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Abstract: The altered expression of known brain Aquaporin (AQP) channels 1, 4 and 9 has been
correlated with neuropathological AD progression, but possible roles of other AQP classes in neuro-
logical disease remain understudied. The levels of transcripts of all thirteen human AQP subtypes
were compared in healthy and Alzheimer’s disease (AD) brains by statistical analyses of microarray
RNAseq expression data from the Allen Brain Atlas database. Previously unreported, AQPs 0, 6 and
10, are present in human brains at the transcript level. Three AD-affected brain regions, hippocampus
(HIP), parietal cortex (PCx) and temporal cortex (TCx), were assessed in three subgroups: young
controls (n = 6, aged 24–57); aged controls (n = 26, aged 78–99); and an AD cohort (n = 12, aged 79–99).
A significant positive correlation (p < 10−10) was seen for AQP transcript levels as a function of the
subject’s age in years. Differential expressions correlated with brain region, age, and AD diagnosis,
particularly between the HIP and cortical regions. Interestingly, three classes of AQPs (0, 6 and 8)
upregulated in AD compared to young controls are permeable to H2O2. Of these, AQPs 0 and 8 were
increased in TCx and AQP6 in HIP, suggesting a role of AQPs in AD-related oxidative stress. The
outcomes here are the first to demonstrate that the expression profile of AQP channels in the human
brain is more diverse than previously thought, and transcript levels are influenced by both age and
AD status. Associations between reactive oxygen stress and neurodegenerative disease risk highlight
AQPs 0, 6, 8 and 10 as potential therapeutic targets.

Keywords: water channels; peroxiporins; ageing brain; dementia; transcriptomics

1. Introduction

Healthy aging is associated with widespread cognitive, morphological, and functional
changes in the brain. Such processes are exacerbated in age-related neurodegenerative
disorders, including Alzheimer’s disease (AD) [1]. AD, characterized by the formation of
amyloid plaques and neurofibrillary tangles (NFTs) consisting of hyperphosphorylated tau
in vulnerable brain regions, is the leading cause of dementia in the aging population [2].
Amyloid plaques are thought to impair synaptic function, induce hyperexcitability, and
enhance the generation of reactive oxygen species [3–6]. Similarly, insoluble NFTs of
hyperphosphorylated tau have been correlated with neuronal toxicity [7], and found to
serve as predictive markers for cognitive performance and overall dementia status [8].
Importantly, amyloid beta (Aβ) and tau-based evaluations indicate that the disease spreads
through neighbouring anatomical areas beginning at the hippocampal formation and areas of
the temporal (e.g., entorhinal cortex) and parietal (e.g., retrosplenial cortex; posterior parietal
cortex; precuneus) lobes in preclinical stages of the disease before spreading to additional
regions (e.g., prefrontal cortex; amygdala) as individuals become symptomatic [9–11] in a
process proposed to involve networks of astrocytes and microglia [12]. In particular, the
astrocytic internalization of Aβ plaques for clearance in AD has been suggested to involve
aquaporin channels [13–15].
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Aquaporin channels (AQPs) are transmembrane proteins that facilitate the bidirec-
tional movement of water and small solutes, and are expressed in all forms of life [16,17].
The 13 classes of AQPs in humans (AQPs 0–12) show tissue-specific expressions in brain,
kidney, eye, skin, heart, lungs and other organs [18]. The classical AQP subtypes, ini-
tially defined as strictly water-selective, include AQPs 0, 1, 2, 4 and 5, though additional
permeabilities to ions, signalling molecules and metabolites continue to be added to the
repertoire [19,20]. For example, AQP0 and 5 have both been shown to be permeable to
hydrogen peroxide (H2O2) in addition to water [21,22], prompting an additional descriptor
as ‘peroxiporins’. Similarly, AQPs 6, 8 and 11 are all classified as peroxiporins [23–25].
AQP subtypes initially characterized by their permeability to both glycerol and water are
classified as aquaglyceroporins, including AQPs 3, 7, 9 and 10 [26], although AQP9 has also
been shown to permeate H2O2 in mice [27]. Finally, the non-orthodox AQP12, which, simi-
lar to the peroxiporin AQP11, lacks one of the two conserved asparagine-proline-alanine
(NPA) motifs important for the molecular structure of the pore passageway [28], has been
suggested to play a role in digestive enzyme secretion [29].

In the mammalian brain, three AQPs—AQP1, 4 and 9—have been identified as proteins
expressed under physiological and pathological conditions [30–33]. AQP1 is predominantly
expressed in the choroid plexus, facilitating regulated cerebrospinal fluid (CSF) production
under normal physiological conditions [30]. In the face of pathology (such as AD, contusion
and subarachnoid haemorrhage, for example), reactive astrocytes initiate the abnormal
expression of AQP1 [31,34]. In line with this, AQP1 levels are increased in early AD
(as defined by Braak criteria) within astrocytes, and co-localized with Aβ plaques for
reasons yet to be determined [35–37]. Unlike AQP1, which only is expressed in astrocytes
under pathological conditions, AQP4 is dubbed the ‘brain AQP’ based on its high levels of
physiological expression in astrocytes throughout the central nervous system, primarily
in perivascular and peri-synaptic end-feet domains [32,38]. AQP4 channels are essential
for the clearance of interstitial solutes, metabolic products and protein aggregates (such as
Aβ and hyperphosphorylated tau) from the brain microenvironment via the glymphatic
system [15,39–43]. Similarly, AQP9 is also thought to play a key role in astrocytes under
normal physiological conditions and has been suggested to be involved in facilitating the
diffusion of lactate from astrocytes to neurons for metabolic support [33,44,45].

