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Abstract: Background: The aim of this study is to investigate the feasibility of amide proton transfer-
weighted (APTw) imaging combined with ZOOMit diffusion kurtosis imaging (DKI) in predicting
lymph node metastasis (LNM) in cervical cancer (CC). Materials and Methods: Sixty-one participants
with pathologically confirmed CC were included in this retrospective study. The APTw MRI and
ZOOMit diffusion-weighted imaging (DWI) were acquired. The mean values of APTw and DKI
parameters including mean kurtosis (MK) and mean diffusivity (MD) of the primary tumors were
calculated. The parameters were compared between the LNM and non-LNM groups using the
Student’s t-test or Mann–Whitney U test. Binary logistic regression analysis was performed to
determine the association between the LNM status and the risk factors. The diagnostic performance
of these quantitative parameters and their combinations for predicting the LNM was assessed with
receiver operating characteristic (ROC) curve analysis. Results: Patients were divided into the LNM
group (n = 17) and the non-LNM group (n = 44). The LNM group presented significantly higher
APTw (3.7 ± 1.1% vs. 2.4 ± 1.0%, p < 0.001), MK (1.065 ± 0.185 vs. 0.909 ± 0.189, p = 0.005) and lower
MD (0.989 ± 0.195 × 10−3 mm2/s vs. 1.193 ± 0.337 ×10−3 mm2/s, p = 0.035) than the non-LNM
group. APTw was an independent predictor (OR = 3.115, p = 0.039) for evaluating the lymph node
status through multivariate analysis. The area under the curve (AUC) of APTw (0.807) was higher
than those of MK (AUC, 0.715) and MD (AUC, 0.675) for discriminating LNM from non-LNM, but
the differences were not significant (all p > 0.05). Moreover, the combination of APTw, MK, and MD
yielded the highest AUC (0.864), with the corresponding sensitivity of 76.5% and specificity of 88.6%.
Conclusion: APTw and ZOOMit DKI parameters may serve as potential noninvasive biomarkers in
predicting LNM of CC.

Keywords: amide proton transfer-weighted imaging; diffusion kurtosis imaging; lymph node metas-
tasis; cervical cancer

1. Introduction

Cervical cancer (CC) ranks as the most common gynecologic malignant cancer and one
of the leading causes of cancer-specific death in women globally [1]. Lymph node metastasis
(LNM) is a major prognostic indicator and an important determinant in treatment options
in patients with CC [2]. For patients with early-stage CC (IA, IB1, IB2, and IIA1), radical
hysterectomy with lymphadenectomy is commonly recommended [3]. Approximately
8–26% of patients with early stage cancer exhibit pathological LNM and require further
postoperative chemo-radiotherapy [4]. If lymph node status is accurately diagnosed,
patients can be managed medically, avoiding unnecessary invasive surgery [4].
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MRI has been established as the main imaging modality in pre-treatment assessment
of LNM in patients with CC [5]. The application of the conventional MRI sequences, which
are mainly based on morphologic features, is still challenging due to their low sensitivity
(29–69%) for assessing the presence of LNM [6,7]. Diffusion-weighted imaging (DWI) has
been successfully introduced as a non-invasive technique to reveal tissue microstructural
changes in vivo [8]. ZOOMit DWI applies echo-planar imaging and another parallel ra-
diofrequency pulse sequence to obtain a zoomed field-of-view (FOV) that only covers the
region of interest (ROI) and consequently reduces geometric distortion and susceptibility
artifacts, which allows for better image quality and more anatomical detail [9]. ADC is a
quantitative biomarker that has been widely utilized in oncologic applications. However,
no single ADC value has been established as an indicator of lymph node positivity in
CC [10]. The non-Gaussian diffusion model—diffusion kurtosis imaging (DKI)—has the po-
tential in quantifying the microstructural heterogeneity of tissues [11,12]. Several previous
studies indicated that the DKI-derived parameters were able to estimate the histological
features and predict the curative response of CC [13–15]. It has been reported that tumors
with higher heterogeneity are more prone to lymph node metastasis, suggesting that DKI
may be useful in predicting the LNM based on the primary tumors.

