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Abstract: Emerging machine learning (ML) technologies have the potential to significantly improve
the research and treatment of rare diseases, which constitute a vast set of diseases that affect a
small proportion of the total population. Artificial Intelligence (AI) algorithms can help to quickly
identify patterns and associations that would be difficult or impossible for human analysts to detect.
Predictive modeling techniques, such as deep learning, have been used to forecast the progression of
rare diseases, enabling the development of more targeted treatments. Moreover, AI has also shown
promise in the field of drug development for rare diseases with the identification of subpopulations
of patients who may be most likely to respond to a particular drug. This review aims to highlight the
achievements of AI algorithms in the study of rare diseases in the past decade and advise researchers
on which methods have proven to be most effective. The review will focus on specific rare diseases,
as defined by a prevalence rate that does not exceed 1–9/100,000 on Orphanet, and will examine
which AI methods have been most successful in their study. We believe this review can guide
clinicians and researchers in the successful application of ML in rare diseases.
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1. Introduction

The term rare diseases refers to a vast set of diseases that affect a small proportion
of the total population; there are more than 7000 known disorders, and an estimated
250 rare new diseases are discovered annually [1]. In addition, diseases with a prevalence
of <1 case per 50,000 population are defined as ultra-rare [2]. This definition is related
to a prevalence threshold [3], and it differs depending on the jurisdiction. In Europe,
the European Medicines Agency considers a prevalence of less than 5 in 10,000 people (less
than 1 in 2000) [4], while in the United States, diseases affecting less than 200,000 people
in the country were defined as rare by the Orphan Drug Act in 1983 [5]. In Japan, the
Ministry of Health, Labor, and Welfare defines a threshold of fewer than 50,000 individuals
in the country (equivalent to less than 1 in 2500 people) [6]. Therefore, an international
definition of rare disease is lacking. Although individually they can be considered rare,
they collectively afflict more than 500 million people worldwide [7]. Most of these disorders
have characteristics that pose serious challenges for both researchers and public health
professionals, especially for patients who face not only a loss in terms of health and quality
of psychological and social well-being, but also financial burdens [8].

First, the process of diagnosing a rare disease is often long and exhausting. In 25% of
patients, it takes between 5 and 30 years after disease onset to receive a correct diagnosis,
which requires the participation of a competent and comprehensive clinical team [9].
A survey conducted from October 2019 through March 2020 by the National Organization
for Rare Disorders [10] on 1108 individuals found that 50% of patients and caregivers
attribute diagnostic delays to a lack of knowledge about the disease, while 42% believe that
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delays are caused by limited medical specialization. Many patients identified the problem
of doctors not being able to link symptoms, particularly between different organ systems,
in addition to the fact that waiting times to consult specialists are long and there would
be a need for more tests. A diagnostic delay can have tremendous effects on the patient’s
clinical picture, so prompt and accurate diagnosis are the starting point for being able to
find therapeutic interventions and resources that can ensure a good clinical outcome [11].

What complicates the rare disease odyssey is that the diagnosis is never the end of
the journey, since even from a prognostic and therapeutic point of view, there are huge
gaps to be filled [12]. The difficulties encountered at the prognostic level are related to
the lack of valid parameters and/or biomarkers, since the molecular pathophysiological
mechanisms are still largely unknown. Moreover, the small number of patients does
not allow statistically significant parameters to be derived [13]. Thus, the prognosis of
patients may change depending on various genetic and environmental factors, but it is
complicated to arrive at standards of care for treatment and rehabilitation because health
research is necessarily conducted on a small scale and cannot be based on evidence or
experience [14]. Conventionally, it takes 10 to 15 years to bring a drug to market, with
an average R&D cost of $2.6 billion [15]. These two factors represent a bottleneck in the
drug discovery pipeline for rare disorders, as research costs are high while revenues are
low due to the small number of patients. This implies that the development of new drugs
and treatments can be time-consuming and hindered by the lack of data and funding [16].
The heterogeneous patient populations, often unknown etiology and pathogenesis, the
timing of disease progression, and the lack of exhaustive clinical studies make the search
for specific drugs very difficult [17]. The key problems related to the development of drugs
and therapies for rare diseases are [13]:

• only small cohorts of patients are interested in purchasing these drugs, making them so-
called orphan drugs because they are not competitive for pharmaceutical companies.

• difficulties in treatment because most rare diseases are caused by genetic errors and/or
have a degenerative nature.

• significant percentages of patients do not respond to available therapies due to partial
or complete loss of response.

