
Sudjai et al. 
Journal of Orthopaedic Surgery and Research          (2023) 18:255  
https://doi.org/10.1186/s13018-023-03718-4

RESEARCH ARTICLE Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Journal of Orthopaedic
Surgery and Research

Tumor‑to‑bone distance and radiomic 
features on MRI distinguish intramuscular 
lipomas from well‑differentiated liposarcomas
Narumol Sudjai1, Palanan Siriwanarangsun2, Nittaya Lektrakul2, Pairash Saiviroonporn2, 
Sorranart Maungsomboon3, Rapin Phimolsarnti1, Apichat Asavamongkolkul1 and 
Chandhanarat Chandhanayingyong1* 

Abstract 

Background  To develop a machine learning model based on tumor-to-bone distance and radiomic features derived 
from preoperative MRI images to distinguish intramuscular (IM) lipomas and atypical lipomatous tumors/well-differ-
entiated liposarcomas (ALTs/WDLSs) and compared with radiologists.

Methods  The study included patients with IM lipomas and ALTs/WDLSs diagnosed between 2010 and 2022, and 
with MRI scans (sequence/field strength: T1-weighted (T1W) imaging at 1.5 or 3.0 Tesla MRI). Manual segmentation 
of tumors based on the three-dimensional T1W images was performed by two observers to appraise the intra- and 
interobserver variability. After radiomic features and tumor-to-bone distance were extracted, it was used to train a 
machine learning model to distinguish IM lipomas and ALTs/WDLSs. Both feature selection and classification steps 
were performed using Least Absolute Shrinkage and Selection Operator logistic regression. The performance of the 
classification model was assessed using a tenfold cross-validation strategy and subsequently evaluated using the 
receiver operating characteristic curve (ROC) analysis. The classification agreement of two experienced musculo-
skeletal (MSK) radiologists was assessed using the kappa statistics. The diagnosis accuracy of each radiologist was 
evaluated using the final pathological results as the gold standard. Additionally, we compared the performance of the 
model and two radiologists in terms of the area under the receiver operator characteristic curves (AUCs) using the 
Delong’s test.

Results  There were 68 tumors (38 IM lipomas and 30 ALTs/WDLSs). The AUC of the machine learning model was 0.88 
[95% CI 0.72–1] (sensitivity, 91.6%; specificity, 85.7%; and accuracy, 89.0%). For Radiologist 1, the AUC was 0.94 [95% CI 
0.87–1] (sensitivity, 97.4%; specificity, 90.9%; and accuracy, 95.0%), and as to Radiologist 2, the AUC was 0.91 [95% CI 
0.83–0.99] (sensitivity, 100%; specificity, 81.8%; and accuracy, 93.3%). The classification agreement of the radiologists 
was 0.89 of kappa value (95% CI 0.76–1). Although the AUC of the model was lower than of two experienced MSK 
radiologists, there was no statistically significant difference between the model and two radiologists (all P > 0.05).

Conclusions  The novel machine learning model based on tumor-to-bone distance and radiomic features is a non-
invasive procedure that has the potential for distinguishing IM lipomas from ALTs/WDLSs. The predictive features that 
suggested malignancy were size, shape, depth, texture, histogram, and tumor-to-bone distance.
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Introduction
Lipomatous soft tissue tumors are a group of tumors that 
exhibit a variety of clinical behaviors. Lipomas are the 
most common soft tissue tumor, accounting for one-third 
of soft tissue tumors [1, 2]. Lipomas are benign adipo-
cytic tumors, and they can be treated conservatively with 
careful observation. Surgical excision is necessary when 
a patient is symptomatic [3]. Local recurrence may occur 
if the surgical margin is not clear, but the chance is very 
low. However, intramuscular (IM) lipomas that are larger 
than 5  cm, deep-seated, and symptomatic can some-
times be difficult to distinguish from atypical lipoma-
tous tumors or well-differentiated liposarcomas (ALTs/
WDLSs). The World Health Organization uses the terms 
ALT and WDLS to represent tumors with identical his-
tology but different anatomical locations and clinical out-
comes [4, 5]. ALTs characterize extremity or upper trunk 
lesions, and WDLSs represent retroperitoneal or medi-
astinal lesions. ALTs/WDLSs are low-grade, malignant, 
adipocytic tumors that recur locally or dedifferentiate 
to high-grade sarcomas, but they rarely metastasize [6, 
7]. The gold standard for the diagnosis of ALTs/WDLSs 
is histopathological evidence of lipoblasts and lipocytes, 
with immunohistopathological staining positive for 
murine double minute 2 (MDM2) or cyclin-dependent 
kinase 4 (CDK4) [8, 9]. Establishing a diagnosis before 
surgery is crucial to dictate the urgency of surgery tim-
ing, to have a well-planned incision (a larger wound for 
ALTs/WDLSs), and to manage surgical margins (intraca-
psular incisions for lipomas, and capsular removals for 
ALTs/WDLSs). However, computed tomography-guided 
biopsies and incisional biopsies often cannot identify the 
malignant cell foci from the small core of a tissue sample 
[10]. Frozen sections of tissue are also considered unsuit-
able because fatty tissue is often too friable and cannot be 
fixed.

