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Abstract: Prognostic analysis for patient survival often employs gene expressions obtained from high-
throughput screening for tumor tissues from patients. When dealing with survival data, a dependent
censoring phenomenon arises, and thus the traditional Cox model may not correctly identify the effect
of each gene. A copula-based gene selection model can effectively adjust for dependent censoring,
yielding a multi-gene predictor for survival prognosis. However, methods to assess the impact of
various types of dependent censoring on the multi-gene predictor have not been developed. In this
article, we propose a sensitivity analysis method using the copula-graphic estimator under dependent
censoring, and implement relevant methods in the R package “compound.Cox”. The purpose of
the proposed method is to investigate the sensitivity of the multi-gene predictor to a variety of
dependent censoring mechanisms. In order to make the proposed sensitivity analysis practical, we
develop a web application. We apply the proposed method and the web application to a lung cancer
dataset. We provide a template file so that developers can modify the template to establish their own
web applications.

Keywords: copula; Cox regression; dependent censoring; gene expression; high-dimensional data;
Kendall’s tau; lung cancer; prognostic prediction; survival analysis; survival prediction

1. Introduction

Prognostic analysis for survival often employs gene expressions obtained from high-
throughput screening for tumor tissues from patients [1–6]. Here, the primary interest is
often to find a set of genes that are strong predictors of survival. The simplest and yet
most commonly used approach is to select a small number of significant genes found in a
sequence of univariate Cox models fitted to patients’ survival data [5–9].

A linear predictor using multiple genes has been shown to be useful for survival
prediction. Usually, a multi-gene predictor is more accurate than a single-gene predictor as
the prognostic ability of a single gene is limited. A predictor optimally constructed from the
selected genes becomes a useful biomarker for predicting survival in breast cancer [10–15],
lung cancer [6–9,16,17], gastric cancer [18,19], ovarian cancer [20–24], skin cancer [25], liver
cancer [26,27], bladder cancer [28], head and neck cancer [29,30], glioma [31], myelopro-
liferative neoplasms [32], kidney cancer [33], and cancers of mixed types [34,35]. These
analyses were performed mostly based on univariate Cox regression with the significance
scaling of p-values, such as 0.05, 0.01, and 0.001, followed by cross-validation and/or
external validation. The primary reason for applying Cox regression is that it can easily
handle censored survival times, i.e., survival time may not be observable for all patients
under investigation.

However, Cox regression critically relies on the independent censoring assumption: sur-
vival time and censoring time need to be statistically independent. This assumption is
easily violated when patients drop out from the study due to the worsening of his/her
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health condition or patients are removed for transplantation [36,37]. Dependent censoring
also arises due to unobserved factor [38–41]. In such cases, survival time is censored
dependently on their health status. If the independent censoring assumption is violated,
Cox regression analyses may not correctly identify the effect of each gene and thus may
fail to select truly effective genes [41]. Therefore, the resultant predictor based on selected
genes may have reduced ability to predict survival.

A copula-based gene selection approach [41] can effectively adjust for dependent
censoring, yielding a multi-gene predictor. Besides the development of a multi-gene
predictor, copula-based dependent censoring models have gained popularity in recent
years for dealing with survival data [42–50]. However, methods to assess the impact of
various types of dependent censoring on the multi-gene predictor have not been devel-
oped. In this article, we propose a sensitivity analysis method using the copula-graphic
estimator [47,51–56] under dependent censoring, and implement relevant methods in
the R package compound.Cox [9]. While the CG estimator has mostly been discussed for
estimation of survival functions, its adaptation to the context of survival prognostic pre-
diction remains unclear. This article aims to fill this gap by proposing detailed statistical
methodologies; see Section 3 for details.

Another important goal of this article is to establish a Shiny-based web application (in
Section 4) that can be manipulated by any user online without installing any software. This
effectively connects the development of a sensitivity analysis and its implementation in
order to carry out a patient’s prognosis. The application is written by R packages Shiny [57]
and compound.Cox [9]. While this application is developed using data on lung cancer
patients, the computational framework can be extended to other survival data from other
patients. We provide the R code in Supplementary Materials so that users can easily edit
the code to be adapted to their own data analyses.

The article is constructed as follows: Section 2 reviews the backgrounds of this research.
Section 3 introduces the proposed sensitivity analysis method. Section 4 describes the
development of the software and web application. Section 5 provides the results of applying
the proposed method to the lung cancer data. Section 6 concludes with discussion.

2. Backgrounds

In this section, we shall first review gene selection methods [1,9,41] based on survival
data. Gene selection is a required step before building a prognostic prediction method.
Next, we shall review prognostic prediction methods based on selected genes.