Therefore, rare diseases are often referred to as orphans as they fail to attract political,
financial, and research interests, even though laws have been passed over the years to
address this problem; the US Orphan Drug Act in 1983 and the European Union Regulation
on Orphan Medicines in 2000 have rewarded innovation and focused on the value of
healthcare for rare disease patients. Nevertheless, for most of them, there are no adequate
therapeutic options. Over the years, specialized interdisciplinary centers for rare disorders
have been established, where doctors and researchers can exchange opinions and ideas,
creating networks of knowledge and experience that can help patients [9].

Possible innovative answers to biomedical and clinical challenges come from the world of
information technology, and a striking example has been the fight against COVID-19. Since the
beginning of the pandemic, artificial intelligence (AI) has played a crucial role in the bat-
tle against the virus, and several methods have been applied for various purposes [18].
Machine learning (ML) and deep learning (DL) models have been used for the early
detection and diagnosis of COVID-19 by monitoring the demographic, clinical, and epi-
demiological characteristics of patients, and for developing diagnostic tools that can quickly
analyze CT scans and X-rays to identify patterns indicative of the disease [19]. AI has
also been used to predict patient vulnerability, in order to administer appropriate drugs
and treatments [20], as well as being decisive in accelerating the discovery of potential
vaccines. Similarly, AI has been an essential ally for public health policies in contact tracing,
monitoring the spread of the virus, and creating predictive models that have helped to
identify potential outbreaks. Thus, it is clear how AI is increasingly coming to the aid
of physicians at every stage of disease management, to evaluate the efficacy of medical
treatments or deeply investigate the correlation between patients and treatments according
to their own molecular characteristics. The precision medicine approach is widely applied
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to the healthcare area, in particular to rare diseases with the creation of patient registries
leveraging large amounts of data to discover potential links. It is a comprehensive and
prospective approach to prevention, diagnosis, treatment, and monitoring, built on the
genetic characteristics of the individual. Harmonizing databases and including registries
are the major facilitators to understand the complexity of diseases, to conduct clinical trials,
to improve the drug development process, and to assign the right treatment to the right
individual after reliable patient stratification. AI is an ally that can integrate and analyze
heterogeneous data (e.g., multi-omics data as well as images). However, first-generation
AI systems, which rely on the development of algorithms for diagnosis and treatment
that are trained on big data, are not always adequate to meet the needs of rare diseases.
Data scarcity and sparsity characterize these disorders, due to fragmented knowledge and
the limited number of data and specimens available [21]. Phenotype and disease severity
as well as pharmacogenomic and pharmacokinetic factors are the elements on which suc-
cessful diagnosis and treatment depend [13]. Diagnostic decision support systems (DDSS)
already exist, i.e., expert systems that support doctors in facilitating the diagnostic process
by incorporating medical knowledge. These systems have been proven effective and have
improved clinical diagnosis by compiling lists of appropriate differential diagnoses for
a given sample of tests [22,23]. For rare diseases, these systems need to be implemented.
Networks and registries have been built to bring together data and expertise on rare dis-
eases, making them free, accessible, and shareable worldwide. One example is Orphanet,
which over the past 20 years has become the go-to source for information on rare diseases,
facilitating access to information and means to identify potential patients, and contributing
to the development and sharing of knowledge. Other available datasets are the Online
Mendelian Inheritance in Man and Human Phenotype Ontology. The knowledge deposited
in these databases is used by DDSSs built for rare disorders, some examples of which are
FindZebra [24], PhenoTips [25], Rare Disease Discovery [26], and Ada DX [27].

Second-generation AI systems were designed to fill the diagnostic, prognostic, and
therapeutic gaps that must be overcome to achieve patient-centricity for patients with rare
diseases [28] (Figure 1). These systems use a personalized closed-loop system designed
to enhance end-organ function, overcome problems of tolerance or loss of efficacy, and
improve patients’ responses to chronic drugs [13] in a precision medicine perspective.

Biomedicines 2023, 11, 887 4 of 24 
 

 
Figure 1. Examples of ML applications within diagnosis, prognosis, and treatment. 

So far, two scoping reviews [29,30] have been written on the use of ML and DL in 
rare diseases. The purpose of this review is to highlight the successes of AI algorithms in 
the study of rare diseases in the past decade and provide researchers with guidance on 
which methods have proven to be most effective. The review will focus on specific rare 
diseases, as defined by a prevalence rate that does not exceed 1–9/100,000 on Orphanet, 
and examine which AI methods have been most successful in their study. 

2. Artificial Intelligence 
The scientific field called AI [31] tries to develop robots that can mimic human per-

ception and acquire the ability to solve problems for themselves. The fundamental subsets 
of AI are ML, which is based on the premise that computers can learn to execute certain 
jobs by gaining experience and improving their skills, and DL, which includes models of 
increasing complexity and abstraction. At the base of ML there are a series of different 
algorithms which, starting from primitive notions, learn to make a specific decision or to 
perform actions learned over time. Only a collection of data (training set) is given to the 
machine, which is iteratively evaluated to extract information, similarly to how humans 
learn. 

