Skip to main content
. 2023 Mar 16;10(3):364. doi: 10.3390/bioengineering10030364

Table 3.

Non-i.i.d. performance for 12 fastMRI clients. The average loss values over entire validation dataset are shown for the structural similarity index measure (SSIM) and normalized root mean squared error (NRMSE). The best performance (highest SSIM, lowest NRMSE) is shown in bold font. For all sites, adaptive algorithms have the best performance.

Algorithm Site 1 Site 2 Site 3 Site 4 Site 5 Site 6
SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE
FedAvg 0.767 0.142 0.653 0.229 0.824 0.111 0.844 0.089 0.919 0.107 0.900 0.109
FedAdam 0.768 0.142 0.677 0.183 0.821 0.117 0.845 0.093 0.928 0.096 0.901 0.104
FedYogi 0.770 0.140 0.675 0.192 0.826 0.105 0.848 0.090 0.922 0.102 0.900 0.106
FedAdaGrad 0.766 0.144 0.675 0.190 0.826 0.113 0.846 0.092 0.919 0.109 0.898 0.109
Scaffold 0.771 0.134 0.680 0.166 0.838 0.098 0.848 0.083 0.929 0.098 0.902 0.107
FL-MRCM 0.609 0.208 0.458 0.230 0.670 0.193 0.682 0.185 0.806 0.266 0.761 0.294
Centralized 0.762 0.142 0.674 0.172 0.824 0.118 0.836 0.095 0.917 0.116 0.892 0.127
Algorithm Site 7 Site 8 Site 9 Site 10 Site 11 Site 12
SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE SSIM NRMSE
FedAvg 0.872 0.098 0.803 0.146 0.920 0.086 0.925 0.106 0.851 0.106 0.905 0.113
FedAdam 0.874 0.097 0.814 0.133 0.926 0.079 0.928 0.100 0.853 0.105 0.904 0.108
FedYogi 0.874 0.097 0.815 0.129 0.926 0.079 0.929 0.098 0.856 0.100 0.906 0.108
FedAdaGrad 0.873 0.097 0.811 0.137 0.924 0.082 0.929 0.105 0.854 0.103 0.903 0.111
Scaffold 0.872 0.097 0.812 0.131 0.927 0.082 0.929 0.102 0.859 0.098 0.903 0.112
FL-MRCM 0.568 0.278 0.521 0.258 0.757 0.370 0.749 0.293 0.743 0.211 0.738 0.284
Centralized 0.863 0.107 0.800 0.145 0.920 0.097 0.920 0.121 0.852 0.107 0.897 0.134