Other AQPs also have been implicated in brain function under both normal physiolog-
ical and pathological conditions, although, to date, these have been less well investigated.
For example, AQP6 has been suggested to participate in the gated reabsorption of wa-
ter to reduce neuronal synaptic swelling, since its expression and activity are reliant on
low pH [46]. Transcript and protein levels of AQPs 3, 5, 8 have all been reported to in-
crease in rat astrocytes and neurons in vivo after hypoxia, suggesting that they may play
a possible role in post-injury edema (40). Interestingly, AQP11 has been detected in cere-
bellum and hippocampus, but no functional role of this non-orthodox AQP has yet been
proposed [47,48].

Given the diverse expression of AQPs within the mammalian brain, and their multi-
faceted roles in numerous physiological processes, we propose that alterations in AQP
channel expression may play a role in both healthy aging and AD pathogenesis. Signifi-
cantly, given their role in response to stress and injury, we hypothesized that establishing
AQP expression profiles in AD might reveal their potential as novel therapeutic targets.
To identify the full set of candidate AQPs of interest, transcript levels were assessed from
Allen Brain Atlas data for all 13 AQP subtypes, in brain regions selected for relevance in
AD pathology. Transcript levels in AD brains were compared with age-matched healthy
brains and young healthy controls. Notably, the Allen Brain Atlas serves as a substantial
archive of collated RNAseq data that remain to be analysed; this public domain database is
invaluable for enabling novel discoveries, as demonstrated in previous work [49].
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2. Materials and Methods
2.1. Data Source

Data were acquired from the Allen Brain Atlas (ABA), a publicly available dataset.
Microarray data were downloaded directly from the webpage (https://human.brain-map.
org accessed on 21 September 2021). In brief, brains were processed serially with multiple
sample batches submitted per brain analysed. Data were then normalised to an internal
control, in accord with detailed method documents (https://help.brain-map.org/display/
humanbrain/Documentation accessed on 21 September 2021).

2.2. Human Brain Atlas Database

This dataset contains RNAseq transcriptome data from six individuals aged 24–57
with no known pathology, designated as the young control group (C). Data from this
database, in addition to the Institute of Aging, Dementia and TBI database, were collected
from four brain regions for all age groups (Supplementary Table S1), given the anatomical
areas of interest affected in AD highlighted in the introduction and as outlined by the
Braak staging for disease spread [9]. Given the cortical areas known to be affected early
on in the disease process in AD, the current analysis focused specifically on data from the
temporal and parietal lobes [11]. A detailed description of tissue acquisition is available in
the ABA white paper documentation (https://help.brain-map.org/display/humanbrain/
Documentation accessed on 21 September 2021). Briefly, brain tissue was collected after
obtaining informed consent from the patients’ next-of-kin, followed by a review and
approval from the Institutional Review Board (IEB).

2.3. Institute Aging, Dementia and TBI Database

This dataset contains RNAseq transcriptome data from 107 individuals aged 77 and
older with/without traumatic brain injury (TBI) and dementia obtained from the Adult
Change in Thought cohort [50]. To investigate the effect of aging on the AQP gene expres-
sion profile in the brain, an aged control group (AC), comprised of 29 individuals aged
78–99 with no known pathology, was used for comparison with both the C and AD groups.
For the AD group, 12 individuals aged 79–99 with a pathological diagnosis of probable
AD and no prior history of TBI were selected for analysis. Individuals with a diagnosis of
possible AD were excluded, as their underlying disease progression may be secondary to
other comorbidities [51]. Additionally, due to the known influence of TBI on tau pathology
and its relationship with an increased risk of AD [52,53], patients with any documented
history of TBI were excluded from bioinformatics analysis.

2.4. Gene Probes

For each AQP channel gene, two probes for the young control group (selective for
different exons) and one probe for the aged control and AD group were used for RNAseq
analysis. For details on probe IDs, refer to Supplementary Table S2. For a comparison
between groups, the two probes used for each gene in the C group were averaged.

2.5. Statistical Analysis
2.5.1. Regression Model Analyses

To investigate the relation between age and AQP0-12 RNAseq levels, we used a
random intercept model generated using the formula:

RNAseq levelgene,region = β0,gene,region + β1age + ε .

Additionally, linear regression models were fit for all subjects for each gene/anatomical
region separately, controlling p-values using the Bonferonni correction.

https://human.brain-map.org
https://human.brain-map.org
https://help.brain-map.org/display/humanbrain/Documentation
https://help.brain-map.org/display/humanbrain/Documentation
https://help.brain-map.org/display/humanbrain/Documentation
https://help.brain-map.org/display/humanbrain/Documentation
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2.5.2. Supervised Clustering Analyses

Using our genes and anatomical regions of interest, supervised clustering meth-
ods were used to investigate which of the probes were primarily responsible for dif-
ferences between clusters determined in the healthy young and aged groups (https:
//human.brain-map.org accessed on 21 September 2021). This method produces Principal
Components, defined as a function of the probes loaded into the analyses. The ‘loadings’
(coefficients) for the probes show how strongly each of the probes affect the clustering.
Each principal component describes a linear combination of probes that best distinguishes
between the three anatomical regions (HIP, PCx, TCx). Probes for AQP11 and AQP9 de-
fined Principle Component 1. A total of 22 probes for various AQP genes defined Principle
Component 2. Supervised clustering analysis was performed using Sparse Partial Least
Squares Discriminant Analysis, as implemented in the mixOmics package [54] on RStudio.