We define basic notations as follows: Ti is survival time and xi = (xi1, . . . , xip)
′

is
a p-vector of genes from individuals i = 1, 2, . . . , n. The conditional survival function
given xi is denoted by S(t|xi) = P(Ti > t|xi), and the conditional hazard function given xi
is defined by h(t|xi) = [−dS(t|xi)/dt]/S(t|xi). Similarly, h(t

∣∣xij) denotes the conditional
hazard function given the j-th gene xij.

2.1. Classical Gene Selection Method

The approach called univariate selection [1,9] is performed as follows: In the initial step,
a significance of each gene is examined by univariate Cox regression one-by-one. Then, a
subset of significant genes is selected with a p-value threshold, such as 0.05, 0.01, and 0.001.
This is the most standard approach for gene selection in medical research.

In the univariate selection, a significance of gene xij on survival time Ti is measured
by fitting a Cox proportional hazards model [58] given by

h
(
t
∣∣xij
)
= h0j(t)e

β jxij , j = 1, . . . , p (1)

for each gene j. Here, the parameter β j measures the association between survival and
the gene, and the baseline hazard function h0j(.) is a nuisance parameter. Cox’s partial
likelihood estimator [58], denoted by β̂ j, is used to obtain the p-value for the Wald test
for H0j : β j = 0 vs. H1j : β j 6= 0 without specifying h0j(.). One selects genes that exhibit
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smaller p-values than a threshold value. While the Cox’s approach is simple and widely
accepted, the validity of the gene selection method relies on an important assumption.

To describe the assumption for censoring mechanisms, we define Ui as random censor-
ing time. The (training) samples consist of (ti, δi, xi), i = 1, 2, . . . , n, where ti = min(Ti, Ui)
and δi = 1{Ti ≤ Ui}, where 1{·} is the indicator function. The samples are often referred to
as training samples since they are used to train the model (1). For the estimator β̂ j to capture
the true β j in Equation (1), one needs to impose the following assumption [37,41]:

Independent censoring assumption: Survival time and censoring time are independent
conditionally on xij. That is,

P(Ti > t, Ui > u
∣∣xij) = P(Ti > t

∣∣xij)× P(Ui > u
∣∣xij), i = 1, 2, . . . , n; j = 1, . . . , p

If this assumption is violated, Cox’s estimator β̂ j is biased for the true value of β j [37,41].
This assumption is violated when Ui is dropout time from the study due to the worsening
of his/her health status or Ui is time at removal for transplantation [36,37].

2.2. Copula-Based Gene Selection Method

Copulas provide a general model to relax the assumption of independent censoring.
Copula-based dependent censoring models have gained popularity in recent years for
dealing with survival data [41–50,55,56]. For the purpose of gene selection, [41] introduced
the following copula model:

P(Ti > t, Ui > u
∣∣xij) = Cα

(
P(Ti > t

∣∣xij), P(Ui > u
∣∣xij)

)
, i = 1, 2, . . . , n; j = 1, . . . , p (2)

where Cα is a copula [59] with a parameter α that specifies the strength of dependence.
The copula model (2) can specify a variety of dependent censoring structures. For

implementation, a copula with a simple form, such as the Clayton, Gumbel, or Frank
copula, is suggested. Furthermore, a copula is better parameterized so that α = 0 gives the
independence copula Cα=0(v, w) = vw. An example is the Clayton copula of the form

Cα(v, w) = (v−α + w−α − 1)−
1
α , 0 < v, w < 1, α > 0

This copula accommodates the independence copula as its limiting case by
Cα(v, w)→ vw as α→ 0 . As the value of α departs from zero, the level of dependence in-
creases. To measure the degree of dependence, it is convenient to use Kendall’s tau, defined
as τ = α/(α + 2) under the Clayton copula. The value of τ ranges from independence
(τ = 0) to perfect positive dependence (τ = 1). While the Clayton copula permits only
positive dependence, other copulas (e.g., the Frank copula) give negative dependence.

Under the Clayton copula model, a significance of gene xij on survival time Ti is
measured by fitting the Cox model (1), namely,

P
(
Ti > t

∣∣xij
)
= S

(
t
∣∣xij
)
= exp

(
−
∫ t

0
h0j(u)e

β jxij du
)

.

Here, β j measures the association between survival and a gene. The significance of
a gene is measured by the estimator proposed by [41], denoted as β̂ j(α). Accordingly, a
subset of significant genes is constructed via a p-value threshold for testing H0j : β j = 0
vs. H1j : β j 6= 0. The value of α can be estimated by α̂ that maximizes the cross-validated
c-index [37,41]. The computation is implemented by the R package, compound.Cox [9], and
explained by the book [37].

2.3. Prognostic Prediction Method

Once genes are selected based on survival data, one often wishes to assess their
prognostic ability for future patients. In many cases, the metric of interest is the ability
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of the genes to separate good and poor prognosis groups. For this purpose, researchers
typically use a multi-gene predictor, defined as a weighted sum of gene expressions [1,5–9].

