study, at 95.5 ± 4.775%. After 30 days, we again determined the %EE of
nanoemulsions loaded with CITEO and observed 94.1 ± 4.705%. This means that after
30 days of storage, no significant change (p > 0.05) in the %EE was observed. These results
clearly show that the preparation of a nanoemulsion of CITEO helps to maintain EO despite
its volatility.

2.4. Antimicrobial Activity

The comparative antibacterial assay of CITEO and CITEO-NE was performed in S.
aureus bacteria using the well diffusion technique by taking different concentrations of 0.1%,
0.15%, 0.2%, and 0.25%, as shown in Table 1. The results clearly indicate that citronella
nanoemulsion showed best zones of inhibition against S. aureus, with 19.3 ± 0.7 mm
diameters at 0.2% concentration as compared to Citronella oil. Citronella oil showed the
best zones of inhibition of against S. aureus, 12.5 ± 2.1 mm in diameter at 0.2% concentration.
The MIC was observed to be 0.05% for CITEO and 0.025% for CITEO-NE against S. aureus.
The case of a standard drug, i.e., amoxycillin, showed 34 mm of ZOI against S. aureus. After
this, we determined the antifungal activity of the prepared formulation, i.e., CITEO-NE
and bare CITEO, against Candida albicans (C. albicans) in concentrations of 0.1%, 0.15%, 0.2%,
and 0.25%. The results clearly indicate that CITEO-NE showed the best anti-fungal activity
against C. albicans with 25.6 ± 1.4 mm of ZOI, whereas in the case of bare CITEO, ZOI was
observed to be 22 ± 1.4 mm at a concentration of 0.2%. The MIC was observed to be 0.025%
for CITEO and 0.0125% for CITEO-NE against C. albicans.
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Table 1. Comparative zone of inhibition (means ± SD) and minimum inhibitory concentration (MIC)
study of CITEO and CITEO-NE against S. aureus and C. albicans.

Concentration (%)
CITEO CITEO-NE

S. aureus C. albicans S. aureus C. albicans

0.1 5 ± 0.8 8.3 ± 2.1 13 ± 0.7 10.6 ± 0.7

0.15 7.5 ± 0.2 11.6 ± 1.4 15 ± 0.7 14 ± 1.4

0.2 10 ± 1.4 15.6 ± 1.4 16.3 ± 0.7 20.3 ± 1.4

0.25 12.5 ± 2.1 22 ± 1.4 19.3 ± 0.7 25.6 ± 1.4

MIC 500 µg/mL 250 µg/mL 250 µg/mL 125 µg/mL

From the reports in Figure 3, it is clear that nanoemulsions loaded with CITEO ex-
hibited a larger bacterial and fungal inhibitory zone compared to bare CITEO. The data
(Table 1) also show that the formulations with the highest concentrations of nanoparticles
had the widest growth-free halo, indicating the antibacterial capabilities of CITEO-NE.
In addition, we found that a higher concentration of CITEO and CITEO-NE resulted in a
larger zone of inhibition. These results indicate that CITEO-NE interacts with the bacterial
cell. The results showed that CITEO-NE was more effective than CITEO against S. aureus
and C. albicans.
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against S. aureus. and C. albicans.

2.5. Time-Kill Analysis

The effect of CITEO and CITEO-NE on the growth curve of bacteria and fungi was
evaluated separately in the culture medium of S. aureus and C. albicans. This was done to
determine the effect of CITEO and CITEO-NE on the growth curve as shown in Figure 4.
The findings for the control group, which received no therapy, were 6 to 8.85 log10 CFU/mL
growth. In contrast, S. aureus growth was significantly reduced in the treatment given
CITEO and CITEO-NE during the first 2 to 12 h. The results of treating S. aureus with CITEO
remained the same at about 3.5 to 3.9 log10 CFU/mL and 2.3 to 2.9 log10 CFU/mL with
1× MIC (0.05%) and 2× MIC (0.1%), respectively, as shown in Figure 3A. The growth of S.
aureus in the untreated group was 6 to 8.69 log10 CFU/mL after 4 h of treatment with CITEO-
NE. The growth of S. aureus in the 1× MIC treatment group was 3.33 log10 CFU/mL, while
in the 2× MIC treatment groups was, it was 1.69 to 2.3 log10 CFU/mL, as shown in
Figure 3B.
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Figure 4. Time-killing assays of (A) CITEO against S. aureus, (B) CITEO-NE against S. aureus,
(C) CITEO against C. albicans and (D) CITEO-NE against C. albicans.

