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Abstract: Polysulfide plays an essential role in controlling various physiological activities in almost all
organisms. We recently investigated the impact of polysulfide metabolic enzymes on the temporal dy-
namics of cellular polysulfide speciation and transcriptional regulation by the polysulfide-responsive
transcription factor SqrR in Rhodobacter capsulatus. However, how the polysulfidation of thiol groups
in SqrR is reduced remains unclear. In the present study, we examined the reduction of polysulfi-
dated thiol residues by the thioredoxin system. TrxC interacted with SqrR in vitro and reduced the
polysulfide crosslink between two cysteine residues in SqrR. Furthermore, we found that exogenous
sulfide-induced SqrR de-repression during longer culture times is maintained upon disruption of the
trxC gene. These results establish a novel signaling pathway in SqrR-mediated polysulfide-induced
transcription, by which thioredoxin-2 restores SqrR to a transcriptionally repressed state via the
reduction of polysulfidated thiol residues.
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1. Introduction

Polysulfide modulates a variety of physiological functions, potentially by acting as a
signaling molecule. Polysulfidation of electrophilic species and thiol residues in a protein
is reportedly critical for polysulfide-mediated signal transduction [1–4]. In mammals,
electrophilic thiolation of 8-nitroguanosine 3′,5′-cyclic GMP (which accumulates in cells
under nitrosative stress) via attack by a hydropersulfide blocks protein S-guanylation, thus
modulating redox signaling [1,2]. Polysulfidated proteins have been comprehensively
analyzed in both mammals and plants, in which a small but significant fraction of the
proteome is polysulfidated [5–8]. Diverse bacteria may also provide bioavailable mobile
sulfur to the organism [9].

We recently characterized the dynamics of polysulfide metabolism with regard to bac-
terial polysulfide-responsive transcription in Rhodobacter capsulatus [10]. SqrR (rcc01453), a
bacterial polysulfide sensor isolated from R. capsulatus, exerts extensive control over sulfide-
responsive genes that encode polysulfide metabolism-related proteins in R. capsulatus [11].
SqrR forms an intramolecular polysulfide crosslink via two conserved Cys residues when ex-
posed to polysulfide, resulting in a decline in repressor activity [10,11]. A mass spectrometry-
based kinetic profiling study further defined this polysulfidation process and the chemical
specificity of SqrR [12]. These data indicate that SqrR-related polysulfide signal transduc-
tion is a suitable model system for investigations of sulfide/polysulfide signaling. Our
current study revealed that two SqrR-regulated polysulfide-metabolizing enzymes, sul-
fide:quinone reductase (SQR) (rcc00785) and rhodanese (rcc01557), affect SqrR-mediated
polysulfide-induced transcription and speciation of intracellular polysulfide, which in turn
modulates the polysulfide response in R. capsulatus [10]. SQR provides sustained levels
of polysulfide to suppress the transcriptional repression caused by the reduction of SqrR.
Moreover, rhodanese appears to decrease the polysulfidated state of SqrR via polysulfide
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reduction by intermolecular transsulfuration. However, how the polysulfidation of SqrR is
directly abolished remains unclear.

A number of studies have described the contribution of thioredoxin to the reduction
of inorganic polysulfide and protein persulfide in mammals and bacteria [6,13–17]. Mam-
malian thioredoxins exhibit S-desulfhydrase activity, which catalyzes the S-desulfhydration
of the active site persulfide-formed cysteine(s) of 3-phosphate dehydrogenase and pyruvate
carboxylase [14]. Moreover, thioredoxin/thioredoxin reductase-mediated S-desulfhydration
reduces polysulfidated caspase in the inactivated state, thereby suppressing apoptosis [13].
Bacterial thioredoxins also reduce protein persulfides, which control critical metabolic and
regulatory mechanisms under conditions of sulfide/polysulfide stress [15,18]. In addi-
tion, thioredoxin mediates the transsulfuration reaction between protein-bound persulfide
intermediates during Fe-S cofactor biogenesis [16].