Magnetic resonance imaging (MRI) is the most use-
ful diagnostic tool for lipomatous soft tissue tumors, 
and it can distinguish IM lipomas from ALTs/WDLSs. 
MR images of IM lipomas show a uniform structure 
of adipose tissue with high intensity in both T1- and 
T2-weighted images, and low signal intensity with fat 
suppression. The MRI features of ALTs/WDLSs are simi-
lar to those of lipomas. However, features that suggest 
malignancy are (1) masses that are deep to the fascia; 
(2) masses that are larger than 10 cm; (3) the presence of 
thick septa (> 2  mm); (4) an enhancement on the post-
contrast sequence; (5) a nodular or non-adipose mass-
like area, and (6) a decreased percentage of fat [11–13]. 

In contrast, high-grade liposarcomas (including myxoid/
round cell, pleomorphic, and dedifferentiated liposarco-
mas) show low signal intensity in T1-weighted images 
and heterogeneous high signal intensity in T2-weighted 
images. However, the interobserver reliability for diag-
nosis of IM lipomas and ALTs/WDLSs showed slight to 
the substantial agreement, based on Cohen’s kappa coef-
ficient [14]. To reduce diagnostic uncertainty in medical 
image classifications using MRI and to prevent inade-
quate or excessive treatments, diagnoses must be made 
by an experienced musculoskeletal (MSK) radiologist.

Currently, interest in artificial intelligence is strong and 
is growing rapidly. To remedy the image classification 
problem, several methods have been proposed, such as 
machine learning and deep learning [15–23]. Recently, 
Tang et al. [20] reported that performing machine learn-
ing in distinguishing between all types of lipomas (sub-
cutaneous and IM lipomas) and ALTs on preoperative 
MRI has shown greater precision than MSK radiologists. 
However, no studies have yet focused on IM lipomas and 
ALTs/WDLSs.

Consequently, the primary objective of this study was 
to develop a machine learning model based on tumor-to-
bone distance and radiomic features derived from pre-
operative MRI images to distinguish IM lipomas from 
ALTs/WDLSs and compared with radiologists. Regard-
ing feature importance insights in the ultimate model, 
we evaluated the radiomic features that have significant 
in differentiating IM lipomas from ALTs/WDLSs. Along 
with, we examined whether a decrease in the tumor-
to-bone distance could be used to pathologically differ-
entiate ALTs/WDLSs from IM lipomas and whether it 
affected the clinical behavior of WDLS.

Materials and methods
Patients
This retrospective study was carried out after receiv-
ing a certificate of approval from the ethics committee 
of our institute, with a waiver of informed consent. Data 
sets were obtained from 68 patients with IM lipomas or 
ALTs/WDLSs. All had undergone an MRI examination 
and a total excision, with the diagnosis confirmed by his-
topathology and immunohistochemistry or fluorescence 
in situ hybridization (FISH) examination (The tumor with 
MDM2 and CDK4 amplification revealed by immunohis-
tochemistry/FISH was diagnosed as ALT/WDLS finally. 
On the other hand, the tumor that had no MDM2 and 
CDK4 amplification was defined as IM lipoma.), at our 
institution between 2010 and 2022. The final pathological 
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results were used as the gold standard for the classifica-
tion process. The inclusion criteria were defined as fol-
lows: (1) the final pathological diagnosis confirmed as IM 
lipoma or ALT/WDLS; (2) received total excision of pri-
mary tumors; and (3) received preoperative MRI protocol 
that including T1-weighted image (T1WI) sequence. The 
exclusion criteria were listed as follows: (1) the patients 
received anticancer treatments before MRI scan; (2) hav-
ing a history of other cancers; and (3) poor quality image. 
According to these criteria, 38 patients with IM lipomas 
and 30 patients with ALTs/WDLSs were included in this 
study.

MRI acquisition
The preoperative MRI of the patients was obtained using 
a variety of scanners and sequences. In this study, the 
T1WI sequence was the most available since it was part 
of the routine clinical protocol of our institution. Thus, 
we focused on this sequence. The MRI data sets com-
prised the axial, coronal, and sagittal planes of T1WI, 
all of which reveal soft tissue tumors most clearly. All 
images were acquired by 1.5 or 3.0 Tesla MRI scanners 
(Philips Healthcare; GE Medical System; Magnetom Sie-
mens Healthineers). The MRI slice thickness was 5 mm 
(median, range 3–8). The repetition time (TR) and echo 
time (TE) were 590  ms (median, range 425–2259) and 
12  ms (median, range 7–25), respectively. The detailed 
parameters for T1WI sequence are listed in Additional 
file 1: Table S1.

