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Abstract: Over 1014 symbiotic microorganisms are present in a healthy human body and are re-
sponsible for the synthesis of vital vitamins and amino acids, mediating cellular pathways and
supporting immunity. However, the deregulation of microbial dynamics can provoke diverse human
diseases such as diabetes, human cancers, cardiovascular diseases, and neurological disorders. The
human gastrointestinal tract constitutes a hospitable environment in which a plethora of microbes,
including diverse species of archaea, bacteria, fungi, and microeukaryotes as well as viruses, inhabit.
In particular, the gut microbiome is the largest microbiome community in the human body and has
drawn for decades the attention of scientists for its significance in medical microbiology. Revolutions
in sequencing techniques, including 16S rRNA and ITS amplicon sequencing and whole genome
sequencing, facilitate the detection of microbiomes and have opened new vistas in the study of
human microbiota. Especially, the flourishing fields of metagenomics and metatranscriptomics aim
to detect all genomes and transcriptomes that are retrieved from environmental and human samples.
The present review highlights the complexity of the gastrointestinal tract microbiome and deciphers
its implication not only in cellular homeostasis but also in human diseases. Finally, a thorough
description of the widely used microbiome detection methods is discussed.

Keywords: gut microbiome; human gastrointestinal tract; oral microbiome; metagenomics; amplicon
sequencing; 16S rRNA sequencing; metatranscriptomics

1. Introduction

Recent revolutions in sequencing techniques have transformed traditional microbiol-
ogy into modern microbiology. To date, microbiology constitutes a flourishing biological
field that involves the study of both microbiome and microbiota. To begin with, although
these terms are regularly used interchangeably, microbiome, as it was first defined in the
late 1980s, is a microbial community that includes the microorganisms that cohabit in a
well-defined microenvironment, whereas the living members of the microbiome that can
be observed microscopically are known as the microbiota [1,2]. However, breakthroughs in
molecular microbiology have given birth to the study of metagenomics which comprises all
genomes and genetic products that are harbored in living samples, incorporating humans,
or retrieved from environmental samples, such as water and soil, whereas metatransrip-
tomics refers to the study of transcriptomes of microorganisms [3].

Over 1014 symbiotic microorganisms are living in the human body and constitute the
human microbiota. Multiple projects aim to decipher all the microbiome communities
that are present in the human body, and most of them are focused on the gut microbiome,
which constitutes the largest group of habitants [4]. Microbiome studies support that gut
inhabitants are physiological endogenous factors that produce vital vitamins and amino
acids, which cannot be synthesized by the organism, and mediate cellular mechanisms, thus
influencing the immune system and health [5,6]. The composition of the gut microbiome
is critical for maintaining homeostasis, and the deregulation of microbial dynamics can
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provoke diverse human diseases including diabetes, human cancers, allergic diseases,
and neurological disorders [7–10]. Nowadays, microbial studies aim to characterize all
the organisms that are harbored in the human body by identifying their DNA sequences.
Notably, studies have been focused on the detection of marker genes, such as the 16S
rRNA gene, which is conserved in bacteria and archaea, utilizing the amplicon sequencing
methodology [4]. On the contrary, the newly introduced metagenomics approach is based
on whole genome sequencing techniques, hence identifying all microbial genomes that are
retrieved from a sample and aims both to classify the microorganisms and reveal functional
information about their contribution to human homeostasis. A plethora of microbiome
projects, incorporating the Human Microbiome Project (HMP), the Integrative Human
Microbiome Project (iHMP), and the European MetaHIT, have been launched worldwide
in order to both decipher the human microbiome and understand the impact of these
symbionts in human health and disease [11–13].

In the present review, we focused on deciphering the complexity of the human gas-
trointestinal tract microbiome that plays a critical role in homeostasis and interplays be-
tween inflammation, disease, and cancer. Moreover, the current review aims to provide a
thorough description of the detection methods that are widely used for the characteriza-
tion of the microbiome in the era of modern microbiology. Notably, the classic culturing
techniques for identifying microbes, namely culturome, and the newest amplicon-based
sequencing methods and culture-free metagenomic sequencing approaches are sufficiently
depicted. Finally, the contribution of the newly introduced metatranscriptomics sequencing
is also highlighted.