Interestingly, RNA-seq data from our previous study indicated that the transcription
of thioredoxin-2 (TrxC) is regulated by SqrR in response to sulfide [11]. Here, we pro-
vide evidence that TrxC regulates SqrR-mediated polysulfide-induced transcription via
depolysulfidation of thiol residues in SqrR.

2. Materials and Methods
2.1. Bacterial Strains, Media, and Growth Conditions

Rhodobacter capsulatus strain SB1003 and mutant strains were grown aerobically at
30 ◦C in a PYS medium [19]. The medium was supplemented with gentamycin and
rifampicin at concentrations of 1.5 µg/mL and 75 µg/mL, respectively.

Escherichia coli strains were cultured aerobically in Luria Bertani (LB) medium at
37 ◦C. The medium was supplemented with ampicillin and gentamycin concentrations of
100 µg/mL and 10 µg/mL, respectively.

2.2. Overexpression and Purification of SqrR and TrxC

Recombinant SqrR-FLAG and His-tagged TrxC were overexpressed in E. coli strain BL21
(DE3) utilizing a previously described [11] pSUMO::SqrR-FLAG plasmid and pColdI::TrxC
plasmid, respectively. To construct pColdI::TrxC, a DNA fragment encoding full-length trxC
was amplified by polymerase chain reaction (PCR) using KOD One polymerase (TOYOBO)
and the TrxC-F and TrxC-R primers (Table 1). The resulting amplified DNA was cloned
into the NdeI-cut pColdI vector using an In-Fusion HD Cloning kit (Clontech). Overexpres-
sion of the recombinant proteins was induced by the addition of 0.2 mM isopropyl-β-D-
thiogalactopyranoside and incubation at 16 ◦C overnight (16–18 h). Cells in a 500-mL culture
were harvested and stored at−80 ◦C until further use. SrqR-FLAG was purified as previously
described [11]. TrxC was purified using a 1-mL HisTrap column and ÄKTA Start system
(Cytiva). Bacteria were resuspended in 20 mL of cell buffer composed of 20 mM Tris-HCl
(pH 8.0), 500 mM NaCl, 5 mM imidazole, and 10% glycerol and then lysed by sonication. The
lysate was clarified by centrifugation at 30,000× g for 30 min at 4 ◦C, and the supernatant was
filtered using a 45-µm membrane filter (Millipore). The resulting lysate was loaded onto a
HisTrap column and washed with 20 column volumes of wash buffer consisting of 20 mM
Tris-HCl (pH 8.0), 500 mM NaCl, 20 mM imidazole, and 10% glycerol. TrxC was eluted with
a gradient of 20 mM to 500 mM imidazole in the loading buffer over a total of 10 column
volumes. Protein concentration was determined using the Bradford assay.
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Table 1. List of primers used in this study.

Name
(Accession Number) Sequence 5′–3′ Purpose

TrxC-F
(ADE86247) TCGAAGGTAGGCATATGATGGGGGCCAAGATGGCG Overexpression of

recombinant
proteinTrxC-R GTACCGAGCTCCATATCAGGCGCGGGCGCCCAGCTTGCCG

trxC F1 CGACTCTAGAGGATCAAAGATCGGCAGCCGCATCGGCATCTC Gene
disruption

trxC R1 CTTGGCCCCCATCATATTCGCGTTGCGGAATATAT
trxC F2 ATGATGGGGGCCAAGGGCGCCCGCGCCTGAGAACCCGCGC
trxC R2 CGGTACCCGGGGATCCCGGCAGGCGTCGCCGACGAAATCGACCGC
rpoZ qF
(ADE87042) GAGATCGCCGATGAAACC

qRT-PCRrpoZ qR TCGTCGACCTCGATCTGG
sqr qF
(ADE84550) CGCAAGGAAGACAAGGTCAC

sqr qR CGAGGGCACGAAATGATAC

2.3. Pull-Down Assay

Recombinant SqrR-FLAG and TrxC were dialyzed against a wash buffer consisting of
20 mM Tris-HCl (pH 8.0), 500 mM NaCl, 20 mM imidazole, and 10% glycerol. Ni-resin and
protein (5 µM) were mixed and incubated for 3 h at 4 ◦C. After incubation, Ni-NTA agarose
(QIAGEN) and the protein mixture were transferred to a poly-prep chromatography column
(Bio-Rad) and washed with 20 column volumes of wash buffer. Proteins were eluted with
1 mL of 500 mM imidazole-containing elution buffer. The eluates were analyzed by Western
blotting using an anti-FLAG antibody, as described previously [11].