Three‑dimensional (3D) tumor segmentation
The open-source software 3D Slicer version 
4.11.20210226 r29738/7a593c8 (https://​downl​oad.​
slicer.​org/) with AI-assisted Nvidia Clara was used for 

manual segmentation of soft tissue tumors (Fig. 1). In all 
cases, lesions were segmented using the original T1WI 
sequences. Tumor region of interests (ROIs) were drawn 
on the entire volume of the lesion. Additionally, a refer-
ence region of interest (ROI) was drawn in fat on T1W 
MRI for image-intensity-normalization procedure [24]. 
All cases were selected randomly and blindly for repeti-
tive the segmented ROI by two observers (statistician 
and research scientist) and subsequently confirmed their 
precision by experts in musculoskeletal radiology and 
orthopedic oncology. (One observer repeated the seg-
mentation of all cases after a paused of 2 weeks to evalu-
ate intraobserver variability. A second observer analyzed 
all cases to appraise interobserver variability.)

Image‑intensity normalization
After segmentation, the next step was image-intensity 
normalization. The purpose of this step was to adjust for 
differences in T1W MRI protocols. The normalized 
intensity value (NIV) [24] was determined as follows: 
NIV =

Original T1W intensity
Mean intensity value within the reference ROI × 1000.

In all cases, T1W MRI was normalized before radiomic 
feature extraction.

Feature extraction

1.	 Radiomic features (107 features)

The radiomic features of a segmented ROI were 
extracted from the normalized T1W intensity using 
PyRadiomics version 3.0.1. Total radiomic features 
included first-order features (18 features); gray-level co-
occurrence matrix (GLCM, 24 features); gray-level run 

Fig. 1  Study design diagram

https://download.slicer.org/
https://download.slicer.org/
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length matrix (GLRLM, 16 features); gray-level size zone 
matrix (GLSZM, 16 features); gray-level dependence 
matrix (GLDM, 14 features); neighboring gray-tone dif-
ference matrix (NGTDM, 5 features); and shape-based 
features (3D, 14 features). These were classified as his-
togram-based features (i.e., first-order features), texture-
based features (i.e., GLCM, GLRLM, GLSZM, GLDM, 
and NGTDM features), and shape-based features (Fig. 1) 
[25].

2.	 Radiographic feature: tumor-to-bone distance (1 fea-
ture)

The distance from each tumor to bone was measured in 
3D (Figs. 1 and 2). The distance from A to B was from the 
closest aspect of the soft tissue tumor (A) to the bone (B).

Classification by machine learning model
To predict soft tissue tumor differentiation, a classifica-
tion model was constructed with supervised machine 
learning. Firstly, the data sets were randomly split into 
two subsets: the learning and testing data sets. (70% 
of data were used for the learning data set, and 30% for 
the testing data set.) Then, we applied a tenfold cross-
validation strategy to the learning data set, which was 
repeatedly subdivided into training sets (ninefold) and 
validation sets (onefold). The training sets were used for 
“Feature selection” using LASSO logistic regression, and 
subsequently built models using LASSO logistic regres-
sion. This method is suitable for high-dimensional data 
[26]. For the validation sets were used to test the per-
formance of the built model. Finally, the best model is 

selected and then evaluated on the testing data set (Fig. 3) 
[26, 27]. The performance of the classification model was 
assessed using the area under the curve (AUC), sensitiv-
ity, specificity, and accuracy (Fig. 4C) [27].

Classification by radiologists
Two MSK radiologists served as readers, blindly and inde-
pendently, to label the same lipomatous tumor MRI test 
set above. Radiologist 1 and 2 had 7 and 22 years of expe-
rience retrospectively. The readers were shown T1W MRI 
sequences in portable network graphics (PNG) format with 
an image size of 1024 × 1024 pixels; they were able to zoom 
in and out using the software. They made binary decisions 
on the 68 MR images and were blinded to the reports. 
The ratio of normal to abnormal radiographs was also not 
revealed to the readers. The classification agreement of the 
2 radiologists was evaluated with kappa statistics [28].

Statistical analysis
Mean and standard deviation (SD) or median and range 
were used to describe the continuous data, and frequency 
and percentage were used for categorical data. Com-
parison of the characteristics and the properties of the 
acquisition protocols of T1W MRI sequences between 
2 groups (IM lipomas vs. ALTs/WDLSs) were analyzed 
using an independent sample t test or the Mann–Whit-
ney U test for continuous data, and the chi-squared test 
or Fisher’s exact test for categorical data.