2. The Role of the Gastrointestinal Tract Microbiota in Human Health and Disease

The human body constitutes a natural habitat for microbial communities, such as
diverse species of Archaea, Bacteria, Fungi, and microeukaryotes as well as Viruses, which
have been detected in multiple anatomical body sites and tissues including the skin surface,
the respiratory tract, the gastrointestinal or alimentary tract, the mammary gland, and the
urogenital tract [14]. Notably, the core microbiome is comprised of predominant aerobe
microorganisms that inhabit the skin, the nasal cavity, and the respiratory tract, whereas
in the gastrointestinal tract, the anaerobes dominate (Table 1) [14]. More precisely, the
alimentary tract is made up of various organs that swallow, digest and absorb food, which
are the oral cavity, pharynx, esophagus, stomach, small and large intestine, and accessory
organs, and is a unique environment that harbors plenty microorganisms [15].

To begin with, commensal bacteria are dominant in the oral cavity. Especially, more
than 1000 species have been detected and studies have shown that they mediate cellular
processes and maintain homeostasis [16,17]. It is worth mentioning that Actinobacteria,
Bacteroidetes, Firmicutes, Proteobacteria, Streptococcus, Spirochaetes, Synergistetes, and
Tenericutes are representative phyla that have been found in this highly complex bacteria
community (Figure 1). More precisely, streptococci constitute the first bacteria inhabitants of
the oral cavity and under physiological conditions; they are responsible for the generation
of acids by catalyzing the metabolism of carbohydrates [18]. Both Streptococcus salivarius
and Streptococcus gordonii produce great amounts of alkali; hence, they contribute to human
homeostasis by regulating the levels of acids in the oral cavity. On the contrary, the levels
of Streptococcus mutans and Porphyromonas gingivalis are influenced by carbonic anhydrases,
pH, and ions in the oral cavity; hence, they are implicated in diseases such as dental caries
and periodontitis [19].

The class of Archaea is restricted since only some species of methanogens have been
found, containing Methanobrevibacter oralis, Methanobacterium curvum, and Methanosarcina
mazeii [20,21]. Various studies support that methanogens facilitate hydrogen transfer, and
thus influence the growth of bacteria that are responsible for periodontal diseases. Con-
sequently, increased levels of methanogens such as Methanobrevibacter oralis are related to
periodontitis [20]. As for Fungi, Candida is in abundance in the oral cavity, whereas various
species of the Aspergillus, Cladosporium, Cryptococcus, Aureobasidium, Saccharomycetales, and
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Fusarium genera are also present [21]. Adaptive immune responses and the host’s innate
reflexes allow the cohabitation of Candida albicans and other microorganisms in the oral
cavity [22]. These symbiotic relationships between the host and the microorganisms restrict
the colonization and the growth of pathogens and promote homeostasis. However, disrup-
tions of the physiological parameters such as temperature, nutrients, and pH that contribute
to the establishment of these resident microbes, influence human pathophysiology [22].
The commensal oral microbiota colonizes all surfaces of the mouth leaving little space for
pathogenic invaders, thus protecting the cavity and maintaining systemic health [23,24].
For instance, the health-associated Bacteria Streptococcus salivarius produces the toxin bacte-
riocin which prevents the growth and activity of Gram-negative bacterial species that cause
periodontitis and halitosis [25]. Additionally, other Streptococcus species have been related
to type 1 diabetes [26]. Chronic kidney diseases are also influenced by oral microbiota. In
patients with chronic kidney disease, higher levels of Candida albicans and Porphyromonas
gingivalis are responsible for chronic periodontitis [27]. On the contrary, the oral virome
contains different types of viruses, including Human Papilloma Virus (HPV), hepatitis, and
mumps viruses, as well as Herpes simplex and Rabies lyssavirus, which all have been found
in saliva and are usually disease-associated. For instance, Herpes simplex is responsible
for gingivostomatitis, whereas HPV causes several oral conditions such as focal epithelial
hyperplasia, oral papillomatosis or even neck squamous cell carcinoma [28].
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Figure 1. Microbes that inhabit the oral cavity [29], esophagus [30], stomach [31] as well as small and
large intestines [32–34] in humans.