2.5.3. Differential Expression Analysis

To determine whether there was a differential expression between each of the three
anatomical groups of interest in the young control (C) and AC group pooled, a differential
expression analysis was conducted using the limma package [55] to fit linear models on
RStudio. The models included individual ID as a covariate in order to account for the nested
structure of the data, which included multiple samples from each of the six individuals.
Furthermore, to investigate whether AQP gene expression changes with healthy aging, a
differential expression analysis was conducted on these individuals, dividing them into
their original groups (C and AC). Heatmaps were generated by graphing the log fold
change (logFC) of genes on GraphPad Prism 9.0 for probes that both showed a significant
result in the differential expression analysis.

2.5.4. Expression Analysis–Group Comparison

To investigate the potential change in individual gene expression profile in the control,
aged control and AD groups, a one-way ANOVA followed by multiple comparison post
hoc Tukey test of the RNAseq expression level for each AQP channel was conducted on
GraphPad Prism V9.0. The significance level for all analyses was set at p < 0.05.

3. Results
3.1. Subject Population Characteristics

The demographic information for each group is presented in Table 1. No statistically
significant difference between the Aged Control (AC) and Alzheimer’s disease (AD) groups
was observed for education level (p = 0.655) but was observed for age when comparing AC
and AD groups to the C group (p < 0.0001). However, as expected, AD patients showed
a significantly advanced degree of pathology, as measured by the Braak stage (p < 0.05).
Detailed patient information is summarized in Supplementary Table S3.

Table 1. Demographic data for human subjects. Age, education and the Braak staging level are shown
as median values; numbers in parentheses (1st, 3rd) indicate the 1st and 3rd quartile values. Statistical
significant differences between age ranges were evaluated via a non-parametric Mann–Whitney U
test; **** indicates p < 0.0001 as compared to the young control group; * indicates p < 0.05 for AD
versus the aged control group; n is the number of subjects.

Groups n Age (yrs) Education Braak Stage

Young control (C) 6 Range: 24–57
Median: 44 (31, 55) N/A N/A

Aged control (AC) 29 Range: 78–99 ****
Median: 86 (78.5, 89) Median: 15 (12, 16) Median: 3 (2, 3.5)

Probable Alzheimer’s
disease (AD) 11 Range: 79–99+ ****

Median: 87 (85–91.5) Median: 14 (12, 16) Median: 5 (2, 6) *

https://human.brain-map.org
https://human.brain-map.org
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3.2. Baseline AQP Expression Profiles Differ with Age in the Healthy Brain

Patterns of AQP4 channel expression in the brain have previously been shown to
change during healthy aging [56]. Work here investigated the association of age with the
expression profile of all AQPs in selected brain areas known to be impacted by AD, namely,
the hippocampus (HIP), parietal cortex (PCx) and temporal cortex (TCx). In the C and AC
groups, a supervised cluster analysis was conducted to probe the relationships between
age and AQP baseline expression profiles (Figure 1). Using a mixed-effect linear plot to
test for an overall relationship, a significant positive correlation (p < 10−10) was observed
for AQP RNAseq transcript levels as a function of the subject’s age in years (Figure 1a).
When segregated by AQP channel subtype, interesting region-specific differences in the age-
dependence of expression were evident in the linear regression plots (Figure 1b). AQP1 and
4, previously identified in the human brain, show a significant upward trend of expression
in the HIP only as a function of age (p < 0.0001). AQP5 and 10 gene expression profiles also
increased with age in the HIP and PCx, respectively (p < 0.05), the novel AQP channels
not previously identified in the human brain. AQP9 shows an upward trend in expression
within the HIP with age but with no significance, rather, a significant downward expression
is evident in both cortical regions investigated, PCx and TCx, with age (p < 0.05).
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Figure 1. AQP expression profiles show region-specific changes with age in healthy human brains.
(a) Mixed-effect linear plot testing the relationship between all AQP RNAseq levels and age in the
HIP (purple), PCx (green) and TCx (yellow) brain regions. Each point represents the RNAseq level
determined for a given gene in a single subject for the selected brain region: HIP (purple), PCx (green)
and TCx (yellow). t-values represent the test statistic associated with the comparison of the two
means using two-sample t-tests, with positive values indicating a larger average RNAseq. (b) Linear
regression plots of individual AQP channels and RNAseq levels as a function of age separated by
anatomical areas with a significance change in trends are shown, respectively, as *** for p < 0.001 and
* for p < 0.05. The p values for regressions that had significant non-zero slopes are listed as inset text
boxes within each figure panel.