Regarding assessing intra- and interobserver variability 
of manual segmentation, the reproducibility of the radi-
omic features and tumor-to-bone distance extracted 
from normalized images were used to appraise the 

Fig. 2  Measurement of tumor-to-bone distance on three-dimensional (3D) segmentation
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agreement of the feature values concerning intra- and 
interobserver variability by using the intraclass correla-
tion coefficient (ICC). In the analysis, we chose a two-
way random-effects model with an absolute agreement 
(ICC (2,1)) [29]. Interpretation of ICC value is as fol-
lows: poor (ICC < 0.50); moderate (0.50 ≤ ICC < 0.75); 
good (0.75 ≤ ICC < 0.90); and excellent (ICC ≥ 0.90) [30]. 
In this study, we considered a feature reproducible if the 
ICC value was more than 0.75 [24, 31–35]. Additionally, 
Pearson correlation coefficient (r)/Spearman’s rank-order 
coefficient ( ρ ) were also computed. The only features 
with ICC > 0.75 were utilized for machine learning proce-
dure and statistical analysis.

Both the machine  learning model and MSK radiolo-
gists, the area under the receiver operator characteristic 
curve (AUC), sensitivity, specificity, and accuracy values 
with 95% confidence interval (CI) were used to assess the 

performance of classification [27]. In addition, we com-
pared the performance of the model and two radiologists 
in terms of the AUCs using the Delong’s test [36, 37].

Analysis of feature importance, differences in radiomic 
and radiographic features between two groups (IM lipo-
mas vs. ALTs/WDLSs) were performed using the Bonfer-
roni-corrected Mann–Whitney U test [22, 38, 39].

Statistical analysis and graphs were performed using 
R version 4.2.1 (R Foundation for Statistical Computing, 
Vienna, Austria). A P value < 0.05 was considered statisti-
cally significant.

Results
Patients
Sixty-eight patients were identified: 38 with IM lipomas 
and 30 with ALTs/WDLSs (Table 1). Most were women 
(61.8%) with deep-seated soft tissue tumors located in 

Fig. 3  Workflow diagram of the machine learning process used to appraise the performance of classification models. The initial data set is split into 
two subsets: the learning and testing data sets. Afterward, the learning data set undergoes a tenfold cross-validation strategy when training sets 
are used to select features (“Feature selection” using LASSO logistic regression) and validation sets to test the performance of classification models. 
(For model building step, we apply LASSO logistic regression over selected features.) Finally, the best model is selected and evaluated on the testing 
data set (“Evaluation”)
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Fig. 4  Fourteen features important in LASSO logistic regression model to distinguish IM lipomas from WDLSs: A selecting an optimal value of 
tuning parameter ( � ) in the LASSO logistic regression model was conducted using tenfold cross-validation. The misclassification error was plotted 
against log(�) . � of 0.019 ( log(�) = − 3.96) was selected according to tenfold cross-validation. The green dash vertical line denotes the optimal value 
using minimum criteria; B fourteen features’ importance was obtained using the LASSO logistic regression model. The bar chart of the absolute 
standardized coefficients showed the feature importance ranking; and C receiver operating characteristic (ROC) curves were plotted for learning 
and testing data sets showing the area under the curves (AUCs) obtained using the LASSO logistic regression model
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the thigh. The proportion of women in the IM lipoma 
group was significantly higher than in the ALT/WDLS 
group (P = 0.02). The mean age of the 68 patients was 
59.3 years (range 38–80). There was no statistical differ-
ence in the mean ages of the IM lipoma and ALT/WDLS 
groups (P = 0.5).

Intra‑ and interobserver manual segmentation variability 
in the feature reproducibility
Intra- and interobserver variability of manual segmen-
tation was appraised using ICC. The only features with 
ICC > 0.75 (78.7%, 85 of 108 features) were considered for 
feature selection and model building steps. Additionally, 
Pearson’s correlation coefficient and Spearman’s rank-
order coefficient were more than 0.7 (Additional file  1: 
Table S2).

The selected features in the ultimate model
The feature selection process with LASSO method 
revealed 14 significant features including 13 radiomic fea-
tures (i.e., 3 shape-based features, 2 histogram-based fea-
tures, and 8 texture-based features) and tumor-to-bone 

distance (Fig. 4A, B). The definition and formula of these 
features were described according to PyRadiomics’s 
documentation. (https://​pyrad​iomics.​readt​hedocs.​io/​en/​
latest/​featu​res.​html) (Additional file  1: Table  S3). All 14 
were used to build the ultimate model in the next step.