Furthermore, chemical exchange saturation transfer (CEST) imaging provides more
metabolic information than the changes of tissue microstructure [16]. Amide proton transfer-
weighted (APTw) MRI, a subtype of chemical exchange saturation transfer imaging, is a
molecular MRI technique that mainly explores the chemical transfer properties of amide
protons located at a chemical shift of 3.5 ppm [17]. The APT signal intensity (APT SI)
reflects the concentrations of mobile macromolecules, such as proteins and peptides. With
the ability to obtain biochemical information, APTw enables the exploration of tissue mi-
croenvironment noninvasively, and has gained increasing interest as a valuable adjunct to
conventional MRI [18]. Previous studies demonstrated that APTw MRI has been success-
fully applied to brain tumor [19], breast cancer [20], prostate cancer [21], rectal cancer [22],
bladder cancer [23], etc.

APTw and DKI offer the ability for visualizing the microenvironment and microstruc-
tural heterogeneity of tumor tissues, reportedly linked to tumor characteristics, thus with
the potential for predicting LNM. So far, few studies focused on estimating the presence of
LNM. In this study, we aimed to investigate the potential of the combination of APTw MRI
with ZOOMit DKI in predicting the pretreatment LNM in CC based on the primary tumors.

2. Materials and Methods
2.1. Patient Population

The ethics committee of our hospital approved this retrospective study, and the
requirement for informed consent was waived. From September 2021 to July 2022, a
consecutive series of 105 patients suspected of having CC were enrolled in this cohort and
underwent pelvic MRI. The inclusion criteria were as follows: (1) no therapy performed
prior to the MRI examination and (2) no contraindications to MRI. The exclusion criteria
were as follows: (1) no or incomplete histopathological results (n = 21); (2) confirmed
non-cervical cancer (n = 9); (3) maximum tumor diameter less than 10 mm (n = 10); and
(4) inadequate image quality due to major artifacts (n = 4). Ultimately, a total of 61 patients
with pathologically diagnosed CC were included in this study. The mean age of the patients
was 51 ± 12 years (range, 28–78 years). Surgery was performed within 14 days of the MRI
examination. The flowchart of the patient selection process is shown in Figure 1.
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Figure 1. Flow chart of patient enrollment.

2.2. MR Imaging Protocol

All participants underwent MR on a 3.0-T MRI scanner (Magnetom Skyra, Siemens
Healthcare, Erlangen, Germany) with an 18-channel body phased-array coil. All patients
were instructed not to urinate for at least 1 h before the MRI examination so that the bladder
would be moderately distended during image acquisition. The routine scan sequences
including the T1- and T2-weighted imaging were performed.

CEST-MRI was provided by Zhang Yi’s team of Zhejiang University [24]. The middle
slice of axial CEST images was located through the maximum cross section of the tumor
present on T2WI images. In the CEST saturation module, ten Gaussian saturation pulses
were applied with each a duration of 100 ms and a saturation power level of 2.0 micro T.
A total of 63 frequency offsets were acquired for the Z-spectrum. The 63 offsets included
reference image and saturated scans at 80, 70, 60, 50, 40, 30, 20, 15.625, 10, ±6, ±5, ±4.5,
±4 (2), ±3.75 (2), ±3.5 (6), ±3.25 (2), ±3 (2), ±2.5 (2), ±2 (2), ±1.5, ±1, ±0.75, ±0.5, ±0.25,
and 0 ppm, where numbers in parentheses represented the number of repetitions [24,25]. In
addition, the gradient echo (GRE) sequence was applied for B0 inhomogeneity correction.
The B0 map was calculated as the division of the phase difference between GRE phase
images acquired with two different TEs to the TE difference of 4.92 ms. Then, for each
pixel, the Z-spectrum is shifted using the B0 previously calculated. Using B0-corrected
magnetization transfer ratio asymmetry (MTRasym) at 3.5 ppm offset, the APTw image was
computed. The other parameters were as follows: repetition time (TR)/echo time (TE) =
3100/7.1 ms, field of view = 380 × 332 mm2, matrix size = 128 × 128, slice thickness = 4 mm,
inter-slice gap = 1 mm, bandwidth = 399 Hz, and acquisition time = 3 min 20 s.