2.4. Analysis of the Redox State of Cysteine Thiols

Recombinant SqrR-FLAG and TrxC were reduced by incubation with 0.5 mM dithio-
threitol (DTT) for 60 min at room temperature. After reduction, DTT was removed by
ultrafiltration in an anaerobic glove box using a degassed buffer consisting of 25 mM
Tris-HCl (pH 8.0) and 200 mM NaCl. Reduced SqrR-FLAG was anaerobically incubated
with a 50-fold molar excess of glutathione persulfide (GSSH) for 30 min at room temper-
ature, and unreacted GSSH was removed using the same method used for DTT removal.
GSSH-treated SqrR-FLAG was mixed anaerobically with the same molar excess of TrxC
and incubated for 30 min at room temperature. A 100-µL volume of each SqrR sample was
adjusted to 10 µM, mixed with 10 µL of 100% trichloroacetic acid (TCA), and incubated on
ice for 20 min. Proteins were precipitated by centrifugation at 20,000× g and then washed
with cold acetone to remove the TCA. The precipitates were resuspended in 50 µL of a
buffer consisting of 1% SDS, 50 mM Tris-HCl (pH 7.5), and 0.1 mM polyethylene glycol
(PEG)-maleimide. A PEG-maleimide modification was performed at 37 ◦C for 30 min. The
resulting proteins were separated on 10% SDS-PAGE gels, and SqrR-FLAG was specifically
detected by Western blotting using an anti-FLAG antibody.

2.5. Cloning and Mutagenesis

The plasmid pZJD29a::∆trxC was used to disrupt trxC in R. capsulatus, as previously
described [11]. Two ~500-bp DNA fragments encoding the N- and C-terminal regions of
trxC were amplified by PCR using KOD One polymerase (TOYOBO). Two sets of primer
pairs were used for the amplification: one pair consisting of the forward primer trxC F1
and reverse primer trxC R1, and the other pair consisting of the forward primer trxC F2
and reverse primer trxC R2 (Table 1). The two fragments were cloned into the BamHI-site
in pZJD29a [20] using an In-Fusion HD Cloning kit (Clontech). The resulting plasmids
were introduced into R. capsulatus by conjugation with E. coli strain S17-1/λpir, and a
subsequent homologous recombination event was induced as described in a previous
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report [20]. The deletion was confirmed in the isolated mutants by sequencing analysis. For
the construction of the complementing strain of trxC mutant, full-length trxC containing
the 500-bp upstream and downstream regions of trxC fused FLAG sequence at the 3′-
end of trxC was amplified by PCR and cloned into the BamHI-site in pZJD3 [21]. The
resulting plasmid was introduced into R. capsulatus ∆trxC mutant cells as described above.
Subsequent single–cross-over recombinants were isolated as trxC complementing strain.

2.6. RNA Isolation and Quantitative Real-Time PCR (qRT-PCR)

Rhodobacter capsulatus was cultured aerobically to the log phase or stationary phase.
For sulfide treatment, Na2S at a final concentration of 0.2 mM was added when the cells
reached the mid-log phase (OD660 = 0.7), and the cells were then cultured further. Aliquots
of 0.5 mL of cells were harvested at each time point (0, 2, 30, 60, 120 min), and total RNA
was extracted from each sample using NucleoSpin RNA Plus (TaKaRa). The quality of
purified RNA was assessed based on a typical OD260 to OD280 ratio of approximately
2.0. The RNA was reverse transcribed using a PrimeScript RT Reagent kit (TaKaRa), and
qRT-PCR assays were performed using THUNDERBIRD Next SYBR qPCR mix (TOYOBO)
and a CFX Connect Real-Time system (Bio-Rad). The housekeeping gene rpoZ, which
encodes RNA polymerase, was analyzed as an internal control using gene-specific primers
(Table 1).