Although the dynamic of microbial colonies enhances oral homeostasis, a range of
microorganisms has also been related to oral diseases such as dental caries, periodontitis,
and cancer (Table 2). Notably, numerous pathological alterations that occur within the
microbial environment can affect bacterial growth and activity, hence initiating disease.
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More precisely, reductions in the pH of the saliva and the increase in the lactic acid that is
produced by oral bacteria such as Streptococcus mutans, Bifidobacterium, Propionibacterium,
and Lactobacillus lead to dental caries [35]. In the case of periodontitis, a periodontal pocket
is formed due to a gap between the teeth and the gingivae. The periodontal pocket is
colonized with various bacteria species, including Porphyromonas gingivalis, Porphyromonas
endodontalis, Treponema denticola, Anaeroglobus geminatus, Eubacterium saphenum, and Pre-
votella denticola and finally, the tissue is damaged [36]. The oral microbiome can also cause
infections at different body sites leading to serious diseases. For example, clinical studies
in patients with cystic fibrosis have shown that oral bacterial species have been found in
the lung [37].

Table 1. Common bacteria species found in human tracts and their oxygen requirements.

Bacteria Oxygen Requirement

Mycobacterium tuberculosis

Obligate aerobeMicrococcus luteus
Neisseria meningitidis
Neisseria gonorrhoeae

Bacteroidetes

Obligate anaerobePorphyromonas sp.
Prevotella sp.

Clostridium spp.

Staphylococci
Facultative anaerobesGemella sp.

Enterobacteriaceae

Lactobacilli Aerotolerant anaerobes

Campylobacter jejuni Microaerophile

The human pharyngeal microbiome comprises the phyla Actinobacteria, Firmicutes,
Bacteroidetes, Proteobacteria, and Fusobacteria, among which Bacteroidetes is the most
abundant, while Prevotella, Neisseria, Streptococcus, Campylobacter, and Haemophilus are the
most prevalent genera [38]. More precisely, the gram-positive Streptococcus pyogenes as
well as Prevotella melaninogenica are responsible for pharyngitis, while pharyngeal coloniza-
tion by Neisseria species such as N. meningitidis and N. gonorrhoeae have been detected
in patients with gonococcal infections [39]. Moreover, although the pharyngeal cavity
harbors a variety of pathogenic species such as Haemophilus influenza, Staphylococcus aureus,
Streptococcus pneumonia, and Mycoplasma pneumonia, in many cases these residents are not
attacking the immune system and the host is characterized as asymptomatic [38]. For in-
stance, Streptococcus pneumonia, which is responsible for deathly pneumococcal diseases, is
normally found in the human pharynx of healthy individuals but it can migrate to different
tissues and cause serious infections [40]. Additionally, the human oropharyngeal virome
includes a plethora of respiratory viruses such as DNA Chloroviruses [41]. For example,
Chlorovirus Acanthocystis turfacea chlorella virus 1 (ATCV-1) inhabits human mucosal sur-
faces such as the pharynx and produces a variety of enzymes that either enhance or impair
the host’s immunity [41].

In the same manner, the esophageal microbiome is similar to the pharyngeal micro-
biome and is comprised of six bacteria phyla among which Firmicutes is overexpressed.
Accordingly, Bacteroidetes, Actinobacteria, Fusobacteria Proteobacteria, and TM7 are also
present (Figure 1). Streptococcus constitutes a highly abundant genus, but Prevotella and
Veillonella are also in great abundance [42]. Changes in the esophageal microbiome levels
can cause a plethora of esophageal-related diseases such as Barrett’s esophagus, esophageal
adenocarcinoma, and eosinophilic esophagitis. For instance, the progression of esophageal
adenocarcinoma can be induced by rare and abundant phage communities [43]. Recent
studies support that significant variations in the abundance of microorganisms, including
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Streptococcus, Prevotella, and Treponema, have been detected in esophageal carcinoma tissues
indicating that they constitute markers for the prognosis and diagnosis of esophageal
squamous cell carcinoma [44]. Additionally, fungal esophagitis is an infection that is caused
by Candida species or Filamentous Fungi [45].

For many years scientists believed that the stomach is a sterile organ, hence it cannot
harbor any bacterial community. However, this dogma was demolished in 1982, when Heli-
cobacter pylori was detected. Of note, Helicobacter pylori is a key player in gastric homeostasis,
since it modulates the acid levels in the stomach, hence affecting the gastric microbiome.
Helicobacter pylori infection can cause serious diseases such as chronic gastritis and carcino-
genesis [31]. In gastric mucosa, the phylum of Firmicutes dominates, while Proteobacteria,
Actinobacteria, Bacteroidetes, and Fusobacteria are also present [46]. Moreover, the gastric
microbiota is also comprised of additional acid-resistant bacterial strains that either are
grown into the stomach, or migrate from the oral cavity. Namely, these bacteria species are
Streptococcus, Neisseria, Veillonella, Clostridium, and Lactobacillus [31].