3.3. AQP Expression Profiles in the Hippocampus Differ from Those in Cortex in Healthy Brain

A clear distinction in expression profiles was observed between the HIP cluster and the
PCx and TCx clusters, with no difference between cortical regions observed when compar-
ing probes of AQP channel genes within each anatomical region (Figure 2). Two principal
components (Figure 2a, component 1 and component 2) were evaluated as a function of all
probes used (Supplementary Table S2). The distinction between the observed clusters was
defined almost entirely by probes 1059114 (AQP9) and 1032651 (AQP11), suggesting an
important role of these two AQPs in driving the differences between anatomical regions
(Supplementary Table S4). Subsequently, a differential expression analysis was used to
determine the log fold change (logFC) of gene expression within the PCx and TCx regions
as compared to the HIP region (Figure 2b). Interestingly, for all AQP probes tested, the
PCx and TCx regions showed no difference in expression profiles when compared to each
other (Figure 2b,c); in contrast, differences were observed when either cortical region was
compared to the HIP (Figure 2b,c). AQP11 probes showed significantly higher logFC values
(p < 0.001; Table 2) in both PCx and TCx when compared to HIP (Figure 2d). Conversely,
probes for AQP1, 3, 4, 9 and 10 showed low logFC values in the cortical regions, and
higher expression in the HIP (Figure 2d, Table 2). Results here suggest that the diversity
of AQP channels present in the human brain is broader than previously reported, and
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that their levels differ based on the anatomical location, as illustrated here for the HIP and
cortical regions.
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Figure 2. AQP gene expression profiles in normal aging show differences between HIP and cor-
tical regions. (a) Supervised cluster analysis of AQP probes in the HIP (purple), PCx (green) and
TCx (yellow). Principle components are functions of the probes loaded (Supplementary Table S2).
(b) Summary table of gene expression directions of change and (c) corresponding plots of RNAseq
levels of all AQP probes in HIP, PCx and TCx. (d) Heat map representing differential expression
analyses of AQP genes in the PCx and TCx vs. the HIP for healthy patients at all ages (C and AC).
LogFC represents the log fold change in gene expression. Only genes with significant changes in
LogFC are shown (details in Table 2).
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Table 2. AQP transcript expression levels in cortical regions differ from those in the hippocampal
formation. Differential expression analysis of AQPs in the (i) PCx and (ii) TCx as compared with HIP
for subjects in the combined C and AC groups. The average expression (AveExpr) was determined
by averaging all RNAseq levels over all probes used for the indicated gene. t-values represent the
test statistic associated with the comparison of the two means using two-sample t-tests, with positive
values indicating a larger average RNAseq in the cortical region compared to the hippocampus.
p values were adjusted (Adj P) for multiple tests using the Bonferroni correction, with significant
differences indicated as p < 0.05.

(i) PCx Gene logFC AveExpr t p Value adj. p Val

Higher expression

AQP11 1.2660 −0.1312 6.8948 <0.001 <0.001

Lower expression

AQP3 −1.8606 0.2854 −13.497 <0.001 <0.001

AQP1 −1.1530 −0.2480 −8.046 <0.001 <0.001

AQP4 −0.8933 0.0305 −4.396 <0.001 1 × 10−4

AQP10 −0.5890 0.2891 −3.164 0.0022 0.0058

AQP9 −0.5273 0.1916 −2.441 0.017 0.0368

No significant difference

AQP5 −0.3550 −0.0021 −1.954 0.0544 0.0911

AQP2 −0.3983 0.2462 −1.940 0.0561 0.0911

AQP0 −0.2684 0.0776 −1.362 0.1773 0.2561

AQP8 0.1785 0.2422 1.0513 0.2964 0.3854

AQP12 0.1078 0.2901 0.3748 0.7088 0.8377

AQP7 0.0299 0.2040 0.1616 0.8721 0.9448

AQP6 0.0129 −0.2175 0.0623 0.9505 0.9505

(ii) TCx Gene logFC AveExpr t p Value adj. p Val

Higher expression

AQP11 0.8442 -0.1312 4.6514 <0.001 <0.001

Lower expression

AQP3 −1.8251 0.2854 −13.39 <0.001 <0.001

AQP1 −1.3989 −0.2480 −9.876 <0.001 <0.001

AQP4 −0.9932 0.0305 −4.945 <0.001 <0.001

AQP9 −0.6515 0.1916 −3.051 0.0031 0.0082

AQP10 −0.5451 0.2891 −2.963 0.0041 0.0088

No significant difference

AQP0 −0.4008 0.0776 −2.057 0.0431 0.0801

AQP5 −0.3258 −0.0021 −1.814 0.0737 0.1197

AQP2 −0.3557 0.2462 −1.753 0.0837 0.1208

AQP12 −0.3756 0.2901 −1.321 0.1904 0.2475

AQP8 0.1857 0.2422 1.106 0.2721 0.3216

AQP6 −0.2120 −0.2175 −1.039 0.302 0.3271

AQP7 −0.0685 0.2040 −0.375 0.7086 0.7086
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3.4. Age-Dependent Changes in AQP Expression Profiles Differ between the HIP and Cortical
Regions in the Healthy Brain