In a similar manner, we carried out the comparative, time-kill assay of CITEO and
CITEO-NE against C. albicans. The time-kill assay was observed to be 6 to 8.8 log10 CFU/mL
in the case of the vehicle treatment. After receiving CITEO, the development of C. al-
bicans was significantly inhibited in the first 4 to 8 h after treatment. It remained the
same at approximately 2.6 × log10 CFU/mL to 2.95 × log10 CFU/mL when treated with
1× MIC and 1.6 × log10 CFU/mL to 2 × log10 CFU/mL when treated with 2× MIC, as
shown in Figure 3C. Treatment with CITEO-NE against C. albicans, remained constant at
approximately 2 × log10 CFU/mL to 2.5 × log10 CFU/mL and 1.3 × log10 CFU/mL to
1.78 × log10 CFU/mL for 1× MIC and 2× MIC treatment, respectively. The results showed
that CITEO-NE is more effective than pure CITEO, as shown in Figure 3D. Hence, the
summary of the time-kill assay suggests that the effectiveness of CITEO-NE against the test
pathogens as a novel alternative therapy.

2.6. Anticancer Activity

To investigate the anticancer effect of CITEO and CITEO-NE in vitro, cell viability
and cytotoxicity were tested in A431 (human skin adenocarcinoma cell line), as shown in
Figure 5. The statistical data of cell cytotoxicity by MTT indicate that the test compounds,
i.e., CITEO and CITEO-NE, exhibited significant cytotoxic properties against the A431
cell line, with IC50 values of 41.20 ± 3.8 µg/mL and 37.71 ± 4.2 µg/mL, respectively.
Camptothecin (IC50 value of 28.6 ± 3.2 µg/mL) was used as the standard for the study.
Among the two test compounds, CITEO-NE was considered to be effective against skin
cancer due to its lower IC50 value. The results clearly show that the CITEO-NE–based drug
delivery system can be delivered to targeted tumor cells with higher efficiency compared
to CITEO.
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A431. p-value (* p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001; ns: not significant) when
compared to the untreated group using two-way ANOVA of GraphPad prism 9.5.0.

3. Materials and Methods

Citronella essential oil (CITEO) was procured from Indian essential oil (New Delhi,
India), while nutrient media and Sabouraud dextrose agar media was purchased from
HiMedia (Mumbai, India). Tween 80, MTT reagent, Dimethyl sulfoxide (DMSO), and
Camptothecin (CPT) were purchased from Sigma Merck (St Louis, MO, USA). The other
reagents or chemicals used in the study were analytically graded. Staphylococcus aureus
(ATCC 25923) and Candida albicans (ATCC 10231) were collected from the Department
of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University (PSAU),
Al-Kharj. Solvents and other chemicals were also purchased from Sigma Merck. The
human skin adenocarcinoma cell line A431 was obtained as gift from Dr. Mohammad
Raish, Department of Pharmaceutics, King Saud University (Riyadh, Saudi Arabia).

3.1. Nanoemulsion Preparation of Essential Oils

We prepared the CITEO-loaded nanoemulsions (CITEO-NE) using a probe sonicator
(VCX 750, SONICS, Wallingford, CT, USA). For this, we took CITEO as an oil phase, Tween
20 as an emulsifier, and Butanaol as a co-emulsifier. We took distilled water as an aqueous
phase in different proportions: 10%, 30%, 10%, and 50% v/v. We then left the combination
in a cold bath. It was then sonicated with a 6 mm probe at an amplitude of 60% for 3 min
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with on and off cycles of 10 s. Nanoemulsions were kept at room temperature to make sure
they were stable and there was no formation of phase separation or creaming.

3.2. Study of Physical Appearance and Morphology

For the characterization of morphology, we carried out scanning electron microscopy
(SEM; Hitachi High Technologies, Hillsboro, OR, USA). To observe the morphology of the
outer surface of CITEO-NE, we kept the samples on a polycarbonate substrate. They were
left at room temperature to dry and then were kept in a critical dryer. After drying, the
samples were coated with gold and further examined under SEM [21].

3.3. Size Distribution, Particle Size, and Zeta Potential

To observe the particle size and size distribution, the dynamic light diffusion (DLS)
instrument (Malvern Instruments, Malvern Worcestershire, UK) technique was utilized
in conjunction with the Zetasizer Nano ZS, model ZEN3500. To analyze the sample, we
took 10 µL of the CITEO-NE and 990 microliters of deionized water. These were mixed
properly to create a dilution of 100 times. After this, the sample was placed in a cuvette and
further analyzed at 25 ◦C. We then determined the zeta potential of the CITEO-NE using a
Zetasizer Nano ZS. Zeta sizing was carried out by the use of a one-of-a-kind mixed-mode
measurement or phase analysis light scattering technique. This measurement enables
high-precision determination for both the average zeta potential and the distribution
(M3-PALS) [22].