To formulate a multi-gene predictor, suppose that q (< p) selected genes are measured
for a future patient for a prognostic prediction purpose, denoted as

(
x1, . . . , xq

)
. Survival

prediction can be formulated by the prognostic index { XE “prognostic index:prognostic
index”}(PI) defined as

PI(α̂) = β̂1(α̂)x1 + · · ·+ β̂q(α̂)xq.

The PI is a weighted sum of genes whose weights reflect the degree of univariate
association. A high (low) value of the PI gives a high (low) risk of death. Thus, a patient
may be classified into either a low-risk group or a high-risk group using a cut-off value
(e.g., the median of the PI values calculated from the training samples).

If α = 0 were assumed in PI(α), the PI would be the classical predictor based on
univariate Cox regression under the independent censoring assumption [1,5–9]. As the
value of α is estimated by maximizing the cross-validated c-index [37,41], the resultant PI(α̂)
may have an improved predictive ability over the traditional PI. In medical research, it is
the standard to display two Kaplan–Meier (KM) estimates for survival functions calculated
for the two groups to see if there is a clear separation between them. However, if dependent
censoring exists in test samples, the KM estimators are biased [52]. Therefore, we shall
propose a method to examine a sensitivity of the PI to dependent censoring.

3. Proposed Methods

In this section, we propose a sensitivity analysis method using the CG estimator to
assess the impact of dependent censoring on survival prognostic prediction.

This section deals with test samples that are different from the training samples used to
select genes and develop the PI (Section 2). In our proposed method, the primary role of
the test samples is to examine the sensitivity of the prognostic ability of the PI to dependent
censoring. In many medical studies, random multiple splits for training/test sets are
applied to develop and validate a PI. However, the goal of the proposed sensitivity analysis
is different. A sensitivity analysis is performed to examine the potential effect of dependent
censoring that may be present in the test samples.

Define Ti as survival time, Ui as censoring time, and
(
xi1, . . . , xiq

)
as a q-vector

of genes from individuals i = 1, 2, . . . , n in the test samples. The test samples
consist of (ti, δi, xi), i = 1, 2, . . . , n, where ti = min(Ti, Ui) and δi = 1{Ti ≤ Ui},
where the sample size n is possibly different from the size of the training samples. Let
PIi(α̂) = β̂1(α̂)xi1 + · · ·+ β̂q(α̂)xiq be the PI for the i-th patient in the test samples, where
β̂ j(α̂) is computed by the training samples (Section 2.2).

Figure 1 shows how the PI is applied to classify patients into a high-risk (low-risk)
group if his/her PI is greater (less) than a cut-off value c. Concretely, {i; PIi(α̂) ≤ c}
is a good prognosis (low-risk) group, and {i; PIi(α̂) > c} is a poor prognosis (high-
risk) group. If the classification is successful, the conditional survival function
SGood(t|c) = P(Ti > t |PI i(α̂) ≤ c) is higher than the conditional survival function
SPoor(t|c) = P(Ti > t |PI i(α̂) > c) , namely, SGood(t|c) > SPoor(t|c) .

The cut-off value c may be chosen to be the 50th percentile (median) of the PIs that
are computed by the training samples. The median was chosen to ensure a desirable
statistical power to detect the difference of the two groups and to achieve robust groupings
by eliminating the instability due to unevenly allocated sample sizes. Additionally, this
rule has been commonly employed in the analysis of survival prognostic prediction with a
multi-gene predictor [6,20,25,26].

3.1. Sensitivity Analysis via the Copula-Graphic Estimator

This section describes the proposed method of assessing the sensitivity of the PI by
using the CG estimator.
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Figure 1. Good and poor prognosis group separated by the PI applied for the testing sample
of size n. Concretely, {i; PIi(α̂) ≤ c} is a good prognosis (low-risk) group, and {i; PIi(α̂) > c} is
a poor prognosis (high-risk) group. If the classification is successful, survival functions exhibit
SGood(t|c) > SPoor(t|c). The cut-off value c can be the median of the PI values calculated from the
training samples.

Let {i; PIi(α̂) ≤ c} be a good prognosis (low-risk) group, and {i; PIi(α̂) > c} be a poor
prognosis (high-risk) group, where c is a cut-off value. Let nGood = ∑n

i=1 1{PIi(α̂) ≤ c}
and nPoor = ∑n

i=1 1{PIi(α̂) > c} be the sizes of the groups. To assess the sensitivity of the
prognostic ability of the PI, one needs to understand how well the two survival probabilities
are differentiated between the two groups (Figure 1). Accordingly, one needs to estimate
two conditional survival functions:

SGood(t|c) = P(Ti > t |PI i(α̂) ≤ c)

SPoor(t|c) = P(Ti > t |PI i(α̂) > c)

We suggest estimating them by the CG estimator of [52] that adjusts for the effect
of dependent censoring { XE “Kendall’s tau:Kendall’s tau”}. In order to apply the CG
estimator, it is necessary to impose the following Archimedean copula models:

P(Ti > t, Ui > u |PI i(α̂) ≤ c) = φ−1
α [φα{SGood(t|c)}+ φα{P(Ui > u |PI i(α̂) ≤ c)}], (3)

P(Ti > t, Ui > u|PIi(α̂) > c) = φ−1
α [φα{SPoor(t|c)}+ φα{P(Ui > u|PIi(α̂) > c)}] (4)

where φα is a generator function that specifies the dependence structure. It is a continuous
and decreasing function such that φα(0) = ∞ and φα(1) = 0 [59]. The value of α in
Equations (3) and (4) can be chosen arbitrarily and can be different from the value α̂
estimated by the training samples.

If the models (3) and (4) are assumed, one can estimate SGood(t|c) and SPoor(t|c)
consistently by the following CG estimators:

ŜCG
Good(t|c, α) = φ−1

α

[
∑

i:ti≤t, δi=1, PIi≤c

{
φα

(
ȲGood(ti)− 1

nGood

)
− φα

(
YGood(ti)

nGood

)}]
,
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ŜCG
Poor(t|c, α) = φ−1

α

[
∑

i:ti≤t, δi=1, PIi>c

{
φα

(
YPoor(ti)− 1

nPoor

)
− φα

(
YPoor(ti)

nPoor

)}]
,

where YGood(u) = ∑n
i=1 1{ti ≥ u, PIi ≤ c} and YPoor(u) = ∑n

i=1 1{ti ≥ u, PIi > c} are the
numbers at risk at u.

Note that the CG estimator reduces to the KM estimator by φ0(t) = − log(t), and
hence, the resultant estimator reduces to the KM estimator, e.g.,

ŜKM
Good(t|c) = ∏

i:ti≤t, δj=1, PIi≤c

[
1− 1

YGood(ti)

]
.

For instance, for the Clayton copula, one has φα(t) = (t−α − 1)/α→ − log(t) with
α→ 0 . The copula generated by φ0(t) = − log(t) is the independence copula:

φ−1
0 [φ0(v) + φ0(w)}] = vw.

This means that the KM estimator is the CG estimator under the independent censoring
assumption.

To compute the CG estimators, a parametric form of the copula must be specified
(examples of parametric copulas will be shown in Section 3.2). That is, both the form
of φα(.) and the parameter value of α must be specified. However, both of them are
difficult to estimate with test samples since they provide modest information about the
copula [51,52,60].

Our strategy to tackle this difficulty is a sensitivity analysis that is performed under
a variety of copula models [52–56]. More precisely, we suggest plotting ŜCG

Good(t
∣∣c, α)

and ŜCG
Poor(t

∣∣c, α) for the three forms of φα(.) and many different parameter values of α. If
ŜCG

Good(t
∣∣c, α) and ŜCG

Poor(t
∣∣c, α) are clearly separated for a variety of φα(.) and α, we conclude

that the prognostic ability the PI is shown to be robust against dependent censoring. This
strategy is in line with previous sensitivity analyses [52–56], yet it is a new method in the
context of prognostic survival analysis.

An objective metric of “clear separation” between ŜCG
Good(t

∣∣c, α) and ŜCG
Poor(t

∣∣c, α) is
obtained via a significance test proposed by Emura and Chen [37,41]. Formally, one can
reject the null hypothesis H0 : SGood(t|c) = SPoor(t|c) against H1 : SGood(t|c) 6= SPoor(t|c)
for a large value of |D|, where

D =
1
τ

∫ τ

0
{ŜCG

Good(t|c, α)− ŜCG
Poor(t|c, α)}dt,

where τ = min
{

max PIi≤c(ti), max PIi>c(ti)
}

is the largest time point where survivors are
seen for both good and poor groups.

The p-value of the test is computed by ∑r 1{|Dr| > |D|}/N, where Dr is a random
permutation for D based on

{
(tr(i), δr(i), xi); i = 1, 2, . . . , n

}
for a random permutation

r : {1, 2, . . . , n} → {1, 2, . . . , n} . To stabilize, we suggest a large number, say N = 10, 000.
Note that τD is known as the restricted mean survival time difference (RMSTD).

The actual implementation of the proposed sensitivity analysis is technical. Thus, the
development of the software implementation and the online web application are desirable
for clinicians and patients to use. We leave this topic to Section 4. The following subsection
provides specific examples of parametric copulas that are currently implemented in our
developed R functions and web application.

3.2. Examples of Parametric Copulas

This subsection describes some examples of parametric copulas in order to perform a
sensitivity analysis.
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If the generator is φα(t) = (t−α − 1)/α for α > 0, it yields the Clayton copula

φ−1
α [φα(v) + φα(w)}] = (v−α + w−α − 1)−

1
α , 0 < v, w < 1, α > 0

Kendall’s tau for measuring dependency is given by α/(α + 2). The resultant Clayton
CG estimator is

ŜCG
Good(t|c, α) =

1− ∑
i:ti≤t, δi=1, PIi≤c


(

YGood(ti)− 1
nGood

)−α

−
(

YGood(ti)

nGood

)−α

− 1

α

.