Based on how the computer learns data and information, four distinct learning ap-
proaches can be identified: supervised learning [32], unsupervised learning [33], semi-
supervised learning [34], and reinforcement learning [35]. Furthermore, the ML process 
consists of six components regardless of the algorithm adopted [36]. Data collection and 
pre-processing refer to the preparation of data, which is generally unstructured and 
sparse, in a format suitable for the algorithm’s input. The second step includes the stand-
ardization of the dataset, which helps to learn algorithms to avoid bias in the results. Later, 
feature selection can be applied to limit the number of input variables and reduce compu-
tational costs, thus improving efficiency. Even so, not all ML techniques are appropriate 
for all issues; rather, specific algorithms are better suited to a particular class of challenges. 
Any ML model’s ultimate goal is to learn from examples in a way that allows it to apply 
what it has learned to novel situations never encountered before. The model should then 

Figure 1. Examples of ML applications within diagnosis, prognosis, and treatment.



Biomedicines 2023, 11, 887 4 of 23

So far, two scoping reviews [29,30] have been written on the use of ML and DL in
rare diseases. The purpose of this review is to highlight the successes of AI algorithms in
the study of rare diseases in the past decade and provide researchers with guidance on
which methods have proven to be most effective. The review will focus on specific rare
diseases, as defined by a prevalence rate that does not exceed 1–9/100,000 on Orphanet,
and examine which AI methods have been most successful in their study.

2. Artificial Intelligence

The scientific field called AI [31] tries to develop robots that can mimic human percep-
tion and acquire the ability to solve problems for themselves. The fundamental subsets of
AI are ML, which is based on the premise that computers can learn to execute certain jobs by
gaining experience and improving their skills, and DL, which includes models of increasing
complexity and abstraction. At the base of ML there are a series of different algorithms which,
starting from primitive notions, learn to make a specific decision or to perform actions learned
over time. Only a collection of data (training set) is given to the machine, which is iteratively
evaluated to extract information, similarly to how humans learn.

Based on how the computer learns data and information, four distinct learning ap-
proaches can be identified: supervised learning [32], unsupervised learning [33],
semi-supervised learning [34], and reinforcement learning [35]. Furthermore, the ML
process consists of six components regardless of the algorithm adopted [36]. Data collec-
tion and pre-processing refer to the preparation of data, which is generally unstructured
and sparse, in a format suitable for the algorithm’s input. The second step includes the
standardization of the dataset, which helps to learn algorithms to avoid bias in the results.
Later, feature selection can be applied to limit the number of input variables and reduce
computational costs, thus improving efficiency. Even so, not all ML techniques are ap-
propriate for all issues; rather, specific algorithms are better suited to a particular class of
challenges. Any ML model’s ultimate goal is to learn from examples in a way that allows
it to apply what it has learned to novel situations never encountered before. The model
should then be trained on a subset of the total dataset, and its performance should then be
measured against unknown data. Moreover, an ML tool may also do a wide range of tasks:

• Classification: two or more classes are created with the input data, and the learning
system aims to produce a model capable of assigning a class to each input.

• Regression: conceptually similar to classification, with the difference that the output
is continuous.

• Clustering: data are divided into groups about which there is no prior knowledge.

Decision trees, genetic and boosting algorithms, and metric techniques, such as the
K-nearest neighbor algorithm (k-NN), Support Vector Machines (SVM), statistical ap-
proaches, Bayesian models (BM), Artificial Neural Networks (ANN), and Ensemble meth-
ods are all examples of ML techniques, which have a wide range of applications across
various disciplines.

Numerous instances of multidisciplinary research in the particular context of experi-
mental biology and biomedicine have shown the potential effectiveness of these methods.
The most common AI techniques used include the DL subclass, which has opened the
door to exploring tasks that would be difficult to address using shallow approaches [37].
Although it has a wide range of applicability, AI is still not a common technology employed
by scientists. To be precise and effective, ML algorithms require large volumes of data,
which is a challenging task in the biological field because digital information is scattered
and not always accessible, making it difficult to make accurate predictions.

3. AI Application in Rare Diseases

To identify scientific articles that apply ML in the field of rare diseases, papers contain-
ing ML data on rare diseases were searched on Pubmed. The search strings we used include
general terms related to AI (“artificial intelligence”, “machine learning”, “deep learning”)
and diseases (“rare disease”, “ultra-rare disease”, “orphan disease”). Thus, we chose to
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include papers on diseases defined by a prevalence rate that does not exceed 1–9/100,000
on Orphanet. We included papers published between 1 January 2013, and 31 December 2022,
and the studies identified in the search had to fulfill the following eligibility criteria: rare
disease topic and use of at least one ML method with sufficient detail to extract the basic
information analyzed in this review. Twenty-nine unique rare diseases were identified from
the reviewed articles. After having selected relevant studies according to the eligibility
criteria, we divided them based on the medical application, i.e., diagnosis, treatment, and
prognosis. Then, the medical study, input data, and algorithm type and performances were
assessed in detail for each study.