3.4. Percentage Entrapment Efficiency (%EE)

To determine the %EE of CITEO in CITEO-NE, the desired concentration of the mixture
was ensured by combining 100 mg of CITEO with 10 mL of NE solution and then agitating
the mixture at 1000 rpm for 60 min. After this, to load the CITEO into the nanoemulsion,
we kept the prepared solution mixture at room temperature for 24 h. After 24 h, the mixture
was centrifuged at 5000 rpm for 30 min. After this, the supernatant solution and CITEO-
NE were separated. The recovered sample was further dispersed in Milli-Q water before
using [23]. Using a UV-vis spectrophotometer (Shimadzu, Kyoto, Japan) at the λmax value
at 360 nm, the concentration of the CITEO supernatator was calculated. The following
formula was used to calculate the entrapment effectiveness of CITEO:

% EE =
(Total amount of CITEO added − Amount of free CITEO in supernatent)

Total amount of CITEO added
× 100 (2)

3.5. Determination of Minimum Inhibition Concentration (MIC) and Minimum Bactericidal
Concentration (MBC)
3.5.1. Preparation of Nutrient Media

To prepare the nutrient media, we used 1 liter of distilled water to dissolve 28 g of the
nutrient media. Before the sterilization process began, the pH of the media was measured.
After, this the nutrient media was sterilized in an autoclave at 121 °C for 15 min. After
completion of the sterilization process, the nutrient media was cooled. After cooling, the
nutrient media was poured into the plates. It was then placed in the laminated air flow
until the agar became film.

3.5.2. Antibacterial Activity

We determined out the antibacterial activity of the CITEO and CITEO-NE in bacteria S.
aureus by the well diffusion technique. In this, we first prepared 10 mg of the standard stock
solution of amoxicillin in 100 mL of distilled water to obtain 0.01% of the standard solution.
After that, 25 mg of test samples of CITEO and CITEO-NE were prepared in 10 mL of
solvent (5% dimethyl sulfoxide (DMSO)) to obtain a 0.25% test solution. After this, the
inoculum was prepared; the test organism S. aureus was inoculated with 10 mL of nutrient
broth. Bacterial suspensions were standardized at 108 CFU/mL bacteria and were kept
in shakers. Afterward, 50 µL of the broth inoculum (108 CFU/mL) was removed with a
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micropipette and transferred to fresh sterile solidified agar media plates [24]. On a sterilized
agar plate, the inoculation was uniformly spread using a sterile spatula. Using a clean cork
cleaner, four holes measuring 6 millimeters were drilled into the medium that was to be
inoculated. Samples with different concentrations, from 0.1% to 0.25%, were placed in a
well plate. On a separate plate, 50 µL of the reference drug was added. The samples were
then incubated at 37 ◦C for 18–24 h. It was then allowed to diffuse at room temperature for
30 min. Following this, we incubated the sample and observed the formation of a discrete
zone around the wells corresponding to the antibacterial activity of the antibiotic tested.
We observed the zone of inhibition (ZOI) in millimeters (mm) according to the method
described in [25].

3.5.3. In Vitro Antifungal Activity
Preparation of Sabouraud Dextrose Agar (SDA) Media

Sabouraud dextrose agar media (65.0 g) was dissolved in 1 L of distilled water to
prepare the SDA medium. Before sterilization of the prepared media, we measured the
pH. After measuring the pH, media was autoclaved at 121 ◦C at 15 lb pressure for 15 min
for sterilization. After completion of sterilization, media was kept for cooling without
solidification. The SDA medium was then poured onto the plates and then placed in a
laminar air flow until the agar became firm. This procedure was repeated until the agar
was completely set.

Antifungal Activity

We tested the antifungal activity of the prepared formulation (CITEO and CITEO-
NE sample) in C. albicans. For this purpose, a culture of C. albicans was first spread on
the prepared SDA medium. To prepare a standard stock solution of fluconazole with a
concentration of 0.01% and the test solution with a concentration of 0.1% to 0.25%, CITEO
and CITEO-NE were dissolved in 5% DMSO. After this, we followed all the steps discussed
in this manuscript in Section 3.5.2 using the method given by Mohammadi-Sichani et al.,
2012 [24].