Differences in expression profiles of AQPs detected in the HIP as compared to the PCx
and TCx (Figure 2) were investigated for effects of the subject’s age in healthy brains from
all ages (C and AC) (Figure 3). A comparison of transcript levels looking at the direction
of gene expression change (Figure 3a) between each cortical region and the HIP showed
that the logFC values of AQPs 1, 4 and 5 were lower in cortex in AC but not in C groups
(Figure 3b,c). Conversely, logFC for AQP10 was lower in both cortical regions as compared
to the HIP in the C but not the AC group. Interestingly, the expression profile of AQP9
in the PCx decreased with age, shifting from levels higher than the HIP in the C group to
lower than HIP in the AC group (Figure 3b). In the TCx, a similar shift in the pattern of
expression of AQP9 was observed, ranging from no difference as compared to the HIP in
C to lower levels of expression in AC (Figure 3c). Regardless of age, both cortical regions
showed lower levels of AQP3 (p < 0.001) and higher levels of AQP11 (p < 0.001) compared
to the HIP (Figure 3b,c).
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Figure 3. AQP expression profiles differ between non-AD age groups in cortical regions in comparison
to the hippocampal formation. (a) Summary table of the frequency of occurrence of directions of
change in gene expression for non-AD groups (C and AC) in the PCx, TCx and HIP. (b,c) Heat maps
present the results of differential expression analyses of AQP genes in the (b) PCx and (c) TCx as
compared to HIP in non-AD patients, grouped by age. LogFC represents the log fold change in gene
expression in the PCx and TCx compared to the HIP, as detailed in Tables 3 and 4. Squares marked
with ‘X’ indicate no significant LogFC change in the respective genes.
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Table 3. Ratios of quantified AQP transcript levels in parietal cortex as compared to the hippocampal
formation differ with age. The average expression (AveExpr) levels were determined by averaging
the RNAseq levels for all probes used for a given gene. t-values represent the test statistic generated
by a comparison of the means using two-sample t-tests, with positive values indicating a larger
average value for the RNAseq level in the parietal cortex region as compared to the hippocampus.
P values were adjusted (Adj P) for multiple tests using the Bonferroni correction, with significant
differences indicated by p < 0.05.

(i) C Gene logFC AveExpr t p Value adj. p Val

Higher expression

AQP11 1.6950 −0.1312 3.9866 1 × 10−4 8 × 10−4

AQP9 1.2396 0.1916 2.7069 0.0079 0.0257

Lower expression

AQP3 −1.5951 0.2854 −4.4059 <0.001 3 × 10−3

AQP10 −1.2611 0.2891 −3.1242 0.0023 0.01

No significant difference

AQP0 −0.7967 0.0776 −1.6654 0.0988 0.2568

AQP4 0.6127 0.0305 1.5691 0.1196 0.2591

AQP7 0.4365 0.2040 1.0265 0.307 0.5701

AQP2 −0.3546 0.2462 −0.7644 0.4463 0.7253

AQP6 0.2345 −0.2175 0.5093 0.6116 0.8834

AQP12 0.1776 0.2901 0.2705 0.7873 0.9189

AQP8 −0.0834 0.2422 −0.2207 0.8258 0.9189

AQP5 0.0477 −0.0021 0.1169 0.9072 0.9189

AQP1 −0.0299 −0.2480 −0.1020 0.9189 0.9189

(ii) AC Gene logFC AveExpr t p Value adj. p Val

Higher expression

AQP11 1.2161 −0.1312 6.0634 <0.001 <0.001

Lower expression

AQP3 −1.8470 0.2854 −10.815 <0.001 <0.001

AQP1 −1.4439 −0.2480 −10.439 <0.001 <0.001

AQP4 −1.2894 0.0305 −7.0001 <0.001 <0.001

AQP9 −0.9655 0.1916 −4.4691 <0.001 1 × 10−4

AQP5 −0.4671 −0.0021 −2.4253 0.017 0.0368

No significant difference

AQP10 −0.3984 0.2891 −2.0920 0.0388 0.0721

AQP2 −0.3731 0.2462 −1.7051 0.0911 0.148

AQP8 0.2499 0.2422 1.4010 0.1641 0.2371

AQP0 −0.0976 0.0776 −0.4325 0.6663 0.8245

AQP12 0.1206 0.2901 0.3895 0.6977 0.8245

AQP7 −0.0571 0.2040 −0.2847 0.7764 0.8411

AQP6 −0.0128 −0.2175 −0.0587 0.9533 0.9533
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Table 4. Ratios of quantified AQP transcript levels in the temporal cortex as compared to the
hippocampal formation differ with age. The average expression (AveExpr) levels were determined
by averaging the RNAseq levels for all probes used for a given gene. t-values represent the test
statistic associated with the comparison of means using two-sample t-tests, with positive values
indicating a larger average RNAseq in the cortical region as compared to the hippocampus. P values
were adjusted (Adj P) for multiple tests using the Bonferroni correction, with significant differences
indicated by values p < 0.05.