Table 2. Human diseases that have been related to imbalance of the normal gastrointestinal
tract microbiome.

Human Disease Related Microorganisms Reference

Atopic dermatitis Staphylococcucus aureus, Cutibacterium, Streptococcus, Acinetobacter, Gemella [47,48]
Cystic fibrosis Streptococcus species [49]

Depression Coprococcus, Sellimonas, Clostridium, Hungatella [50,51]
Autism Clostridium bolteae [52]
Asthma Clostridia, Proteobacteria [53,54]
Obesity Actinobacteria, Bacteroidetes [55,56]

Tuberculosis Mycobacterium tuberculosis, Bacteroides fragilis, Prevotella, Enterococcus [57]
Periodontal diseases Spirochaetes, Synergistetes, Bacteroidetes [58]

Dental caries Streptococcus mutans, Lactobacillus spp., Candida albicans [35]
Oral cancer Streptococcus species [59]

Esophageal cancer Tannerella forsythia, Porphyromonas gingivalis [60]

Cardiovascular disease Campylobacter rectus, Porphyromonas gingivalis, Porphyromonas endodontalis,
Prevotella intermedia [61]

Rheumatoid arthritis Veillonella, Atopobium, Prevotella, Leptotrichia [62–64]
Parkinson’s disease Lachnospiraceae, Faecalibacterium, Lactobacillus, Akkermansia, Bifidobacterium [65]
Alzheimer’s disease Spirochaetes [66]

Diabetes Aggregatibacter, Neisseria, Gemella, Selenomonas, Actinomyces,
Fusobacterium, Streptococcus [67–69]

Especially, gut microbiota or gut microbiome is the largest microbiome community in
the human body and has drawn for decades the attention of scientists for its significance in
medical microbiology. Of note, the gut microbial community constitutes a dynamic and
complex collection of all microorganisms that are accommodated in the gastrointestinal
tract, including Bacteria, Archaea, Fungi, and Viruses [2]. Physiologically, these populations
cooperate in different ways to provide immune defense against pathogenic organisms, reg-
ulate metabolic processes, and support cellular homeostasis, being characterized as the host
barriers to infections [70]. More precisely, the intestinal microbiome is basically composed
of multiple bacterial species (~50 bacterial phyla) in which Bacteroidetes and Firmicutes are
the dominant phyla in a healthy human gut. Additionally, Proteobacteria and Actinobacte-
ria are found in abundance, whereas the genera Bifidobacterium, Escherichia, Clostridium, and
Akkermansia are also detected at lower levels [9,71]. Moreover, most studies support that
the human gut archaeome includes two methanogenic classes of Archaea: the Methanobac-
teriales and the Methanomassiliicoccales. Methanobrevibacter smithii and Methanosphaera
stadtmanae are the main representative species of Methanobacteriales, whereas in the case
of Methanomassiliicoccales, Candidatus Methanomassiliicoccus intestinalis, Methanomethy-
lophilus alvus, Methanomassiliicoccus luminyensis and the strains Mx02, Mx03, and Mx06
are dominant [72]. Additional studies have also reported that members of Haloarchaea,
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including Haloferax and Halorubrum spp., are also present in the human gut [73,74]. To
continue with, fungal communities inhabit the gastrointestinal tract and support the im-
mune system, and hence maintain cellular homeostasis [75]. The phylum of Ascomycota is
overrepresented in gut mycobiome, whereas Basidiomycota and Mucoromycota exhibit
lower expression levels [76,77].

Notably, a plethora of intestinal protozoan helminthic parasites that belong to micro-
eukaryotes have been detected in the human gut and are responsible for various infections
such as giardiasis, amoebiasis, and cryptosporidiosis [78]. More precisely, infections by
Giardia intestinalis result in giardiasis, Cryptosporidium spp. causes cryptosporidiosis,
Entamoeba histolytica is responsible for invasive amoebic infections, whereas infections
by Cyclospora cayetanenensis lead to cyclosporiasis [79,80]. On the contrary, infections
by helminthic parasites including Ascaris lumbricoides, Ancylostoma duodenale, Trichiuris
trichiuria, and Necator americanicus affect human health since they disturb mental and
physical growth but there is no evidence that they are deathly [81]. Finally, the gut also
harbors viruses which contribute to homeostasis in human physiology. Briefly, DNA
bacteriophages, such as Caudovirales and members of other families such as Myoviridae
and Siphoviridae, dominate in the gut virome, while Circovirus and a small number of other
eukaryotic and archaea viruses are present [71,82–84].