Axial ZOOMit diffusion-weighted images (DWI) with b-values of 0, 500, 1000, 1500, and
2000 s/mm2 were obtained using a single-shot spin-echo echo-planar imaging sequence. The
other acquisition parameters for the DWI sequence were TR/TE = 8000/69.5 ms, field of view
= 240 × 100 mm2, matrix size = 120 × 120, slice thickness = 4 mm, inter-slice gap = 1 mm,
bandwidth = 1666 Hz, and acquisition time = 4 min 30 s.
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2.3. Image Analysis

All data were transferred to post-processing software for quantitative analysis. APTw
images were analyzed using MATLAB software (The MathWorks, Inc., Natick, MA, USA)
based on the original Z-spectral signal [24,25]. The APTw parameter was computed as the
MTRasym at 3.5 ppm, which was calculated using the following equation:

MTRasym (3.5 ppm) = Ssat (−3.5 ppm)/S0 − Ssat (+3.5 ppm)/S0 (1)

where MTRasym (3.5 ppm) is the asymmetric magnetization transfer rate at 3.5 ppm, Ssat
represents signal intensity (SI) obtained with applied saturation pulse, and S0 represents SI
with unsaturated pulse.

The ZOOMit DWI images were processed using MR Body Diffusion Toolbox v1.5.0
(Siemens Healthcare, Erlangen, Germany). For the DKI model, DKI parameters were
calculated using the following equation [26] with five b-values (0, 500, 1000, 1500, and
2000 s/mm2):

Sb = S0 × exp
(
−b × MD + b2 × MD2 × MK/6

)
(2)

where Sb is the SI at a particular b value, S0 is the SI when b = 0 s/mm2, mean kurtosis
(MK) indicates the degree of dispersion deviation from Gaussian distribution, and mean
diffusivity (MD) represents the apparent diffusion coefficient (ADC) after non-Gaussian
behavior modification.

The MRI images were analyzed by two radiologists (Y.W. and C.F., with 10 and
15 years of experience in pelvic MRI diagnosis, respectively) independently, blinded to the
histopathologic findings. The regions of interest (ROIs) were manually delineated along
the tumor border on the largest cross-sectional tumor area on APTw images and on DKI
maps, using the T2WI as a reference (Figures 2 and 3), while carefully avoiding the areas of
necrosis, cystic degeneration, hemorrhage, and blood vessels. The average value of each
parameter as measured by the two radiologists was taken for final analysis.
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Figure 2. MRI scans in a 64−year−old woman with cervical cancer and postoperative pathology
revealed LNM. Axial (A) T2−weighted image illustrates an exophytic tumor on the cervix wall. A
diffusion−weighted image (B) with b = 1000 s/mm2 shows a high−signal−intensity tumor. Mean
kurtosis (MK) map (C) and mean diffusivity (MD) map (D) generated from DKI model. Amide proton
transfer−weighted (APTw) image (E) and Z−spectrum of the tumor (F); the color bar indicates the
APTw value. The mean MK, MD, and APTw values measured by the two radiologists were 1.116,
0.774 × 10−3 mm2/s, and 4.5%, respectively.
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Figure 3. MRI scans in a 25−year−old woman with cervical cancer and postoperative pathology
revealed non−LNM. Axial (A) T2−weighted image illustrates an exophytic tumor on the cervix wall.
A diffusion−weighted image (B) with b = 1000 s/mm2 shows a high−signal−intensity tumor. Mean
kurtosis (MK) map (C) and mean diffusivity (MD) map (D) generated from DKI model. Amide proton
transfer−weighted (APTw) image (E) and Z−spectrum of the tumor (F); the color bar indicates the
APTw value. The mean MK, MD, and APTw values measured by the two radiologists were 0.832,
1.123 × 10−3 mm2/s, and 1.7%, respectively.

2.4. Statistical Analysis

Statistical analysis was performed using SPSS (version 23.0; IBM Corp., Armonk, N.Y.,
USA), MedCalc (version 20.0; MedCalc Software Ltd., Ostend, Belgium), and GraphPad
Prism (version 9.0; GraphPad Software, San Diego, CA, USA). Intraclass correlation coef-
ficients (ICCs) were used to assess the interobserver agreement of each parameter (<0.4,
low consistency; 0.40–0.75, medium consistency; >0.75, high consistency). Kolmogorov–
Smirnov test was utilized to estimate the normality of the continuous variables. Continuous
variables were expressed as mean ± standard deviation (SD) and were compared between
LNM and non-LNM groups with Student’s t-test or Mann–Whitney U test. Categorical
variables were expressed as counts and percentages and compared using χ2 test or Fisher’s
probability analysis. Binary logistic regression analysis was performed to evaluate the asso-
ciation between the LNM status and the risk factors, and to determine diagnostic efficacy of
combined parameters. Receiver operating characteristic curve (ROC) analysis was used to
evaluate the diagnostic performance of CEST and DKI parameters for discriminating LNM
from non-LNM. Meanwhile, the area under curve (AUC), sensitivity, and specificity were
reported by using the Youden index. AUCs of different parameters were compared using
the DeLong test. Spearman correlation coefficients were calculated between the metrics
and lymph node status. The two-sided p < 0.05 was considered statistically significant.