(i) C Gene logFC AveExpr t p Value adj. p Val

Higher expression

AQP11 1.4622 −0.1312 3.4391 8 × 10−4 0.0074

Lower expression

AQP3 −1.2113 0.2854 −3.3457 0.0011 0.0074

AQP10 −1.2381 0.2891 −3.0671 0.0027 0.0119

No significant difference

AQP9 1.0602 0.1916 2.3150 0.0225 0.0732

AQP4 0.7552 0.0305 1.9340 0.0558 0.1209

AQP0 −0.9250 0.0776 −1.9335 0.0558 0.1209

AQP2 −0.5220 0.2462 −1.1253 0.263 0.4884

AQP7 0.2543 0.2040 0.5980 0.5511 0.8955

AQP8 −0.1370 0.2422 −0.3624 0.7178 0.9279

AQP1 −0.0974 −0.2480 −0.3323 0.7403 0.9279

AQP5 0.1005 −0.0021 0.2461 0.8061 0.9279

AQP12 −0.0745 0.2901 −0.1134 0.9099 0.9279

AQP6 −0.0418 −0.2175 −0.0908 0.9279 0.9279

(ii) AC Gene logFC AveExpr t p Value adj. p Val

Higher expression

AQP11 0.7296 −0.1312 3.6732 4 × 10−4 0.001

Lower expression

AQP1 −1.7035 −0.2480 −12.435 <0.001 <0.001

AQP3 −1.9022 0.2854 −11.247 <0.001 <0.001

AQP4 −1.4108 0.0305 −7.7335 <0.001 <0.001

AQP9 −1.0480 0.1916 −4.8983 <0.001 <0.001

AQP5 −0.4470 −0.0021 −2.3440 0.0209 0.0454

No significant difference

AQP10 −0.3690 0.2891 −1.9567 0.053 0.0984

AQP8 0.2502 0.2422 1.4164 0.1596 0.2227

AQP12 −0.4251 0.2901 −1.3858 0.1687 0.2227

AQP2 −0.2985 0.2462 −1.3772 0.1713 0.2227

AQP0 −0.2390 0.0776 −1.0695 0.2873 0.3395

AQP6 −0.2083 −0.2175 −0.9685 0.335 0.3629

AQP7 −0.1479 0.2040 −0.7444 0.4583 0.4583

Analyses of the differential expression for AQPs in the parietal cortex versus hip-
pocampus (Table 3) and in the temporal cortex versus hippocampus (Table 4) for both the
C (i) and AC (ii) groups showed that most AQP classes (AQPs 0, 2, 6, 7, 8, 12) maintained
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comparable expression levels across both cortical regions as compared with hippocampus
in healthy controls, and did not appear to be affected by age. Regional differences that
appeared insensitive to age were observed for AQPs 11 and 3; AQP11 was consistently
higher in both PCx and TCx than HIP in both young and aged cohorts, and AQP3 was
consistently lower in the cortex than hippocampus across both age groups (Tables 3 and 4).
Regional differences that were sensitive to age were observed for AQPs 1, 4, 5, 9 and 10. In
this set, lower levels of transcripts in both cortical regions were observed in the aged but not
the young cohorts for AQPs 1, 4, 5, 9. Conversely, AQP10 was lower in the cortical regions
than the hippocampus in young cohorts, but there was no difference between regions in the
aged cohorts. These data suggest that aging has a notable effect on the expression profiles
of several AQPs, but not AQPs 3 and 11 (as highlighted in Figure 3 above). Differences in
levels of transcripts between anatomical regions suggest specialized roles or distributions
for AQP classes among neuronal and glial cell types, supporting the idea that the levels and
patterns of AQP expression also might be sensitive to age-related disease states, such as AD.

3.5. Regional Differences in Levels of AQP Transcripts Associated with Probable Alzheimer’s Disease

In the probable Alzheimer’s disease cohort, region-specific subsets of the classes of
AQPs showed higher levels that were significantly greater or showed trends towards
elevations in the disease group that exceeded the levels observed in aged controls (Figure 4).
The AD-associated trends toward augmented levels of transcripts were observed in the
temporal cortex for AQP0, in the parietal cortex for AQPs 5 and 10, and in the hippocampus
for AQPs 1, 4, 5, 6 and 9 (Figure 4a). The reverse trend in which transcript levels decreased
in AD as compared with AC was seen uniquely for AQP7 in the hippocampus.

Another intriguing pattern that emerged from this analysis was for AQP9, with levels
high in young controls, substantially reduced in both AC and AD cohorts for both cortical
regions, and conversely elevated with age in the hippocampus (Figure 4a). There were no
changes in AQP3 or AQP11 levels in AD as compared to AC and C groups within regions,
although differences between regions were observed. AQP3 was predominantly in the HIP
with little cortical expression. Conversely, AQP11 levels were high in both cortical regions
but minimal in the HIP. Consistent baseline levels of expression of AQPs 3 and 11 suggest
that aquaglyceroporin function in the hippocampus and peroxiporin activity in the cortex
are ongoing mechanisms of metabolism and homeostasis. With the notable exception of
reduced cortical AQP9, the expression profiles for AQP channels increased during natural
aging, a process that in a subset of AQP classes appeared to be amplified by AD pathology.

A limitation of this study was the low n values available for human samples; the
transcript levels for AQPs 0, 6, 8 and 10 showed increases that only reached statistical
significance in the AD group when compared to the C group (Figure 4a). For example, in
HIP, the AQP6 transcript was increased in the AD as compared to the C group (p < 0.05);
AQPs 0 and 8 expression levels were higher in the TCx of AD patients than C patients
(p < 0.05); and AQP10 expression was increased in AD patients in the PCx (p < 0.001;
Figure 4a) as compared to the young control group. However, it is important to note
that when directly comparing AD to age-matched AC groups, there were no significant
differences in transcript levels for any classes of AQPs.

Nonetheless, potentially informative patterns of increased AQP levels in AD were
apparent for specific classes, as observed from data compiled as plots of average logFC
values for the AD cohort versus the AC group (Figure 4b) in each of the three brain regions.
In this analysis, identical levels of expression produce a theoretical line with a slope of 1.0.
AQPs with levels higher in AD than AC are reflected by points above the line. For example,
in the HIP, the average trend points of AQPs 5, 6, 9 and 11 fell above the line. In the PCx,
AQPs 0, 3, 7, 9 and 11 were higher in the AD cohort. In the TCx, AQPs 0, 1, 7 and 11 were
higher in the AD versus the AC cohorts (Figure 4b). While not definitive, these results
offer testable predictions for ongoing work aimed at gaging the potential importance of the
variety of CNS-expressed AQP channels (such as AQPs 0, 7 and 11 in cortex) as targets of
interest for understanding healthy functioning, as well as processes of neuropathology.
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Figure 4. Associations between AD status and AQP transcript levels in the human brain. (a) Results
of multiple comparison analyses of AQP RNAseq levels in the three groups, young control group
(C), age control group (AC) and the AD group, are represented as box and whisker plots showing
median, min and max values. Statistical comparisons for AD were carried out with reference to the
(C) and (AC) groups, showing **** for p < 0.0001, *** for p < 0.001, ** for p < 0.01 and * for p < 0.05.
(b) The average trend comparison plot of AQP expression profiles in the AC vs. AD groups. Each
point represents the average logFC mean expression for each gene and region, for AC vs. AD. The
dotted lines represent identity (y = x) in the average transcript levels between the AC and AD groups;
points above the line are higher in AD and points below are higher in the AC groups.
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4. Discussion