If the generator is φα(t) = (− log t)α+1 for α ≥ 0, it yields the Gumbel copula

φ−1
α [φα(v) + φα(w)}] = exp

(
−
[
(− log v)α+1 + (− log w)α+1

] 1
α+1
)

, 0 < v, w < 1, α ≥ 0

Kendall’s tau for measuring dependency is given by α/(α + 1). The resultant Gumbel
CG estimator is

ŜCG
Good(t|c, α) = exp

−
 ∑

i:ti≤t, δi=1, PIi≤c


(
− log

(
YGood(ti)− 1

nGood

))α+1

−
(
− log

(
YGood(ti)

nGood

))α+1

 1

1+α

.

Finally, one can obtain the Frank CG estimator by the generator
φα(t) = − log

{(
e−αt − 1

)
/(e−α − 1)

}
, α 6= 0.

By letting α = 0 for the Gumbel copula, one has φα=0(t) = − log(t), and hence, the
resultant CG estimators reduce to the KM estimator, namely, ŜCG

Good(t|c, 0) = ŜKM
Good(t|c).

For the Clayton copula, one has φα(t) = (t−α − 1)/α→ − log(t) with α→ 0 . Hence,
ŜCG

Good(t|c, α)→ ŜKM
Good(t|c) as α→ 0 . The case of the Frank copula is similar.

4. Software and Web Application

This section describes the development of software to establish a Shiny-based web
application for the practical implementation of the proposed sensitivity analysis.

In order to implement the aforementioned sensitivity analyses (Section 3.1), we de-
veloped computational/graphical facilities for the CG estimators. First, we refined the
computational routines for the CG estimators in the R package compound.Cox [9]. The pack-
age now includes the functions CG.Clayton(.), CG.Frank(.), and CG.Gumbel(.), which can
compute the CG estimators under the three copulas. These functions compute the CG esti-
mators and graphically display the plot possibly colored by an option (the S.col option). This
is useful for visually distinguishing the good prognosis group (specify S.col=“blue”) and
poor prognosis group (specify S.col=“red”). Second, we devise a new function, CG.test(.),
for testing the prognostic difference for the good and poor prognosis groups based on the
difference statistic between two CG estimates. The p-value is computed by the permutation
test (Section 3.1). This is useful for objectively measuring the prognostic ability of the PI.
While N = 10, 000 is recommended, this number may be reduced to N = 200 to produce a
web application that works reasonably fast.

An example of the CG estimator under the Clayton copula is given in Figure 2. Users
may run the R code (upper-left panel) after installing the compound.Cox package. Then,
the plot of the CG estimates is displayed in the right panel. The numerical values of the
estimates (survival probabilities at ti) are shown in the lower-left panel. This example uses
data ti =1, 3, 5, 4, 7, 8, 10, 13; δi =1, 0, 0, 1, 0, 1, 0. The data are artificial data, which may
be regarded as patients from a good prognosis group (hence, we specify the S.col =“blue”
option to make the plot blue-colored). The Clayton copula’s parameter is specified as
α = 18 (Kendall’s tau is 0.9). If one specifies the copula parameter as α = 0, this yields the
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KM estimator. We see that the numerical results are identical to the results computed by
the survfit(.) function (lower-left panel).
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by data ti = 1, 3, 5, 4, 7, 8, 10, 13; δi = 1, 0, 0, 1, 0, 1, 0. The lower-left panel shows the numerical
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(lower-left panel).

An example for testing the difference for the good and poor prognosis is given in
Figure 3. This example uses prognostic indices PIi = 8, 7, 6, 5, 4, 3, 2, 1 to predict the
survival outcomes ti and δi already defined. The figure displays the plots of the Clayton
CG estimates that are separated between good and poor prognoses group. In addition, the
figure shows the p-value computed by the permutation test. More detailed results, such as
the difference (D) and the RMSTD (τD), are given in the left panel.

While we developed the infrastructures of the computational/graphical facilities for
the CG estimators, the actual implementation of the sensitivity analysis is still complex.
This is because the sensitivity analysis requires the understanding of the R programming
and the proposed methods of Section 3. To further make our methodologies accessible
to users, we propose a method to produce an interactive web application that can be
manipulated by users with minimal knowledge (e.g., clinicians and patients).