Furthermore, the high complexity of the gut microbiome contributes to the develop-
ment of the immune system and gut homeostasis and elicits effective immune responses
against invasive pathogens, including viruses. Microbial balance in the gut can ensure
immunity by blocking invading pathogens not only in the gastrointestinal tract but also
in multiple human organs. For instance, many studies support that gut microbes can
eliminate infections by lung-associated viruses, such as the flu virus and SARS-CoV-2 by
producing antiviral proteins [85]. This crucial role of gut microbiota depends on cellular
mechanisms that regulate microbial metabolites and molecular pathways both in the host
and their inhabitants [86].

The gut microbiota has been related to multiple diseases including brain disorders,
neuropsychiatric disorders, cardiovascular diseases, type 2 diabetes, asthma, and human
malignancies (Table 2). Firstly, recent studies support that the gut microbial community
affects communication and interactions between the central and enteric nervous systems,
namely the gut–brain axis [87]. Psychiatric disorders such as depression and anxiety have
been connected to gut microbiome composition, since various bacteria genera, includ-
ing Coprococcus, Sellimonas, Clostridium, and Hungatella, are involved in the synthesis of
the key neurotransmitters serotonin, GABA, and glutamate [88]. In the same manner,
increased levels of Actinobacteria, Bacteroidetes, and Protobacteria are also responsible
for the emergence of depressive disorders (Table 2). Alterations in the expression levels
of gut bacteria species are responsible for the progression of Parkinson’s disease. More
precisely, a decrease in the levels of Lachnospiraceae and Faecalibacterium and an increase
in the levels of Lactobacillus, Akkermansia, and Bifidobacterium have been associated with
poor prognosis [65]. As far as type 2 diabetes is concerned, multiple studies have reported
that the levels of Firmicutes and Clostridia are significantly lower in patients with type 2
diabetes [89]. Gut-microbiota-derived molecules such as short-chain fatty acids (SCFA),
trimethylamine-N-oxide (TMAO), and uremic toxins are implicated in the development of
cardiovascular diseases (Table 2). Changes in microbiota profile can lead to an increased
risk of cardiovascular diseases. For instance, in adipose tissues, the abundance of Akker-
mansia has been correlated with inflammation and lipid metabolism [90], whereas obesity
is affected by the lower ratio of Bacteroidetes to Firmicutes [91]. Moreover, in the case
of asthma, the Proteobacteria are overexpressed, whereas the levels of Firmicutes and
Bacteroidetes are decreased [92]. Finally, cancer-associated studies suggest that the human
microbiome has a huge impact on carcinogenesis by influencing the proliferation of the
host cells, mediating host metabolism, and affecting cellular immunity [93,94].
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3. Detecting Microbes

Undoubtedly, identifying microbes and studying their functional role as well as their
great diversity and complexity in the human body constitutes an attractive research field.
However, the identification and quantification of the gut microbiome remain incomplete
tasks due to its dynamic [95]. In the last decades, technological innovations in molecular
microbiology have enabled the characterization of microbiomes and multiple studies have
attempted to decipher the complex features of microorganisms and their role in human
physiology. Up to date, four strategies for studying the human microbiome are widely
used: a. the traditional culturomics approach that is based on the type of microbes, b. the
amplicon-based DNA sequencing method, c. the modern whole genome metagenomics
strategy, and d. the quite new metatranscriptomics approach. In this section, all the
available strategies are thoroughly discussed.

3.1. Culturomics

More than a hundred years have passed since the first technique for identifying
microorganisms was introduced. More precisely, in the early 1880s the plating method for
culturing and detecting microbes, based on their biochemical features, was established by
Robert Koch. Although classical microbiome studies are based on cultivation techniques,
they enable the detection of only half of the gut bacteria. Over the years, improvements
in culture conditions, the development of molecular technologies, and the advent of both
Mass Spectrometry and Sanger sequencing have led to culturomics, a recently adapted
technique that combines culture-dependent approaches and high-throughput methods for
mapping the microbiome [96,97].