3. Results
3.1. Participant Characteristics

The clinicopathologic data of the 61 included patients are presented in Table 1. The
participants were divided into LNM group (n = 17) and non-LNM group (n = 44), according
to the pathological findings. Statistically significant differences in tumor size, FIGO stage,
histological grade, and depth of invasion were found between the LNM and non-LNM
groups (p = 0.009, p < 0.001, p = 0.009, and p < 0.001, respectively). There were no significant
differences in age, menopausal status, histological classification, squamous cell carcinoma
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antigen (SCC-Ag) level, and vascular invasion between the LNM and non-LNM groups
(all p > 0.05).

Table 1. Clinicopathological characteristics and lymph node status of patients with cervical cancer.

Characteristics Total Non-LNM LNM p

No. of Patients 61 44 17
Age (years) a 51 ± 12 (28–78) 50 ± 12 (28–78) 52 ± 12 (29–70) 0.513
Tumor size (mm) a 36 ± 21 (13–105) 31 ± 17 (15–72) 44 ± 19 (13–105) 0.009
Menopausal status 0.437 *

No 30 (49.2) 23 (52.3) 7 (41.2)
Yes 31 (50.8) 21 (47.7) 10 (58.8)

Histological classification 0.423 *
CSC 52 (85.2) 36 (81.8) 16 (94.1)
CA 9 (14.8) 8 (18.2) 1 (5.9)

FIGO stage <0.001 *
Early stage (IB-IIA) 32 (52.5) 31 (70.5) 1 (5.9)
Advanced stage
(IIB-IV) 29 (47.5) 13 (29.5) 16 (94.1)

Histologic grade 0.009 *
Low grade 32 (52.5) 28 (63.6) 4 (23.5)
High grade 29 (47.5) 16 (36.4) 13 (76.5)

Depth of invasion <0.001 *
<2/3 of cervical wall 27 (44.3) 26 (59.1) 1 (5.9)
≥2/3 of cervical wall 34 (55.7) 18 (40.9) 16 (94.1)

SCC-Ag level 0.133 *
≤1.5 ng/mL 21 (34.4) 18 (40.9) 3 (17.6)
>1.5 ng/mL 40 (65.6) 26 (59.1) 14 (82.4)

Vascular invasion 0.421 *
No 44 (72.1) 33 (75.0) 11 (64.7)
Yes 17 (27.9) 11 (25.0) 6 (35.3)

a Numbers are means ± standard deviations with ranges in parentheses; other data are presented as n (%). * Chi-
square test used. The bold font in the table indicates the comparison with statistical significance. LNM = lymph
node metastasis; Non-LNM = non-lymph node metastasis; CSC = cervical squamous carcinoma; CA = cervical
adenocarcinoma; FIGO = International Federation of Gynecology and Obstetrics; SCC-Ag = squamous cell
carcinoma antigen.

3.2. Interobserver Reliability Analysis

The interobserver consistency assessment of APTw and DKI-derived parameters
shows excellent reproducibility, with ICCs of 0.908 (95% CI: 0.855, 0.943), 0.987 (95% CI:
0.979, 0.992), and 0.984 (95% CI: 0.974, 0.990) for APTw, MK, and MD, respectively.

3.3. Comparisons of APTw, MK, and MD between Different Histopathological Parameters

Comparisons of APTw, MK, and MD between different histopathological parameters
are shown in Table 2. The LNM group presented significantly higher APTw (3.7 ± 1.1% vs.
2.4 ± 1.0%, p < 0.001) and MK (1.065 ± 0.185 vs. 0.909 ± 0.189, p = 0.005) and lower MD
(0.989 ± 0.195 × 10−3 mm2/s vs. 1.193 ± 0.337 × 10−3 mm2/s, p = 0.035) than the non-LNM
group. The comparisons of APTw, MK, and MD between LNM and non-LNM groups are
shown in Figure 4. The APTw of the tumor was also significantly higher in advanced-stage
cervical cancer (FIGO stage IIB-IV) and deeper invasion (≥2/3 of cervical wall) (p = 0.002
and p = 0.001, respectively). The value of MK was higher in patients with a larger tumor size
(≥4 cm), advanced-stage cervical cancer, higher histological grade, and deeper invasion
(p = 0.009, p < 0.001, p = 0.016, and p < 0.001, respectively). Furthermore, tumors with
a larger tumor size, CSC group, advanced-stage cervical cancer, and deeper invasion
presented lower MD values (p = 0.005, p = 0.014, p < 0.001, and p = 0.011, respectively).
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Table 2. Comparison of APTw and DKI-derived parameters among different histopathological
parameters of cervical cancer.