Performance of machine learning model
The classification performance of the machine learning 
approach used in this study is summarized in Table 2 and 
Fig. 4C, which performed well in differentiating IM lipo-
mas from ALTs/WDLSs. The AUC, sensitivity, specificity, 
and accuracy were 0.88 (95% CI 0.72–1), 91.6% (62.0–
100%), 85.7% (42.0–100%), and 89.0% (67.0–98.6%), 
respectively (Table 2).

Comparison between the machine learning model and two 
experienced MSK radiologists
The classification performances of the 2 MSK radiologists 
are detailed in Table 2. The AUCs obtained by the radi-
ologist 1 and 2 were 0.94 (0.87–1) and 0.91 (0.83–0.99). 
Their respective sensitivities, specificities, and accura-
cies were 97.4% (86.0–100%), 90.9% (71.0–99.0%), and 
95.0% (86.1–98.9%), respectively, for radiologist 1 and 
100% (91.0–100%), 81.8% (60.0–95.0%), and 93.3% (83.8–
98.1%), respectively, for radiologist 2 (Table 2). Although 
the AUC of the machine learning model was lower than 
that from the two MSK radiologists, there was no statis-
tically significant difference between the model and two 
radiologists (all P > 0.05) (Table 2 and Fig. 5).

Fourteen feature importance insights in the ultimate 
model
Regarding analysis of feature importance, the 14 features 
were found to be significant after Bonferroni-corrected 
Mann–Whitney U test (Fig. 6, supporting information).

Three important shape-based features were (1) shape_
SurfaceVolumeRatio (Fig.  6A), (2) shape_Sphericity 
(Fig. 6D), and (3) shape_MajorAxisLength (Fig. 6I), all of 
which suggested that ALTs/WDLS were more spherical 
and larger than IM lipomas.

Two histogram-based features of significance were (1) 
firstorder_Skewness (Fig. 6E) and (2) firstorder_TotalEnergy 
(Fig.  6N). The voxel intensity distribution showed negative 

Table 1  Demographic data of patients

IM lipomas intramuscular lipomas, ALTs/WDLSs atypical lipomatous tumors/well-
differentiated liposarcomas

Variable Total subjects
(n = 68)

IM lipomas
(n = 38)

ALTs/WDLSs
(n = 30)

P value

Gender

Male 26 (38.2%) 10 (26.3%) 16 (53.3%) 0.02

Female 42 (61.8%) 28 (73.7%) 14 (46.7%)

Age (years)

Mean (SD) 59.3 (9.7) 60.0 (9.1) 58.1 (10.6) 0.5

Range 38–80 38–80 39–80

Tumor location

Thigh 34 14 20

Arm 15 11 4

Shoulder 9 9 0

Leg 7 1 6

Back/trunk 2 2 0

Buttock 1 1 0

Table 2  Performance of machine learning model and two experienced musculoskeletal (MSK) radiologists in distinguishing IM 
lipomas from atypical lipomatous tumors or well-differentiated liposarcomas

AUC​ The area under the receiver operator characteristic curve, CI Confidence interval

*P value based on the Delong’s test, which were used to compare the AUCs between the machine learning model and radiologists

AUC (95% CI) Sensitivity (95% CI) Specificity (95% CI) Accuracy (95% CI) P value*

Machine learning model 0.88 (0.72–1) 91.6 (62.0–100) 85.7 (42.0–100) 89.0 (67.0–98.6)

MSK radiologist 1 0.94 (0.87–1) 97.4 (86.0–100) 90.9 (71.0–99.0) 95.0 (86.1–98.9) 0.4

MSK radiologist 2 0.91 (0.83–0.99) 100 (91.0–100) 81.8 (60.0–95.0) 93.3 (83.8–98.1) 0.7

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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skewness for IM lipomas and close to zero for ALTs/WDLSs. 
And the firstorder_TotalEnergy value for ALTs/WDLSs was 
higher than those for IM lipomas.

The 8 texture-based features indicated the degree of 
homogeneity and heterogeneity in the texture patterns 
in an image (Fig. 6B, C, F, H, J–M). These findings sup-
ported the position that IM lipomas exhibited more 
homogeneity in T1WI sequences than ALTs/WDLSs.

The tumor-to-bone distance (Fig.  6G) for IM lipomas 
was greater than those for ALTs/WDLSs.

Discussion
This study revealed that regular MRI attainment facili-
tates the diagnosis of IM lipomas and WDLSs with cred-
ible results using the machine learning model based on 
tumor-to-bone distance and radiomic features derived 
from T1-weighted, non-contrast-enhanced MR images, 
with AUC 0.88 (95% CI 0.72–1), 91.6% sensitivity, 85.7% 
specificity, and 89% accuracy.