We suggest an R package Shiny to make an online web application that can display
the plots of ŜCG

Good(t|c, α) and ŜCG
Poor(t|c, α) given a user-specified form of φα(.) and a value

of α. With Shiny, one can easily convert R programs into a web application. This process
can be carried out by creating the “app.R” file, a program file written in the R language.
We develop a template file (available in Supplementary Materials) so that developers can
modify the template for their own prediction settings. Once the template is appropriately
tuned by developers, the web application is immediately built and can be made publicly
available through a platform shinyapps.io (https://www.shinyapps.io/ (accessed on 10

https://www.shinyapps.io/
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January 2023). A concrete implementation of the web application shall be described in the
next section.

Biomedicines 2023, 11, x FOR PEER REVIEW 9 of 16 
 

 
Figure 3. The R console showing the test results for the difference for the good and poor prognoses. 
The right panel gives the plots of the Clayton CG estimates computed by data 𝑡 = 1, 3, 5, 4, 7, 8, 
10, 13; 𝛿 = 1, 0, 0, 1, 0, 1, 0; PI = 8, 7, 6, 5, 4, 3, 2, 1. The Clayton copula’s parameter is specified 
as 𝛼 = 18. More detailed results, such as the difference (𝐷) and the RMSTD (𝜏𝐷), are given in the 
left panel. 

While we developed the infrastructures of the computational/graphical facilities for 
the CG estimators, the actual implementation of the sensitivity analysis is still complex. 
This is because the sensitivity analysis requires the understanding of the R programming 
and the proposed methods of Section 3. To further make our methodologies accessible to 
users, we propose a method to produce an interactive web application that can be manip-
ulated by users with minimal knowledge (e.g., clinicians and patients). 

We suggest an R package Shiny to make an online web application that can display 
the plots of 𝑆መୋ୭୭ୢେୋ (𝑡|𝑐, 𝛼) and 𝑆መ୭୭୰େୋ (𝑡|𝑐, 𝛼) given a user-specified form of 𝜙ఈ(. ) and a 
value of 𝛼. With Shiny, one can easily convert R programs into a web application. This 
process can be carried out by creating the “app.R” file, a program file written in the R 
language. We develop a template file (available in Supplementary Materials) so that de-
velopers can modify the template for their own prediction settings. Once the template is 
appropriately tuned by developers, the web application is immediately built and can be 
made publicly available through a platform shinyapps.io (https://www.shinyapps.io/ (ac-
cessed on 10 January 2023). A concrete implementation of the web application shall be 
described in the next section. 

5. Results 
The purpose of this section is to demonstrate the proposed methods of Section 3 by 

using the lung cancer data originally reported in [6] and now available in the Lung object 
in the compound.Cox package [9]. We first introduce the dataset. 

5.1. Lung Cancer Data 
Briefly, the Lung data are a survival dataset containing 𝑛 = 63 training samples and 𝑛 = 62 test samples of 125 surgically treated non-small-cell lung cancer patients [6]. The 

endpoint of interest is overall survival , i.e., months from surgery to death. Overall 

Figure 3. The R console showing the test results for the difference for the good and poor prognoses.
The right panel gives the plots of the Clayton CG estimates computed by data ti = 1, 3, 5, 4, 7, 8, 10,
13; δi = 1, 0, 0, 1, 0, 1, 0; PIi = 8, 7, 6, 5, 4, 3, 2, 1. The Clayton copula’s parameter is specified as α = 18.
More detailed results, such as the difference (D) and the RMSTD (τD), are given in the left panel.

5. Results

The purpose of this section is to demonstrate the proposed methods of Section 3 by
using the lung cancer data originally reported in [6] and now available in the Lung object in
the compound.Cox package [9]. We first introduce the dataset.

5.1. Lung Cancer Data

Briefly, the Lung data are a survival dataset containing n = 63 training samples and
n = 62 test samples of 125 surgically treated non-small-cell lung cancer patients [6]. The
endpoint of interest is overall survival { XE “overall survival:overall ”}, i.e., months from
surgery to death. Overall survival time and censoring status (death or alive) were recorded.
Additionally, available are high-dimensional gene expressions that may predict survival.
All the gene expressions were coded as 1, 2, 3, or 4 according to the quartile levels following
the original study [6].

In the following analysis, we selected the 16 genes and then constructed the multi-
gene predictor as described in Sections 2.2 and 2.3 (also reported in [37,41]). The resultant
predictor takes the form PIi(α̂) = β̂1(α̂)xi,1 + · · ·+ β̂16(α̂)xi,16 for the i-th patient in the
test samples, where β̂ j(α̂) is computed by the training samples given the copula parameter
α̂ = 18 (Kendall’s tau = 0.90), where (x1, · · · , x16) are gene expression{ XE “gene expres-
sion:gene expression ”}s taking values 1, 2, 3, and 4. In terms of gene symbols, the 16-gene
predictor is

PI = (0.51 ×MMP16) + (0.51 × ZNF264) + (0.50 × HGF) + (−0.49 × HCK) + (0.47 × NF1) + (0.46 × ERBB3)
+ (0.57 × NR2F6) + (0.77 × AXL) + (0.51 × CDC23) + (0.92 × DLG2) + (−0.34 × IGF2) + (0.54 × RBBP6)

+ (0.51 × COX11) + (0.40 × DUSP6) + (−0.37 × ENG) + (−0.41 × IHPK1).
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In order to examine the sensitivity of the PI under a variety of dependent censoring
scenarios, we shall apply the proposed sensitivity analysis methods.