Variables APTw (%) p MK p MD (×10−3 mm2/s) p

Lymph node status <0.001 0.005 0.035 *
Non-LNM (n = 44) 2.4 ± 1.0 0.909 ± 0.189 1.193 ± 0.337
LNM (n = 17) 3.7 ± 1.1 1.065 ± 0.185 0.989 ± 0.195

Tumor size 0.319 0.009 0.005 *
<4 cm (n = 39) 2.6 ± 1.2 0.903 ± 0.191 1.219 ± 0.336
≥4 cm (n = 22) 3.0 ± 1.1 1.040 ± 0.187 0.990 ± 0.213

Histological classification 0.447 0.471 0.014 *
CSC (n = 52) 2.8 ± 1.2 0.960 ± 0.191 1.076 ± 0.230
CA (n = 9) 2.5 ± 1.2 0.908 ± 0.247 1.485 ± 0.501

FIGO stage 0.002 <0.001 <0.001 *
Early-stage (n = 32) 2.3 ± 1.0 0.857 ± 0.186 1.285 ± 0.345
Advanced-stage (n = 29) 3.2 ± 1.1 1.058 ± 0.157 0.973 ± 0.171

Histological grade 0.117 0.016 0.142 *
Low grade (n = 32) 2.5 ± 1.0 0.895 ± 0.195 1.193 ± 0.371
High grade (n = 29) 3.0 ± 1.2 1.016 ± 0.187 1.074 ± 0.232

Depth of invasion 0.001 <0.001 0.011 *
<2/3 of cervical wall
(n = 27) 2.2 ± 0.9 0.845 ± 0.175 1.270 ± 0.381

≥2/3 of cervical wall
(n = 34) 3.2 ± 1.2 1.038 ± 0.176 1.031 ± 0.202

Vascular invasion 0.140 0.210 0.394 *
No (n = 44) 2.6 ± 1.0 0.933 ± 0.215 1.132 ± 0.345
Yes (n = 17) 3.1 ± 1.4 1.004 ± 0.142 1.148 ± 0.234

* Mann–Whitney U test; others are Students’ t-test. Bold type face in the table indicates that the comparison is
statistically significant. APTw = amide proton transfer-weighted; MK = mean kurtosis; MD = mean diffusivity;
LNM= lymph node metastasis; Non-LNM = non-lymph node metastasis; CSC = cervical squamous carcinoma;
CA = cervical adenocarcinoma; FIGO = International Federation of Gynecology and Obstetrics.
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Figure 4. The scatter plots of (A) amide proton transfer-weighted (APTw), (B) mean kurtosis (MK),
and (C) mean diffusivity (MD) values between LNM and non-LNM groups in cervical cancer. There
were significant differences in APTw, MK, and MD values between LNM group and non-LNM group
(* p < 0.05; ** p < 0.01; *** p < 0.001).

3.4. Univariate and Multivariate Logistic Regression Analyses

The univariate and multivariate logistic regression analyses for assessing the indicators
of LNM are shown in Table 3. In univariate analysis, the APTw (OR = 3.523, p = 0.001),
MK (OR = 1.005, p = 0.011), MD (OR = 0.997, p = 0.029), tumor size (OR = 1.041, p = 0.016),
histological grade (OR = 5.687, p = 0.008), and depth of invasion (OR = 23.111, p = 0.003)
were significantly correlated with the lymph node status of cervical cancer. There were
no significant correlations between the lymph node status and age, menopausal status,
histological classification, SCC-Ag level, and vascular invasion. Multivariate logistic
analysis revealed that APTw (OR = 3.115, p = 0.039) and depth of invasion (OR = 25.473,
p = 0.031) were independent predictors for evaluating the status of LNM in CC. To make
the model more readable, a nomogram based on predictive logistic regression model was
developed to make the results more intuitive. The nomogram is shown as Figure 5.
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Table 3. Univariate and multivariate logistic regression analysis for LNM in cervical cancer.