3. Results
3.1. Identification of TrxC

To verify whether thioredoxin is involved in transcriptional regulatory signaling by
SqrR, we utilized the previous RNA-seq transcriptomic data of R. capsulatus WT and ∆sqrR
in the absence and presence of exogenous sulfide [11]. Transcription of trxC gene encoding
thioredoxin-2 (rcc02517) was up-regulated more than 20-fold by both treatments with
exogenous sulfide and by disruption of sqrR (Table 2). This gene is located in a different
position on the chromosome from sqr. Based on this observation and in consideration of
the molecular functions of thioredoxin, it appears that TrxC plays a role in reducing the
polysulfide crosslink in SqrR.

Table 2. Effects of sulfide and loss of SqrR on levels of trxC gene transcription in WT bacteria. Data
are cited from [11].

Accession Number Fold-Change ± lfcSE
(with/without Sulfide)

Fold-Change ± lfcSE
(∆sqrR/WT)

rcc02517 22.4 ± 1.2 21.6 ± 1.3

3.2. Interaction between SqrR and TrxC

A pull-down assay using recombinant FLAG-tagged SqrR and His-tagged TrxC was
performed to determine whether TrxC interacts with SqrR. Briefly, FLAG-tagged SqrR was
mixed with His-tagged TrxC–bound Ni-resin and co-eluted after extensive washing of the
resin. FLAG-tagged SqrR was specifically detected by Western blotting using an anti-FLAG
antibody (Figure 1), as the molecular weights of SqrR-FLAG and TrxC are similar. FLAG-
tagged SqrR did not bind to the Ni-resin in the absence of TrxC but did co-elute with TrxC.
This result indicated that a positive interaction occurs between TrxC and SqrR in vitro.
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Figure 1. His-tag–based pull-down assay of the SqrR–TrxC interaction. SqrR-FLAG was mixed with
Ni-resin in the absence (−TrxC) and presence (+TrxC) of His-tagged TrxC. Input and output were
analyzed by Western blotting using an anti-FLAG antibody to detect SqrR-FLAG. The numbers to the
left of the images indicate molecular weight based on size markers (kDa).

SqrR forms an intramolecular polysulfide crosslink between two cysteine residues
following polysulfide exposure [10,11]. We, therefore, analyzed the role of TrxC in the
reduction of the polysulfide crosslink in SqrR. Reduced SqrR was treated with a 50-fold
molar excess of GSSH relative to the concentration of free protein subunit, and any remain-
ing free thiol residues were modified by treatment with PEG-maleimide under anaerobic
conditions. PEG-maleimide–modified SqrR species were separated by SDS-PAGE to iden-
tify completely reduced SqrR and crosslinked SqrR. As SqrR has three Cys residues (C9,
C41, C107), four different bands were detected (Figure 2). In the case of reduced SqrR, a
band derived from SqrR was detected in which the thiol group was completely reduced
(top band). This top band disappeared after reduced SqrR was treated with GSSH, and the
intensity of a band with two thiol groups protected from modification by PEG-maleimide
(third band from the top) was increased instead, indicating the presence of an intracellu-
lar polysulfide crosslink between two thiols. In contrast, when GSSH-treated SqrR was
incubated with reduced TrxC under anaerobic conditions, the intensity of the band derived
from crosslinked SqrR decreased, and the band pattern was similar to that of reduced SqrR.
These data suggest that TrxC reduces the polysulfide crosslink to thiol groups in SqrR.
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image indicate molecular weight based on size markers (kDa).
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3.3. Effect of TrxC on SqrR-Mediated Transcription