The culturomics approach includes distinct and sufficient steps (Figure 2). Briefly, the
first step involves the crushing of the living or environmental samples and their dilution
in a liquid growth medium. The selection of the appropriate culture media depends on
the type of microbial species that are cultured since each microorganism has different
nutritional requirements (Table 3). More precisely, based on the agar concentration growth
media are classified into solid, semisolid, and liquid [98]. In addition, culture plates are
incubated for 1–20 days at 25–37 ◦C. Of note, incubating oxygen levels vary among different
microbial communities since most of them are aerobic, whereas the gastrointestinal tract
harbors anaerobic species [99–101]. In addition, culture plates are incubated for 1–20 days
at 25–37 ◦C. Accordingly, the culture plates are observed, and different phenotypes are
isolated and grown individually. For the detection of the isolated bacterial species, cultures
are harvested, and extracts are purified [70,102]. The lysates can be detected by either
16S rRNA/rDNA sequencing or matrix-assisted laser desorption/ionization-time-of-flight
mass spectrometry (MALDI-TOF MS) [103].

Table 3. List of the growth media that are used for the culture of the most prevalent gut
microbial communities.

Related Microorganisms Culture Media

Gram-positive Staphylococci Baird-Parker agar
Streptococcus pyogenes Crystal Violet Blood Agar

Gram-negative bacterial species Hektoen Enteric Agar
Mycobacterium species Lowenstein Jensen Medium

Gram-negative bacterial species MacConkey’s Agar
Gram-positive bacterial species Mannitol Salt Agar

Enterococcus species Potassium Tellurite Medium
Pseudomonas aeruginosa Pseudosel Agar

Neisseria gonorrhoeae Thayer Martin Agar
Vibrio species Thiosulfate Citrate Bile Salts Sucrose Agar

Salmonella & Shigella species Salmonella-Shigella Agar
Salmonella species Wilson and Blair’s Agar

Ectomycorrhizal fungi BAF Medium
Ectomycorrhizal fungi Modified Melin-Norkrans Medium

Certain fungi Sabouraud Agar
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Figure 2. Culturomics method for the detection of microbiome.

As for the advantages of culturomics approaches, they are high-throughput methods
that are between the culture-dependent and the culture-independent strategies and can
identify a high number of novel species that are visible in bacterial colonies. Moreover,
due to the growing conditions, culturome enables the selection of the desired target and
efficiently provides microbial isolates [104,105]. As for its drawbacks, culturome is a
time-consuming and cost-ineffective approach that also requires accurate experimental
manipulations. Furthermore, culturome results are highly influenced by the quality of
culture media and environmental conditions such as temperature. Lastly, an additional
limitation is that uncultured microbiota cannot be observed and hence detected (Table 4).

Table 4. Advantages and drawbacks of microbiome high-throughput detection methods.

Detection Method Advantages Drawbacks Reference

Culturome
Visible colonies Time-consuming and expensive

[106]Microbial isolates Sterile environmental conditions
Selection of the target Laborious

Amplicon
sequencing

Cost-effective PCR biases

[107,108]
Easy and quick analysis False-positive and false-negative samples

Selection of the target No discrimination between dead and live microbes
Low-biomass requirement Limited genus-level taxonomic resolution
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Table 4. Cont.

Detection Method Advantages Drawbacks Reference

Metagenomics

Culture-independent Expensive

[109]

Species or strain level
taxonomic resolution Complex and time-consuming analysis

Captures all genomes present
in a sample No discrimination between dead and live microbes

Culture-independent Host-derived contamination

Metatranscriptomics

Transcript level resolution Expensive

[110]
Assessment of gene expression Complex and time-consuming analysis
Discrimination between dead

and live microbes
Snapshot of protein expression levels

Host RNA contamination

3.2. Amplicon Sequencing Analysis

Molecular biology research has been dramatically enhanced due to the introduction of
high-throughput sequencing techniques that enabled a plethora of applications including
molecular microbiota studies. More precisely, microbiome analysis has been radically
transformed due to advances in sequencing applications including amplicon and whole
genome approaches. Especially, amplicon sequencing constitutes a well-established method
that includes the amplification and the detection of target genes that harbor characteristic
and conserved motifs. Notably, studying microbiomes using amplicon sequencing can be
divided into two approaches: a. 16S rRNA amplicon sequencing for identifying the prokary-
otic sequences of Bacteria and Archaea and b. internal transcribed spacers (ITS) sequencing
for the detection of the eukaryotic Fungi microcommunities. The prokaryotic 16S rRNA
gene has conserved regions which are disrupted by nine variable regions that are used for
the phylogenetic classification of genera in various microbes within a sample [111,112]. On
the contrary, the rRNA cistron has the ITS region that is used as a DNA marker for the
detection of fungal species [113].