Variable Univariate Analysis Multivariate Analysis

Odds Ratio (95 % CI) p Odds Ratio (95 % CI) p

APTw (%) 3.523 (1.676, 7.404) 0.001 3.115 (1.059, 9.162) 0.039
MK 1.005 (1.001, 1.008) 0.011 1.000 (0.991, 1.008) 0.911

MD (×10−3 mm2/s) 0.997 (0.994, 1.000) 0.029 0.998 (0.990, 1.005) 0.503
Age 1.017 (0.968, 1.068) 0.507

Tumor size 1.041 (1.008, 1.075) 0.016 0.949 (0.878, 1.025) 0.184
Menopausal status 1.565 (0.504, 4.856) 0.439

Histological classification 0.281 (0.032, 2.440) 0.250
Histologic grade 5.687 (1.585, 20.414) 0.008 1.628 (0.207, 12.781) 0.643

Depth of invasion 23.111 (2.808, 190.202) 0.003 25.473 (1.351, 480.376) 0.031
SCC-Ag level 3.231 (0.809, 12.896) 0.097

Vascular invasion 1.636 (0.490, 5.467) 0.424

All factors with p < 0.05 in univariate analysis were included in multivariate regression analysis. The bold
typeface in the table indicates the logistic regression analysis with statistical significance. CI = confidence interval;
LNM = lymph node metastasis; APTw = amide proton transfer-weighted; MK = mean kurtosis; MD = mean
diffusivity; SCC-Ag = squamous cell carcinoma antigen.

3.5. Diagnostic Performance of the APTw, MK, and MD in Predicting Lymph Node Status

The diagnostic performance of APTw and DKI-derived parameters (MK and MD)
and their combinations for discriminating LNM from non-LNM are shown in Table 4 and
Figure 6. The AUC (0.807) of APTw was higher than that of MK (AUC, 0.715) and that of
MD (AUC, 0.675) for discriminating LNM from non-LNM, but the differences were not
significant (all p > 0.05). Moreover, the combination of APTw, MK, and MD yielded the
highest AUC (0.864), with the corresponding sensitivity of 76.5% and specificity of 88.6%.
Significantly higher AUC (0.864) was observed in the combination of APTw, MK, and MD
than in MD alone (0.675; p = 0.010) for differentiating the lymph node status.

Table 4. Diagnostic performance of APTw, MK, and MD values in predicting LNM in cervical cancer.

Parameters Cutoff AUC
(95% CI)

Sensitivity
(%)

Specificity
(%) p p for

Comparison

APTw (%) 2.856 0.807 (0.686–0.897) 82.4 70.5 <0.001 0.132
MK 0.932 0.715 (0.585–0.823) 88.2 52.3 0.002 0.053

MD (×10−3 mm2/s) 1.171 0.675 (0.543–0.790) 88.2 43.2 0.017 0.010
Combination - 0.864 (0.752–0.938) 76.5 88.6 <0.001 Ref

Combination represents APTw + MK + MD. The bold typeface in the table indicates significant difference
compared with the Ref by DeLong test. APTw = amide proton transfer-weighted; MK = mean kurtosis; MD = mean
diffusivity; LNM = lymph node metastasis; CC = cervical cancer; AUC = area under the curve; Ref = reference.
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Figure 6. Receiver operating characteristic curves (ROC) analysis of each parameter for predict-
ing the LNM in patients with cervical cancer. The area under curves (AUCs) of amide proton
transfer-weighted (APTw), mean kurtosis (MK), mean diffusivity (MD) values, and combination
model (APTw + MK + MD) to evaluate LNM status were 0.807 (95% CI: 0.686–0.897), 0.715 (95% CI:
0.585–0.823), 0.675 (95% CI: 0.543–0.790), and 0.864 (95% CI: 0.752–0.938), respectively. The combina-
tion of APTw, MK, and MD yielded the highest AUC.