5.2. Sensitivity Analysis via the Web App

As prescribed in Section 3, we formed a good prognosis group {i; PIi(α̂) ≤ c} and
a poor prognosis group {i; PIi(α̂) > c}, where the cut-off value c was set to be the 50th
percentile (median) of the PIs in the training samples (as we proposed in Section 3). The
test samples were then separated into two groups. Then, we evaluated the prognostic
performance of the PI by displaying the estimated survival functions ŜCG

Good(t|c, α) and
ŜCG

Poor(t|c, α) given a copula and a value of α.
We constructed a web application (Figure 4) by the methods of Section 4. The in-

teractive web version is available in https://takeshi.shinyapps.io/lung/ (accessed on 10
January 2023). The main goal of this web application is to visualize how the two prognosis
groups are separated by the PI for a user-specified choice of copulas and any value of α.
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Figure 4. The web application for the sensitivity analysis based on the lung cancer data. The
interactive web version is available in https://takeshi.shinyapps.io/lung/ (accessed on 10 January
2023). The main goal of this web application is to visualize how the two prognosis groups are
separated by the 16-gene PI for a user-specified choice of φα(.) (copula) and any value of α (copula
parameter).

Using this web application, we tried the Clayton, Gumbel, and Frank copulas under
several values of α. For the Clayton copula and α = 2, one can see a good separation
between the plots of ŜCG

Good(t|c, α) and ŜCG
Poor(t|c, α) as shown in the right panel of Figure 4;

one can also see the p-value (=0.04 based on N = 200 permutations).
Table 1 summarizes the p-values under the three copulas with selected values of

α whose Kendall’s measures of correlation (tau) take −0.75, −0.46, 0, 0.33, 0.46, 0.50,
and 0.75. The p-values were obtained based on N = 10,000 permutations (by setting
the left panel of Figure 4). One can observe that the p-values obtained are less than or
around 0.05 for positive dependence (Kendall’s tau = 0.75 or 0.50), while they are greater
than 0.10 for negative dependence and independence (tau = −0.75, −0.46, 0). Therefore,

https://takeshi.shinyapps.io/lung/
https://takeshi.shinyapps.io/lung/
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the PI would lose the ability of prognostic prediction when censoring in the test data is
negatively dependent on survival. Therefore, our analysis reveals a potential drawback
for the PI developed by Emura and Chen [41] when negatively dependent censoring
arises. On the other hand, the PI gains its improved prognostic ability when censoring is
positively dependent on survival. The p-value reaches nearly 1% level for strongly positive
dependence (tau = 0.88 or 0.91). This is reasonable since the PI is developed under the
Clayton copula with strongly positive dependence (α̂ = 18, tau = 0.90).

Table 1. p-values for testing the difference of survival prognosis (good vs. poor) under the three
copulas with selected values of α (Kendall’s tau takes −0.75, −0.46, 0, 0.33, 0.46, 0.50, 0.75).

Prognostic Index (PI)

Emura and Chen [41] Chen et al. [6]

Clayton copula α = 1 (tau = 0.33) 0.065 0.036
α = 2 (tau = 0.50) 0.036 0.036
α = 4 (tau = 0.75) 0.021 0.036

α = 15 (tau = 0.88) 0.011 0.029

Gumbel copula α = 0 (tau = 0.00) 0.171 0.040
α = 1 (tau = 0.50) 0.058 0.029
α = 2 (tau = 0.75) 0.028 0.029

α = 10 (tau = 0.91) 0.011 0.025

Frank copula α = −14 (tau = −0.75) 0.360 0.059
α = −5 (tau = −0.46) 0.307 0.054

α = 5 (tau = 0.46) 0.054 0.034
α = 14 (tau = 0.75) 0.018 0.032

Notes: The PI is either 16-gene PI of Emura and Chen [41] or the 16-gene PI of Chen et al. [6]. The p-value is
obtained by N = 10,000 permutations.

Recall that the cut-off value c was set to be the median of PIi(α̂)’s. If we change
the cut-off value to be the first or third quartile (25% or 75% points) of PIi(α̂)’s, then the
separation between the plots of ŜCG

Good(t|c, α) and ŜCG
Poor(t|c, α) is not clear. This confirms our

suggestion to apply the median as the cut-off value.