Multiple studies support that amplicon sequencing has numerous advantages as com-
pared to culturing methods [114]. To begin with, the 16S and the ITS rRNA amplicon
sequencing method is a cost-effective technique to identify strains that may not be found
using culturing methods. Moreover, amplicon sequencing is based on PCR amplification
and thus requires low biomass. Additionally, next-generation sequencing (NGS) tech-
niques enable parallel high-throughput generation of reads, the amount of the produced
data is relatively small, and the bioinformatics analysis is quite simple [115]. However,
PCR amplification can introduce biases such as false-positive and false-negative samples.
Furthermore, amplicon sequencing cannot discriminate dead from living bacteria.

Notably, the benefits of amplicon sequencing and its wide usage in the scientific
community have led to a great number of available protocols and workflows for studying
the microbiome [114,116,117]. Especially, the NGS platforms, Illumina and Ion Torrent,
utilize consensus adapters that bind specifically to conserved regions for amplifying and
sequencing the targets of interest [118–121]. Additionally, NGS technology enables a high
quality of generated data. Both approaches share well-defined steps (Figure 3) that include
the following: 1. The collection of the sample; 2. Optional culturing of the bacterial or fungal
samples in plates at 37 ◦C for 18–72 h; 3. Isolation of unique bacterial or fungal colonies;
4. Genomic DNA extraction; 5. 16S rRNA gene or ITS amplification procedure is divided
into two PCR steps for amplifying and adding the barcodes; 6. Library construction based
on the sequencing platform that is used; 7. Amplicon sequencing; and 8. Bioinformatics
analysis [122,123]. On the contrary, PacBio and ONT platforms perform full-length 16S
sequencing and provide real-time sequencing and direct analysis of the microbiome with
greater taxonomic resolution compared to NGS results [124].



Biomedicines 2023, 11, 827 10 of 16Biomedicines 2023, 11, x FOR PEER REVIEW 11 of 18 
 

 

Figure 3. Demonstration of the workflow for the 16S rRNA and ITS amplicon sequencing. 

3.3. Metagenomics 

Metagenomics aims to sequence the whole DNA that is available in a particular sam-

ple/environment, providing more information compared to amplicon sequencing. This 

method not only detects all the species that inhabit an environment, such as the human 

gut, but also generates information about the genomic profile of the sample. Meta-

genomics can be divided into two approaches: taxonomic metagenomics and functional 

metagenomics. Moreover, taxonomic applications aim to investigate the phylogenetic re-

lationships between the detected sequences and the known microorganisms. Taxonomic 

profiling is widely used for identifying all the microbes (rare and abundant) included in 

a sample [125]. On the contrary, functional metagenomics techniques are focused on the 

identification of functional genes and novel proteins that contribute to the microbial pop-

ulation’s activity. Functional metagenomics can give answers to different biological issues 

such as how the microbes affect the functional pathways of their hosts and how they are 

implicated in various pathologies [126]. 

Both NGS and TGS approaches enable metagenomics sequencing; however, due to 

their chemistries, the library preparation steps, and the bioinformatics analysis procedure 

differ. Briefly, a metagenomics experiment is comprised of fundamental steps including 

the sample collection, the isolation of the DNA, the construction of either the NGS or TGS 

library, and, finally, the DNA sequencing (Figure 4). Of note, NGS libraries require the 

fragmentation of the DNA sample, whereas TGS enables the direct detection of full-length 

DNA sequences. In contrast to amplicon sequencing, metagenomics is more expensive 

and requires a greater amount of output data to perform accurate bioinformatics analysis 

and detect all the microorganisms that are present in a sample. Metagenomics are not only 

culture-independent methods but also PCR-free protocols that enable the absolute quan-

tification of all genomes that are present in a sample without introducing PCR biases. 

However, the samples are often contaminated with host-derived DNA and the high com-

plexity of the generated data can incommode the analysis (Table 4). 

Figure 3. Demonstration of the workflow for the 16S rRNA and ITS amplicon sequencing.