4. Discussion

Our results demonstrated that APTw outperformed the ZOOMit DKI parameters
MK and MD in predicting the LNM of CC, and the diagnostic performance could be
further improved by the combination of APTw, MK, and MD. With these results, our study
indicated that the combination of APTw and ZOOMit DKI could be used as a potential
non-invasive biomarker to predict the LNM of CC

The DKI model reflects the non-Gaussian diffusion property caused by the microstruc-
tural complexity of tissues and therefore has the potential in quantifying the microstructural
heterogeneity of tissues [11,12]. The DKI parameter MK is reported to positively correlate
with the heterogeneity of tissue microstructure, while MD represents how freely water
can diffuse through a tissue, with lower MD indicating impaired diffusion and probably
denser tissue [27]. In this study, CC with higher tumor grade and advanced FIGO stage
presented significantly higher MK and lower MD. It is presumed that tumors with higher
heterogeneity are more prone to lymph node metastasis, suggesting that DKI parameters
may be useful in predicting the LNM based on the primary tumors. Due to the difficulty of
matching the lymph nodes on images to the pathologic findings [28], our study attempted
to investigate the lymph node status based on the primary tumors, rather than analyzing
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the lymph nodes directly. Our finding demonstrated that LNM group showed significantly
higher MK value and lower MD value than non-LNM group. A similar result was also
reported by Yamada et al. [14,29], suggesting that the tumors with LNM had more complex
tissue microstructures, which can further limit the diffusion of water molecules [30].

With the ability to detect the exchange of the amide protons in protein or polypeptide
with hydrogen protons in water [17], APTw imaging has been successfully applied to
characterize rectal cancers [15], bladder tumors [23], endometrial carcinomas [17], and
cervical cancers [30]. In this study, higher APTw values were found in CC with higher
FIGO stage and deeper tumor invasion, further indicating the possible feasibility of APTw
in characterizing cervical cancers. Furthermore, this study indicated that the tumors with
LNM presented higher APTw values than the tumors with non-LNM. A similar result was
also previously reported in rectal adenocarcinoma by Chen et al. [15]. The possible reason
may be that higher levels of proliferation require enhanced protein synthesis, resulting
in accumulation of intra-cellular proteins. Hence, higher mobile protein and peptide
concentrations of tumor in LNM group might be the main reason for higher APTw in CC.
Furthermore, Meng et al. [30,31] demonstrated that APTw value of high grade CC was
significantly higher than that of low grade CC, and a similar finding was also reported
in bladder cancer [23]. However, a significant difference was not observed between the
low grade and high grade CC in this study. The reason may be that only the patients with
CSC were included in previous studies [27,32,33], while in this study, the patients with CA
were not excluded. CA originates from endocervical cells and therefore has rich glandular
structure and the ability to secrete mucin. Due to the different cell origins, APTw values
between CSC and CA could be quite different, which may result in inconsistencies with the
results of previous studies.

In this study, the APTw, MK, MD, tumor size, histological grade, and depth of invasion
were significantly correlated with the lymph node status of CC in univariate analysis.
The CC with LNM exhibits more aggressive biological behavior, which is most likely
present with larger tumor size, high cellular density, rapid cell proliferation, and enhanced
metabolism [34]. The APTw was an independent predictor for LNM of CC in multivariable
analysis, suggesting the potential role of APTw in predicting the LNM of CC.

Our results demonstrated that the AUC of APTw (0.807) was higher than those of MK
(0.715) and MD (0.675) in differentiating LNM from non-LNM, suggesting the advantage of
APTw over the DKI parameters in predicting the LNM of CC. The possible reason may be
that the DKI parameters were derived based on the high b-value (2000 s/mm2) DWI, which
is more susceptible to the effects of low signal-to-noise ratio and image distortion, possibly
resulting in measurement bias [35]. The diagnostic performance of the combination of
APTw and DKI parameters for predicting the LNM of CC was also assessed in this study,
attempting to explore the changes of metabolic information and the heterogeneity of tumor
microstructure simultaneously. The combination of APTw, MK, and MD yielded the highest
AUC (0.864) in discriminating LNM from non-LNM, indicating the added value of APTw
to DKI in predicting LNM of CC based on the primary tumors.

There are some limitations in this study. First, the sample size of our study was rela-
tively small, resulting in insufficient detection of statistical significance for some variables,
such as tumor grade. Second, this study was a single-center study, and it has potential se-
lection bias. Third, only single-slice two-dimensional images of APTw MRI were obtained,
rather than three-dimensional images, thus it was impossible to extract the information of
the whole tumors.

5. Conclusions

In conclusion, both APTw and ZOOMit DKI parameters have the potential to predict
LNM of CC, and the diagnostic performance is further improved by combining both
parameters. The APTw and ZOOMit DKI could be used as promising non-invasive tools to
predict the LNM of CC, thus aiding in tailoring treatment modality for patients with CC.
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