We have discovered a surprising diversity of AQP channels in the CNS, confirming
seven known classes of AQPs, and showing that three additional classes—AQPs 0, 6, and
10—are present in the human brain at the transcript level. Prior work defined three classes
of AQP channels, establishing AQPs 1, 4 and 9 as the primary subtypes expressed in the
mammalian brain in both physiological and pathological conditions [30,33,42]. Less well
investigated RNA signals for other AQPs such as AQPs 3, 5, 8 and 11 also have been
detected in the brain in vivo [47,48], though possible functions remain to be defined. Work
here using data harvested from the Allen Brain Atlas explored the expression profiles
of all classes of AQPs (AQPs 0–12) in the human brain, and investigated whether their
expression patterns were affected in healthy aging and AD. We identified novel RNAseq
signals for AQPs 0, 3, 5, 6, 7, 8, 10 and 11 in the human brain in hippocampal and cortical
regions known to be impacted by Alzheimer’s disease. Of these channels, peroxiporins
AQPs 0, 6 and 8 [21,23,24] (which are permeable to H2O2) and the aquaglyceroporin
AQP10 (permeable to glycerol) were expressed at higher levels in AD as compared to
young controls.

The major advance reported in this study is the demonstration that AQP channels
shown previously to be permeable to H2O2 (termed ‘peroxiporins’) show subtype-specific
patterns of expression in the human brain that vary as a function of age, neuroanatomical
region, and Alzheimer’s disease status. Oxidative stress levels are known to increase
during aging [57], resulting in increases in reactive oxygen species by-products, such as
H2O2. H2O2 levels are further elevated in AD as compared to healthy aging brains and
are thought to potentiate mitochondrial dysfunction and disease pathology by promoting
Aβ-induced neurotoxicity and pathological tau modifications [58–60]. The second outcome
of interest here is the finding that multiple classes of aquaglyceroporins are differentially
regulated with respect to brain age and disease status.

In the hippocampus in particular, a subset of the AQP classes (AQPs 1, 4, 5 and 9)
showed strong increases with age, with or without AD. Additionally, in the hippocampus,
AQP6 was increased in AD, and AQP7 showed higher levels with age. AQPs 7, 9 and 10 are
aquaglyceroporins (discussed in more detail below). AQP1 has been shown to function as a
perioxiporin in cardiac ventricular muscle cells [61]. Healthy aging previously was reported
to correlate with the increased expression and localization of AQP4 in astrocytes [62]. AQP4,
as do most members of the broad family, functions as a water channel but was not found to
mediate H2O2 permeability when tested in the yeast expression system [63]; however, it is
worth noting that AQP1 tested in the same assay similarly but did not enable detectable
H2O2 fluxes, though this functionality was subsequently confirmed in mammalian heart
cells [61]. AQP5 shows peroxiporin activity in the eye (21). Three classes of AQPs that
showed increased levels in brain regions only in the presence of Alzheimer’s disease
(AQPs 0, 6, 8) also are known to function as peroxiporins [21,23,24]. AQP0 has been
characterized as an intrinsic membrane protein uniquely expressed in the eye lens and
has been shown to facilitate transmembrane fluxes of H2O2 [21,64]. AQP0 expression in
the brain is a novel finding. In the hippocampus, AQP6, which has been characterised as
a peroxiporin in malignant pleural mesothelioma [23], also was higher in the AD cohort.
AQP8, a pancreatic β-cell peroxiporin, similarly was detected at high levels in the TCx
of AD patients. AQP11 showed a unique pattern in being expressed at higher levels in
the cortex than in the hippocampus. AQP11 has been characterized as a peroxiporin in
endoplasmic reticulum that mitigates H2O2-induced stress in the kidney proximal tubule
cells [25]. The demonstration here of the AQP11 expression in the cortex and hippocampus,
coupled with prior work confirming the AQP11 RNA expression in the cerebellum of
mice [48], suggests that AQP11 might also be involved throughout the brain as one of the
mechanisms involved in decreasing oxidative stress.

Aquaglyceroporins that increased with age included AQPs 7 and 9 in the hippocam-
pus, prompting the idea that an increased expression could be an adaptive response to
altered metabolic demands [65]. In the parietal and temporal cortices, the changes in AQP
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expression with age were more subtle, ranging from no appreciable change to increased
levels with age, with the exception of AQP9 which conversely showed strong decreases
in the Ptx and Ctx regions of aged brains. Neuronal ATP production is thought to de-
cline with aging [66], leading to a hypometabolic state [67] which might be offset in part
by enhancing the glycerol uptake to boost pyruvate production and ATP synthesis [68].
AQP9 in astrocytes is known to facilitate glycerol shuttling from astrocytes to neurons
for energy support [45,69]. Data here suggest that AQP9, while increased in HIP, might
be less likely to be a candidate for compensatory mechanisms in the cortex given the
striking decrease in transcript levels observed in the cortical regions for both the AC and
AD cohorts. In contrast, the aquaglyceroporin AQP10 [70] was increased in the PCx of AD
patients. AQP10 has been demonstrated previously to mediate the pH-sensitive transport
of glycerol in adipose cells and enterocytes [70], and could serve a comparable role in
the brain. Differences in the gating mechanisms between aquaglyceroporin classes might
influence which subtypes are selectively upregulated to meet different brain region de-
mands. The disease-specific increases in expression in certain AQP subtypes, which are
statistically significant as compared to young controls, support a proposed association with
neuropathological disease.