3.3. Metagenomics

Metagenomics aims to sequence the whole DNA that is available in a particular
sample/environment, providing more information compared to amplicon sequencing. This
method not only detects all the species that inhabit an environment, such as the human gut,
but also generates information about the genomic profile of the sample. Metagenomics can
be divided into two approaches: taxonomic metagenomics and functional metagenomics.
Moreover, taxonomic applications aim to investigate the phylogenetic relationships between
the detected sequences and the known microorganisms. Taxonomic profiling is widely
used for identifying all the microbes (rare and abundant) included in a sample [125]. On
the contrary, functional metagenomics techniques are focused on the identification of
functional genes and novel proteins that contribute to the microbial population’s activity.
Functional metagenomics can give answers to different biological issues such as how the
microbes affect the functional pathways of their hosts and how they are implicated in
various pathologies [126].

Both NGS and TGS approaches enable metagenomics sequencing; however, due to
their chemistries, the library preparation steps, and the bioinformatics analysis procedure
differ. Briefly, a metagenomics experiment is comprised of fundamental steps including
the sample collection, the isolation of the DNA, the construction of either the NGS or TGS
library, and, finally, the DNA sequencing (Figure 4). Of note, NGS libraries require the
fragmentation of the DNA sample, whereas TGS enables the direct detection of full-length
DNA sequences. In contrast to amplicon sequencing, metagenomics is more expensive
and requires a greater amount of output data to perform accurate bioinformatics analysis
and detect all the microorganisms that are present in a sample. Metagenomics are not
only culture-independent methods but also PCR-free protocols that enable the absolute
quantification of all genomes that are present in a sample without introducing PCR bi-
ases. However, the samples are often contaminated with host-derived DNA and the high
complexity of the generated data can incommode the analysis (Table 4).

3.4. Metatranscriptomics

The newly introduced metatranscriptomics approaches enable the study of the tran-
scriptomic profile of microorganisms and have the potential to gain deeper insights into the
composition of the human microbiota. Of note, whole RNA sequencing strategies can offer
the quantification of the expression levels of active genes in complex microbial communities
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and total mRNA sequencing unravels the expression patterns of microbes within a host,
such as the human gut [127]. Moreover, metatranscriptomic data are used for the determi-
nation of transcriptionally active microbial populations that interact with hosts, including
humans, and for the detection of the active metabolic pathways that are connected to human
diseases [110]. In healthy individuals, metatranscriptomics approaches are used to deter-
mine the activity of microbial communities that contribute to homeostasis by producing
vital vitamins and amino acids or being involved in carbohydrate metabolism [128].
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In the same manner as metagenomics, metatranscriptomics includes two distinct
steps: the wet lab procedures and the bioinformatics analysis. As for the wet lab step, it
contains the isolation and purification of the microbiome RNA, the construction of the
metatranscriptomic sequencing libraries, and, finally, the RNA seq in the NGS sequenc-
ing systems (Figure 4). The second step of metatranscriptomics analysis comprises the
analysis of the generated data. Although a number of bioinformatics algorithms have
been developed for the study of the metagenome, the design of computational methods
for analyzing metatranscriptomic data remains a challenging process [129]. It should be
mentioned that, except for the NGS platforms that have already been established in the field
of microbiology for the study of metatranscriptome through RNA-seq, the brand-new direct
RNA nanopore sequencing approach constitutes a highly promising strategy. In brief, the
method enables the characterization of the RNA without the reverse transcription and PCR
amplification steps, and performs absolute quantification of RNA, and, thus, is expected to
be a milestone in modern metatranscriptomics [130]. Ultimately, metatranscriptomics has
the ability to change our perception of the biological function of microbes in the human
body and will undoubtedly enhance our efforts in understanding their involvement in
cellular mechanisms that disrupt human homeostasis and promote carcinogenesis.

4. Conclusions

Overall, the human body is a host for different types of microorganisms among
which bacteria are dominant. The human microbiota benefits the body by synthesizing
vital vitamins and amino acids, thus stimulating the immune system. Especially, the
gastrointestinal tract accommodates a plethora of microbes that contribute to cellular
homeostasis. However, multiple studies report that immune deregulation is correlated
with changes in gut microbiome leading to the development of various diseases. To date,
different detection methods have been used to decipher the characteristics of the human
microbiome and clarify the relationship between microbes and human health and disease.
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The selection of the detection method is based on the type of experiment and the issues that
need to be addressed. Notably, the type and the quality of the samples, the cost, and the
needed time for each approach should always be taken into consideration. Undoubtedly,
metagenomics will provide novel insights into human microbiome and health and will
enhance not only modern microbiological research but also clinical microbiology and
epidemiology through the establishment of novel approaches for preventing, improving,
and reversing microbiome-related diseases [70].
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