3.6. Minimum Inhibitory Concentration (MIC)

The MIC of prepared formulations (CITEO and CITEO-NE) was evaluated using the
agar well diffusion test [26]. In this technique, an inoculum of 50 µL of selected bacteria
S. aureus and fungus C. albicans was seeded onto sterile Mueller Hinton (MH) agar plates.
Then, a well of 6 mm in diameter was drilled into the agar with the use of a sterile cork
borer. The well was filled with 50 µL of different concentrations of CITEO and CITEO-NE
samples prepared in 5% DMSO. After depositing the different sample concentrations into
the wells, they were kept at room temperature for 30 min and then at 37 ◦C for 24 h.
Measurements were taken in mm to determine the circular inhibition zones. The MIC
was calculated by microdilution, and the test was performed in MH broth. We prepared
different dilutions of the test samples; 100 µL aliquot was diluted in MH broth containing
106 CFU/mL. Different plates were incubated at different temperatures, i.e., the plates
of S. aureus containing bacteria were kept at 30 ◦C ± 5 ◦C/24 h and 25 ◦C ± 5 ◦C for
C. albicans. After 24 h, the lowest CITEO and CITEO-NE concentration that completely
inhibited microbial growth was considered the MIC.

3.7. Time-Kill Analysis

Time-kill kinetics of the chosen formulations (CITEO and CITEO-NE) were determined
by adapting a method from a published paper [27]. We took two different concentrations
equivalent to 1× MIC (0.05% and 0.025%) and 2× MIC (0.1% and 0.05%) for the kill kinetic
assay against S. aureus. Similarly, two different concentrations equivalent to 1× MIC
(0.025% and 0.0125%) and 2× MIC (0.05% and 0.025%) were selected for the kill kinetic
assay against C. albicans. An inoculum of size 1 × 106 CFU/mL was added to it and further
incubated at 37 ◦C. At intervals of 0, 2, 4, 8, 12, 16, and 20 h, a total of 1 mm of inoculum
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was taken from the medium. The colony-forming units (CFUs) of bacterial cells were
determined. A negative control with organisms and DMSO (without essential oils) was
also evaluated. Assays were performed in triplicate, and time-kill plots were generated by
calculating log10 CFU/mL of mean colony count versus time.

3.8. Anti-Cancer Activity

We carried out the anti-cancer activity by MTT assay against the Human Skin adenocar-
cinoma cell line (A431) using the test sample CITEO and CITEO-NE in the concentrations
ranging from 3.125 µg/mL to 50 µg/mL. For this purpose, 200 µL of cell suspension was
added to a 96-well plate at the required cell density (20,000 cells per well) without the
assay medium. The cells allowed to grow for approximately 24 h. After this, the selected
concentration of the test agents was added for incubation at 37 ◦C for 24 h in 5% CO2.
The plates were removed from the incubator after completion of the incubation period.
MTT reagents were added to a final concentration of 0.5 mg/mL of total volume after
the spent medium was removed. In order to prevent the plates from being exposed to
light, aluminum foil was used to cover them. After three hours in the incubator, the plates
were removed. After removing the MTT reagents, 100 µL of a solution containing DMSO
was added. Dissolution may be improved by using a gyro shaker to provide a gentle
agitation. The absorption is measured using a spectrophotometer or an ELISA reader with
a wavelength of 570 nm. The percent cell viability is calculated using the following formula:

% cell viability = Abs of treated cells/Abs of Untreated cells × 100 (3)

The IC50 value was determined using a linear regression equation, i.e., Y = Mx + C,
where Y = 50, and M and C values are derived from the viability graph.

4. Conclusions

Essential oils derived from plants could provide a natural, more effective alternative to
antibiotics made from synthetic chemicals. Due to the exceptional pharmacological effects,
citronella essential oil (CITEO) has attracted the most interest among these numerous
compounds. Essential oils such as CITEO can be challenging to use in crop protection
due to their poor water solubility, high volatility, and instability. These are the three main
physicochemical properties that contribute to this difficulty. Nanoformulation provides
an answer to a number of the major problems associated with EOs. These include the low
water solubility of EOs, their volatility, and their chemical instability. By preparing and
analyzing nanoemulsion of CITEO, the current study aimed to achieve its primary goal of
finding solutions to the previously identified problems. According to the data described
above, encapsulation of CITEO in nanoemulsions is an effective method to achieve this goal.
Compared with uncoated CITEO, encapsulation of CITEO in nanoemulsion is one of the
most promising strategies to enhance pharmacological activities such as antibacterial and
anticancer effects. On the other hand, further studies are needed to evaluate the potential
impact of CITEO-based nanoformulations for different diseases.
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