In this cohort of patients (Table  1), the mean ages of 
the patients with IM lipomas and ALTs/WDLSs were 
comparable. Women had IM lipomas (28 of 38 cases; 
73.7%) more frequently than ALTs/WDLSs (14 of 30 
cases; 46.7%), with statistically significance (P = 0.02). 
The most common location of the IM lipomas and ALTs/
WDLSs was the thigh. Most calf tumors were ALTs/
WDLSs, whereas tumors located in the shoulder, arm, 
back, trunk, and pelvis were almost always IM lipomas. 
Patient demographic data, including age, gender, and 
localization, may suggest malignancy. However, with-
out a combination of clinical data, the machine learning 
approach based on tumor-to-bone distance and radiomic 

features of the T1W images themselves offer promising 
predictions of sarcoma.

Moreover, the present radiomics model required only 
T1W images without T2W or gadolinium contrast, 
which makes this method generalizable and reproduc-
ible for use in diverse centers equipped with various 
MRI scanners. No vendor effect was observed between 
the General Electric, Siemens, and Philips MR systems 
for any of the radiomic features in this study (Additional 
file 1: Table S1).

Three previous studies [17, 18, 21] (Table 3) evaluated 
all types of liposarcomas using a radiomic approach on 
MRI, including myxoid and dedifferentiated liposarco-
mas and a limited number of ALTs/WDLSs. Radiologists 
could easily differentiate the distinct radiological features 
of lipomas and high-grade liposarcomas on conventional 
MRI, resulting in high diagnostic accuracy (91–95%). 
In addition, Doyle et  al. [13] showed that 2 radiologists 
achieved 94% and 100% sensitivities as well as 64% and 
76% specificities for T1-weighted images when dis-
tinguishing between lipomas and atypical lipomatous 
tumor/WDLS. Focusing on studies of radiomics to differ-
entiate lipomas from ALTs/WDLSs [19, 20, 22, 23], the 
accuracy dropped to 67%–96% because the lipomas and 
ALTs/WDLSs shared common MRI features. The results 
of our study are comparable with those of Vos et al. [22], 
who applied a radiomic model to differentiate both sub-
cutaneous and IM lipomas from ATLs/WDLSs, using 
shape and texture analysis. Their design evaluated 58 
lipomas and 58 WDLSs, with an accuracy of 67% when 
using T1W images and 75% when using combined T1W 
and T2W images. Recently, Tang et al. [20] reported that 
a radiomic models with T1WI, FS T2 WI, and T1&T2WI 
achieved 88%, 96%, and 92% accuracies when distin-
guishing between lipomas and ALTs of the extremities. 
Our non-contrast-enhanced T1W MRI achieved equiva-
lent performance compared with those of Tang et al. [20], 
with an accuracy of 89%. This may be explained by using 
3D segmentation to improve accuracy and usefulness 
while trading with a longer analysis time and GPU space 
[40].

Our work compared the classification performances 
of the machine learning approaches and the radiolo-
gists. When looking at the prediction accuracy, the 
experienced MSK radiologists demonstrated superior 
performance to the machine learning model because of 
their great expertise. However, even though there was a 
small set of MRIs available for the learning process, the 
machine learning models required less time than the 
radiologists to perform their readings after the segmenta-
tion process was done. Additionally, when comparing the 
AUCs between the model and two radiologists in Fig. 5, 
it can be seen that there was no statistically significant 

Fig. 5  Comparison of performance between the machine learning 
model and experienced MSK radiologists in term of the area under 
the receiver operator characteristic curves (AUCs)



Page 9 of 13Sudjai et al. Journal of Orthopaedic Surgery and Research          (2023) 18:255 	

Fig. 6  The boxplots of fourteen features (13 radiomic features and tumor-to-bone distance) with high importance that can identify soft tissue 
tumor differentiation: A shape_SurfaceVolumeRatio; B glszm_SmallAreaEmphasis; C glcm_Imc2; D shape_Sphericity; E firstorder_Skewness; 
F glcm_DifferenceEntropy; G tumor_to_bone_distance; H glcm_DifferenceVariance; I shape_MajorAxisLength; J glcm_Contrast; K glrlm_
LongRunHighGrayLevelEmphasis; L glcm_ClusterShade; M glszm_LargeAreaHighGrayLevelEmphasis; N firstorder_TotalEnergy
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difference. Therefore, the model based on tumor-to-bone 
distance and radiomic features has the potential to dis-
tinguish between IM lipomas and ALTs/WDLSs and its 
discrimination ability is close to the radiologists.

Regarding feature importance insights in the ultimate 
model, the 14 features importance indicated that shape-
based, histogram-based, and texture-based features were 
of foremost importance (Figs. 4B and 6).