An intriguing concept which we propose merits further study is that specific classes
of peroxiporins might be upregulated as a protective mechanism to shuttle excess H2O2
and alleviate stress. The regional influences governing AQP expression patterns remain to
be determined, but could reflect heterogeneity in neuronal and glial subtypes, differences
in neuronal activity and metabolic demands or other factors. A single-cell RNAseq study
in C57BL/6J mice by Batiuk and colleagues (2020) showed that astrocyte populations from
the hippocampus of mice, unlike cortical regions, contained large numbers of progenitor
astrocytic stem cells (AST4) as well as mature astrocytes (AST1) [71]. The AQP expression
in specific astrocyte subpopulations such as those in the hippocampus [32,38] could explain
in part the observed regional specialization of AQP expression patterns. Reactive astrocytes
accumulate in regions of damage, including those affected in age-related cognitive decline,
resulting in hypertrophy and cellular volume increases [72] which might be linked to AQP
expression [73]. AQP1 and 4 expression levels are increased in astrocytes during the early
pathology stage of AD [36,37]. With the continued expansion of the Allen Brain Atlas
database, future work will benefit from comparing the transcript levels of AQPs between
Alzheimer’s disease and age-matched controls.

The limitations of this work are the modest n values available for human brain RNAseq
data, which likely contributed to the lack of significant differences in expression profiles
between the AD and the AC cohorts (though trends towards increased RNAseq levels were
apparent in the disease group), and that age-dependent effects on the AQP expression are
likely to overlap with the disease pathology. Another important limitation that might have
influenced the absence of statistically significant differences between the AD and AC groups
was the low representation of female donors in the AD group (n = 3) as compared to AC
(n = 11). The risk for the development and progression of AD in females on average is higher
than males but depends on estrogen levels [74]; a re-analysis of the AD and AC groups
segregated by gender and hormone therapy status might reveal important correlations
with AQP expression profiles that merit exploration when expanded database information
becomes available. An additional limitation is the need to confirm AQP expression at the
protein level, to determine whether the expression profile changes determined by transcript
analyses are reflected by changes at the protein level. Probing the functionality of the
proteins then will be an essential next step towards identifying possible novel targets for
therapeutic interventions in AD.

It will be of interest to determine whether the trends towards similar responses ob-
served here for AC and AD (which did not reach statistical significance) reflect processes of
natural aging effects on AQP expression levels that are similar or amplified in the disease
state. Histological analyses of human AD sections from the hippocampus have shown that
the AQP1 expression appears to be localized in multipolar fibrillary astrocytes surrounding
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neurons, whereas AQP4 expression appears to be more diffusely distributed in astrocytes
(34), suggesting that some of the spatiotemporal changes in AQP expression noted here
might reflect changes in the regional status of astrocyte populations. It is important to
consider that AQP up- or downregulation responses might be relevant to nervous system
protection rather than being involved in driving the pathology, and levels of transcripts do
not necessarily correspond directly to levels of functional protein in cell membranes. How-
ever, our data suggest that changes in AQP levels could be a response to natural processes
of aging and mechanisms of either protection or pathology in neurodegenerative disease.

The patterns of AQP regulation in AD are novel and subtype-specific. The three
established classes of brain AQPs described previously in normal physiological conditions,
AQPs 1, 4 and 9, are associated with age, but data here suggest that these subtypes alone
might not be sufficient to mediate responses to augmented pathological stressors. Our
findings suggest that a diverse array of peroxiporin and aquaglyceroporin subtypes could
be relevant to the processes of brain aging and disease. The results here are the first
to show that AQPs 0, 6, 8 and 10 are expressed in the brain and increased with AD or
age. Corresponding changes in protein levels and patterns of localization in neurons and
glia remain to be defined and are a focus of work in progress. The exciting discovery of
previously undetected classes of peroxiporins and additional aquaglyceroporins in the
human brain compels further research on their potential roles in aging and AD-related
diseases. Understanding the roles of an expanding array of identified brain peroxiporins
and aquaglyceroporins in the brain is needed for uncovering homeostatic mechanisms
that enable healthy aging and protection from damage, or compromise brain function in
Alzheimer’s and other neuropathological diseases.

5. Conclusions

The major outcome of this study was the discovery that the pattern of AQP expres-
sion in the brain is more diverse than previously reported, with possible relevance to
processes of healthy aging and AD. The further exploration of the expression and function
of aquaglyceroporins, and in particular, peroxiporins, in neurological diseases is an area of
ongoing research interest. Identifying the sub-cellular localization of AQP channels could
provide critical insights into their potential roles in AD pathophysiology. AQPs are of
interest as novel therapeutic targets for the treatment of not just AD, but potentially other
neurodegenerative diseases that might similarly rely on changes in the expression profiles of
peroxiporins as components of homeostatic responses to age and disease-related stressors.
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