To examine the effect of TrxC on SqrR-mediated polysulfide-induced transcription, we
generated deletion mutants and monitored expression levels of the SqrR-regulated gene sqr.
After treatment with sulfide, the WT strain showed a rapid increase in sqr transcript levels,
followed by a gradual decrease and, at later time points, a sustained high level of expression
relative to that before treatment (Figure 3). In contrast, compared with the WT, the trxC-
deletion mutant (∆trxC) increased the duration of sqr expression after sulfide induction
(Figure 3). Furthermore, the trxC complementing strain showed similar transcriptional
changes as WT. In our previous study, rhodanese (rcc01557)-deletion mutant maintained
high expression levels of sqr at longer time points as well [10]. These observations are
thought to be due to abnormal degradation of polysulfidation in SqrR and intracellular
polysulfide. These data suggest that TrxC contributes to the abolition of SqrR-mediated
polysulfide-induced transcription.
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Figure 3. Responsiveness of SqrR regulated gene to sulfide. Temporal changes in the relative level of
sqr gene transcripts after treatment with sulfide compared with 0 min in WT (filled circles), ∆trxC
(open circles), and trxC complementing strain (filled triangles) cells. Cells were cultured to the
mid-log phase under aerobic conditions, and 0.2 mM sodium sulfide was added at t = 0. Cells were
harvested at each time point and assayed by qRT-PCR. Data shown are mean ± S.E. from three
biological replicates (error bars).

4. Discussion

We studied the contribution of TrxC to the polysulfidation of SqrR and SqrR-mediated
polysulfide-induced transcription to explore the possibility of a novel regulatory process
in polysulfide signal transduction. We demonstrate that TrxC reduces the intramolecular
polysulfide crosslink between two cysteine residues in SqrR and restores SqrR to a reduced
transcriptional repression mode. This conclusion is based on the effect of recombinant
TrxC on the redox state of thiol residues in SqrR (Figure 2) and the effect of trxC deletion
on transcriptional changes in SqrR-regulated genes (Figure 3). The in vitro reaction of
polysulfidated SqrR with reduced TrxC clearly inhibited the crosslinking between thiol
residues in SqrR (Figure 2). Consistent with this biochemical response, ∆trxC did not
restore SqrR-mediated repression compared with the WT (Figure 3).

Polysulfide was recently identified as an important factor in controlling intracellular
redox homeostasis and metabolic regulation [22–24], but high concentrations of polysulfide
are toxic to cells [25,26]. Thus, as polysulfide exhibits both harmful and beneficial effects,
organisms must strictly control intracellular polysulfide levels to leverage the beneficial
effects while avoiding cytotoxicity. Thioredoxin-based polysulfide homeostasis may be
one of the key regulatory mechanisms in polysulfide signaling. Indeed, the mammalian
thioredoxin system enhances survival in the presence of toxic amounts of inorganic polysul-
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fide [6]. Similarly, transcriptional regulation mediated by TrxC plays a role in maintaining
polysulfide homeostasis. Our previous study revealed that SQR is de-repressed in the pres-
ence of sulfide and generates polysulfide, thereby maintaining the polysulfide modification
of SqrR to keep it in a de-repressed state [10]. However, this transient sulfide-stimulated
enhanced transcription returns to a transcriptionally repressed state within a few hours.
Although not evaluated in detail in the present study, one possible explanation is that
polysulfide metabolism mediated by rhodanese plays a role in preventing a continued rise
in SQR-derived polysulfide levels. Thus, the TrxC system might contribute to the sulfide-
induced maintenance of polysulfide homeostasis via direct reduction of SqrR. Indeed,
in E. coli, TrxC, which is regulated in response to sulfide by OxyR, has sulfide-induced
reducing activity toward intracellular polysulfides [27].

In Staphylococcus aureus, two novel thioredoxin-like proteins, TrxP and TrxQ, and the
canonical thioredoxin, TrxA, play roles in maintaining polysulfide homeostasis [15,18].
Although these three thioredoxins are bona fide sulfurtransferases, they do not share
the most common candidate substrates [15]. In particular, TrxP exhibits greater catalytic
efficiency and recognizes more candidate substrates than the other thioredoxins, indicating
that TrxP is the primary regulator of polysulfide shuttling in this bacterium. Rhodobacter
capsulatus expresses three thioredoxin proteins, TrxA1, TrxA2, and TrxC, two of which,
TrxA1 and TrxA2, are not regulated by SqrR [11]. These three thioredoxins harbor the
canonical WCGPC active site [28], whereas SaTrxP harbors a WCPDC active site [15].
Moreover, RcTrxA1 and A2, RcTrxC, and SaTrxP form phylogenetically different clades
(Figure 4). Given that R. capsulatus does not harbor a SaTrxP homolog, TrxC is probably the
primary regulator maintaining polysulfide homeostasis in the SqrR-mediated polysulfide
response in this bacterium.