Shape-based features or size features were found to be 
related to the prediction of malignancy and were largely 
integrated into the models. The ALTs/WDLSs were gen-
erally larger than IM lipomas. This illustrated that tumor 
size may help to characterize malignancy, as reported by 

previous investigations based on conventional imaging 
characteristics [11, 12, 41, 42]. However, in some specific 
areas, such as an ALT/WDLS of the hand, the lesion is 
not large, and a large IM lipoma of the thigh is typically 
not difficult to find, depending on the location and loose-
ness of the surrounding tissue. Therefore, radiographic 
size is not always a reliable radiomic feature for diagnosis. 
Although ovoid/nodular configurations cannot distin-
guish the grade of malignancy (i.e., high-, intermediate, 
and low-grade soft tissue tumors) on MRI [43], it may 
differentiate IM lipomas from ALTs/WDLSs. Based on 
our results, ALTs/WDLSs had a more compact (sphere-
like) shape than IM lipomas, as evidenced by the surface 

Table 3  Comparing the performance of the classification in identifying soft tissue tumor differentiation in previous and current 
studies

IM lipomas intramuscular lipomas, ALTs/WDLSs atypical lipomatous tumors/well-differentiated liposarcomas, MSK radiologist musculoskeletal radiologist, LASSO LR 
Least Absolute Shrinkage and Selection Operator (LASSO) logistic regression, AUC​ area under the curve, N/A not available

*The model was constructed using various methods including logistic regression, support vector machine (SVM), random forests, naïve Bayes, linear discriminant 
analysis (LDA), and quadratic discriminant analysis (QDA)

Study Number of 
patients with 
lipomas in 
benign group

Number of 
patients with 
ALTs/WDLSs 
in malignant 
group

Classify Machine 
learning 
algorithm

AUC​ Sensitivity (%) Specificity (%) Accuracy (%)

Cay, 2022 [15] 45 20/20 (100%) Lipomas vs. 
ALTs/WDLSs

SVM 0.98 96.8 93.7 –

Fradet, 2022 [16] 40 45/45 (100%) Lipomas vs. ALTs Logistic regres-
sion

0.50 100 0.0 –

SVM 0.47 70.0 32.0 –

Random forest 0.71 64.0 68.0 –

Gradient boost-
ing

0.70 67.0 64.0 –

Tang, 2022 [20] 90 32/32 (100%) Lipomas vs. ALTs Random forest 0.94 85.7 100 96.0

Yang, 2022 [23] 69 58/58 (100%) Lipomas vs. 
WDLSs

SVM 0.95 95.0 88.9 92.1

Malinauskaite, 
2020 [18]

24 5/14 (35.7%) Lipomas vs. 
Liposarcomas

SVM 0.93 88.8 100 94.7

LDA 0.93 – – 89.5

Naïve Bayes 0.81 – – 79.0

Logistic regres-
sion

0.812 – – 73.7

Leporq, 2020 
[17]

40 ?/41 Lipomas vs. 
Liposarcomas

SVM 0.96 100 90 95.0

Vos, 2019 [22] 58 58/80 (71.6%) Lipomas vs. 
WDLSs

Various* 0.83 68 84 67.0

Thornhill, 2014 
[21]

24 ?/20 Lipomas vs. 
Liposarcomas

LDA N/A 85 96 91.0

Current study

 Machine 
learning 
model

38 30/30 (100%) IM lipomas vs. 
ALTs/WDLSs

LASSO LR 0.88 91.6 85.7 89.0

 MSK radiolo-
gist 1

38 30/30 (100%) IM lipomas vs. 
ALTs/WDLSs

- 0.94 97.4 90.9 95.0

 MSK radiolo-
gist 2

38 30/30 (100%) IM lipomas vs. 
ALTs/WDLSs

- 0.91 100 81.8 93.3
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area-to-volume ratio. This radiomic feature may be cor-
related to ovoid/nodular configurations on MRI [43, 44]. 
We can observe that this shape difference may also reflect 
excessive cell proliferation and/or non-lipomatous or 
nodular fibrous septa, which showed a fluffier consist-
ency in ALTs/WDLSs [45, 46]. Tumor shape was also a 
key characteristic that was visually evaluated in clinical 
practice [12, 42]. Further studies with expanded data sets 
that include larger IM lipomas or smaller ALTs/WDLSs 
should be performed to identify important radiomic 
features in addition to the size- or volume-dependent 
features.

Regarding the histogram features, the higher hetero-
geneity in the skewness map of T1W values from tumor 
ROI correlated with a higher grade of malignancy. The 
ALTs/WDLSs had a greater value of energy feature than 
the IM lipomas.

Texture features (particularly the features of GLSZM, 
GLRLM, and GLCM) were largely reported herein as 
relevant features. This is also consistent with clinical 
practice based on visual characterization of tumor het-
erogeneity and the presence of thick and nodular septa as 
key characteristics [12, 47].