5.3. Comparison with the 16-Gene Pedictor Developed by Chen et al. [6]

The proposed sensitivity analysis is useful for any type of established predictor,
not restricted to the predictor developed by the copula-based gene selection method.
Furthermore, the proposed web application allows one to compare different predictors in
a user-friendly manner. In order to demonstrate this feature, we performed a sensitivity
analysis for the PI based on Chen et al. [6] defined as

PI = (−1.09 × ANXA5) + (1.32 × DLG2) + (0.55 × ZNF264) + (0.75 × DUSP6) + (0.59 × CPEB4) +
(−0.84 × LCK) + (−0.58 × STAT1) + (0.65 × RNF4) + (0.52 × IRF4) + (0.58 × STAT2) + (0.51 × HGF) +

(0.55 × ERBB3) + (0.47 × NF1) + (−0.77 × FRAP1) + (0.92 ×MMD) + (0.52 × HMMR).

Table 1 shows the p-values testing the difference of survival prognosis (good vs.
poor) made by the PI. We observe that the p-values are mostly less than 0.05 for the three
copulas with selected values of α (Kendall’s tau takes −0.75, −0.46, 0, 0.33, 0.46, 0.50, 0.75).
Therefore, the predictive ability of the PI is justified for a variety of dependent censoring
models. This extremely confirms the validity and robustness of the PI developed by Chen
et al. [6], even though they are developed under the independent censoring model. On the
other hand, the ability of the PI under strong positive dependence is reduced compared
to the PI developed by Emura and Chen [41]. If strong positive dependence exists in the
test samples, the latter PI better prognosticates survival. However, we do not suggest
determining the single best copula and the single value of α in the sensitivity analysis
based on the CG estimators [52–56]. Instead, we suggest tying different copulas and their
parameters to understand the sensitivity of the PI.
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6. Conclusions and Discussion

In this article, we propose a novel sensitivity analysis method for a multi-gene predic-
tor for survival. The primary tool for the proposed method is the CG estimator [52], which
can effectively adjust for the impact of dependent censoring on survival data. Consequently,
a unique feature of the proposed method is the ability to handle dependent censoring,
which has been of increasing concern to medical statisticians in a variety of survival analy-
sis methods [41–56]. The lung cancer data analysis demonstrates the implementation of
the proposed method on a web application (Figure 4; https://takeshi.shinyapps.io/lung/
(accessed on 10 January 2023)). A user of this application can easily perform a sensitivity
analysis on survival prognostic models using a smartphone.

From a methodological point of view, the proposed method is a novel implementation
of the CG estimator [52] to the context of prognostic prediction. So far, the CG estimator has
been applied to a single population setting [44,51–54], two-sample comparison [55], simple
regression [43], multiple regression [60,61], factorial designs [56], and survival forests [47].
The objective of survival forests is to classify patients into several groups, which is similar
to the goal of the proposed method. The difference is that survival forests use a decision tree
while ours uses a multi-gene predictor. However, survival forests have not been adapted
to deal with high-dimensional gene expressions. Hence, it is of great interest to extend
survival forests to handle both dependent censoring and high-dimensional covariates as in
a survival tree [62].

In this article, we employed the R package Shiny to transfer our sensitivity analysis
formulas to a user-friendly web application. Some authors have used the Shiny package
in other contexts. A series of works by Fournier et al. [63], Asar et al. [64], and Lenain
et al. [65] made a Shiny-based web application for the dynamic prediction of long-term
kidney graft failure. Similarly, the dynamic prediction method of Emura et al. [21] (see also
the updated works of [66]) was transferred to web applications [67]. Clearly, this type of
survival prognostic prediction tool can promote the development of personalized medicine,
allowing clinicians to utilize powerful prognostic prediction models.

We note that the issue of dependent censoring in survival prognostic prediction is not
restricted to medical research, which can be seen in the reliability analysis of mechanical
items or systems [68–73]. In the reliability prediction of mechanical equipment, the survival
probability is usually modeled by parametric distributions, such as the Weibull distribution.
The analysis of a prognostic prediction model in engineering settings poses additional
challenges tailored to parametric analyses. Recall that the CG estimator is a semiparametric
estimator that does not assume any parametric form of the survival function. The semipara-
metric CG estimator [52] is not easily modified to parametric models since the estimator
may require some numerical integrations.

We focus on the three Archimedean copulas: the Clayton, Gumbel, and Frank copulas,
which have been extensively used in survival analysis [74–78] and other fields [79–81].
Owing to their remarkable popularity, our choices of copulas are natural. Furthermore,
these Archimedean copulas allow simple formulas to compute the CG estimators [52].
However, there are a large number of non-Archimedean copulas popular in a variety
of applications, such as the FGM copula, Gaussian copula, trigonometric copula, and
Celebioglu–Cuadras copula [82–87]. As the CG estimators have not been considered for
these non-Archimedean copulas, it is of great interest to develop computational tools
for them.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biomedicines11030797/s1, the “app.R” file, a program file written
in the R language. Readers may run this program (after installing the Shiny R package) to see how
our web application was created.
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