Studies of the functions of TrxA and TrxC in the oxidative stress response in E. coli
revealed that these two thioredoxins exhibit equivalent functions in most oxidative stress
responses, although their mechanisms of transcriptional regulation differ [29,30]. Thiore-
doxins play important roles in not only the oxidative stress response [31] but also the
oxygen-dependent regulation of photosynthesis genes in R. capsulatus and the phyloge-
netically closely related bacterium R. sphaeroides [32,33]. In contrast, TrxA and TrxC exert
opposite effects in the regulation of photosynthetic gene expression, because reduced TrxA
and oxidized TrxC exert positive and negative effects, respectively, on the DNA supercoil-
ing activity of DNA gyrase. Although TrxC is a thioredoxin secondary to TrxA in bacteria,
deletion of trxC clearly suppressed the reduction in the transcript at a longer time point
(Figure 3), implying that TrxC functions at least as an SqrR-induced polysulfide homeostasis
system. Thus, although TrxA and TrxC play essentially redundant physiological roles, each
also exerts specific functions. Despite the functional differences between TrxC and TrxA
and the metabolic influence and degree to which TrxC is part of a regulatory cascade in
SqrR-mediated polysulfide-induced transcription (which are not yet fully understood),
the results of the present study expand understanding of the biological significance of the
bacterial thioredoxin system in polysulfide signaling.
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Figure 4. Phylogenic tree based on amino acid sequences of TrxA, TrxC, TrxP, TrxQ, and TrxB
homologs. Red and blue boxes indicate the genes of R. capsulatus and S. aureus, respectively.
Phylogenetic analysis was performed using the ClustalX [34] and MEGA [35] programs. The
tree was generated using the maximum parsimony method. The first two letters of the protein
name indicate the bacterium: Rc, Rhodobacter capsulatus; Sa, Staphylococcus aureus; Td, Thiobacil-
lus denitrificans; Ca, Comamonas aquatica; Av, Allochromatium vinosum; Ec, Escherichia coli; Rp,
Rhodopseudomonas palustris; At, Agrobacterium tumefaciens; Xf, Xylella fastidiosa. Sequences of TrxB
proteins were used as the outgroup. Accession numbers of each gene are as follows; EcTrxA
(WP_097403417), EcTrxB (WP_097680097), EcTrxC(WP_096099216), RcTrxA1(WP_013065783),
RcTrxA2(WP_013069030), RctrxB(WP_013068521), RcTrxC(WP_136904981), SaTrxA(WP_001018930),
Sa-TrxB(WP_000134958), SaTrxC(NGC70079), SaTrxP(WP_162635110), SaTrxQ(WP_117231667),
RpTrxA1(WP_011439531), RpTrxA2(WP_011500882), RpTrxB(WP_044414730), Rp-
TrxC(WP_107357355), AvTrxA1(WP_012969831), AvTrxA2(WP_200157501), AvTrxB(WP_012971465),
AvTrxC(WP_200157500), TdTrxA(WP_011310549), TdTrxB(WP_059756818), TdTrxC(WP_018078157),
CaTrxA1(WP_042416164), CaTrxA2(WP_043378462), CaTrxB(WP_219163860),
CaTrxC(WP_042417992), AtTrxA1(WP_042615683), AtTrxA2(WP_112358989), AtTrxB(WP_112360347),
AtTrxC(QCM14208), XfTrxA(WP_004084795), XfTrxB(WP_004089132).

5. Conclusions

Our data suggest that TrxC functions as an “off-switch” to restore SqrR-mediated
transcriptional repression. Although TrxC appears to reduce the polysulfidation of thiol
residues in SqrR, details regarding the molecular kinetics of this depersulfidation process
remain unclear. However, our discovery of TrxC as a novel mediator of polysulfide
signaling should facilitate further elucidation of the entire regulatory network in this model
(poly)sulfide-responsive bacterium.
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