In addition to histogram and texture features, we found 
that depth played an important role. By measuring the 
tumor-to-bone distance on 3D reconstructions of T1W 
MR images from the closest aspect of the tumor to the 
bone (Fig. 2), we showed that the closer a tumor was to 
the bone, the higher the probability that it was an ALT/
WDLS rather than an IM lipoma. This implies either that 
IM lipomas are often found in the more superficial mus-
cle groups or that WDLS are larger, as mentioned earlier.

Because of the higher cost of FISH and its longer test 
turnaround time, molecular testing may be performed 
only in cases of clinical suspicion. Most ALT/WDLS cases 
were diagnosed by evidence of mature adipocytes with 
pleomorphism, nuclear atypia, and hyperchromatic stro-
mal cells on hematoxylin and eosin stain. This method 
is widely accepted in our country. Using the machine 
learning approach may not replace molecular testing for 
MDM2 and CDK4. However, it may help to alert physi-
cians to the need to refer a patient to a sarcoma center 
at the earliest opportunity. Thus, the use of the machine 
learning approach may also facilitate the development of 
plans for surgical treatment and follow-up.

We demonstrated that machine learning approach 
based on tumor-to-bone distance and radiomic features 
retrieved from 3D segmentation MRI can distinguish 
between IM lipomas and ALTs/WDLSs and provide 
quantitative information for their differential diagnosis. 
There are 3 main advantages of using the machine learn-
ing approach to differentiate between IM lipomas and 
ALTs/WDLSs before surgery. First, it obviates the need 

for a patient to undergo a biopsy. As mentioned above, 
biopsies of lipomatous tumors can produce unfavorable 
results because the foci of malignant cells that lie in the 
septum are difficult to reach. Another advantage is that 
this approach helps surgeons decide whether to wait or to 
accelerate the timing of surgery. This is because surgery 
on an IM lipoma can wait, but an ALT/WDLS cannot be 
left untreated for a long time as it has a 1–5% chance of 
becoming a dedifferentiated liposarcoma [5, 48, 49]. Fur-
thermore, the use of the machine learning approach can 
guide the decision by a surgeon to use a minimally inva-
sive incision (for an IM lipoma) or a larger incision with 
wider margins (for ALT/WDLS). Once an IM lipoma or 
ALT/WDLS has been resected and its diagnosis has been 
confirmed by histopathology, a different follow-up proto-
col is used for each. For an ALT/WDLS, a serial physical 
examination and/or MRI is performed every 3–4 months 
during the first 2 postoperative years and once a year for 
the following 3 years. This protocol is employed because 
WDLSs have a greater chance of recurrence and dedif-
ferentiation to sarcomas than IM lipomas, but they rarely 
metastasize [6, 50, 51]. In contrast, IM lipomas require 
much less frequent follow-up. No additional treatment, 
including irradiation or chemotherapy, will be adminis-
tered to either group.

Our study has some limitations. First, most of our IM lipo-
mas were smaller in size. This volume bias was mentioned 
earlier in this article. Additionally, the sample sizes of 38 IM 
lipomas and 30 ALTs/WDLSs were relatively small, espe-
cially for diagnostic efficiency. We will continually evaluate 
the preoperative MRI examination of IM lipomas and ALTs/
WDLSs to progressively refine our model. The model was 
based solely on selected retrospective data related to masses 
that had been surgically removed and for which pathological 
reports were available. However, small tumors treated with 
observation or masses that had not been referred to the sar-
coma center were excluded from the data sets. Furthermore, 
we used manual 3D segmentation with semiautomatic con-
toured images by two observers (statistician and research 
scientist) which were confirmed by experienced MSK radi-
ologists. This may be subject to intra- and interobserver vari-
ability; however, the results showed no significant difference 
between observers. Finally, we did not compare the different 
pathological subtypes of lipomas and ALTs/WDLSs (e.g., the 
sclerosing type). However, the subtype may not alter the sur-
gical procedure.

Conclusions
Quantitative analysis of an artificial intelligence-based 
system using machine learning approach based on 
tumor-to-bone distance and radiomic features derived 
from MRI images can differentiate between IM lipomas 
and ALTs/WDLSs. The predictive features that suggested 
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malignancy were size, shape, depth, texture, histogram, 
and tumor-to-bone distance. This comprehensive study 
of multiple features contributes to the diagnosis of IM 
lipomas and ALTs/WDLSs. The further development of 
artificial intelligence-based systems that will be gained 
through training with a larger number of patients and 
improving the mathematical methods will improve the 
accuracy of these systems in diagnosing IM lipomas and 
ALTs/WDLSs.
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