3.1. Diagnosis

Accurate diagnosis of rare diseases is an important task in patient triage, risk strat-
ification, and targeted therapies. Rare disease symptoms often appear unfamiliar and
atypical to a clinician due to their infrequency, and the likelihood that patients will not get
an appropriate diagnosis and subsequent successful therapy is highest. The variability of
rare diseases also makes it difficult to identify corresponding diseases in a timely manner
due to the lack of clinical diagnostic procedures accessible.

A typical approach for the diagnosis of a rare disease includes a thorough medical
history, physical examination, and genetic testing, which may identify specific mutations
that are associated with the disease. Additionally, imaging studies such as X-rays, MRI,
or CT scans may also be used. In this context, AI has the potential to play a significant
but challenging role, through the development of ML algorithms that can analyze large
amounts of data to identify patterns and markers that are characteristic of specific rare
diseases. Moreover, AI-based diagnostic tools can also help to reduce the time and costs
associated with diagnosing rare diseases by identifying potential diagnoses more quickly and
accurately. Many ML techniques have been created to help in standardizing and sharing clinical
and medical words through diverse medical resources, in order to improve inter-operability
in the field of rare diseases. However, ML algorithms often require a significant number of
training examples to achieve a good generalization performance, while the number of relevant
clinical records in this field is bounded by the size of the population.

New strategies have been used to compensate for the lack of training data for rare
disease diagnosis. For example, in [38], based on the requirement of providers to doc-
ument associated phenotypic information to support a diagnosis, authors hypothesize
that patients’ phenotypic data stored in electronic medical records can be used to speed
up disease diagnosis. In this study, they suggested a collaborative filtering method en-
hanced with natural language processing and semantic techniques to help with phenotypic
characterization-based rare disease identification. The preliminary results obtained demon-
strated that the use of collaborative filtering with phenotypic information can stratify
patients with relatively similar rare diseases. In [39], the phenotype-based Rare Disease
Auxiliary Diagnosis system was developed, adopting both the traditional phenotypic
similarity method and a new ML method to build four diagnostic models to support the
diagnosis of rare diseases. Each model provides, with high diagnostic precision, a list of
the top 10 candidate diseases as the prediction outcome. In another study [40] based on
the fact that clinical symptoms in children with pulmonary diseases are frequently non-
specific, authors developed and tested a questionnaire-based and data mining-supported
tool, providing diagnostic support for selected pulmonary diseases. Eight different classi-
fiers and an ensemble classifier were developed and trained to categorize any given new
questionnaire and suggest a diagnosis. All questionnaires of patients suffering from cystic
fibrosis, asthma, primary ciliary dyskinesia, acute bronchitis, and the healthy control group
were correctly diagnosed by the fusion algorithm and exhibited good results in arriving
at diagnostic suggestions. Moreover, due to the very nature of rare diseases, the lack of
historical data poses a great challenge to ML-based approaches in accurately identifying
rare diseases based on symptom descriptions. This work [41] used medical knowledge
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in automatically constructed knowledge graphs to develop a rare disease classification
algorithm, delivering robust performance and outperforming a wide range of baselines.

More than one method has been applied to Huntington’s Disease (HD). This is a rare,
inherited, neurodegenerative disorder that causes the progressive breakdown of nerve cells
in the brain and leads to the loss of cognitive, behavioral, and physical abilities. It typically
develops between the ages of 30 and 50, and the most visible symptom is chorea, which
consists of involuntary movements of the upper and lower extremities, face, or body, and
occurs in about 90% of patients. There is currently no cure for HD, but treatments are
available to manage symptoms and improve quality of life. Reliable markers measuring
disease progression in HD, before and after disease manifestation, may guide a therapy
aimed at slowing or halting disease progression. ML methods have been widely used for
gait assessment through the estimation of spatio-temporal parameters, demonstrating that
the application of supervised classification methods is a valuable and promising approach
to the automatic detection of disease stages in HD. In [42], Zhang et al. investigate the
potential of classifying patient disease severity based on individual footstep pressure
data using DL techniques. Using the Motor Subscale of the Unified HD Rating Scale as
the gold standard, the experiments performed showed that use of VGG16 and similar
modules can achieve high classification accuracy. The objective of the work described
in [43] was instead to propose a validated SVM classifier that takes advantage of Hidden
Markov Model-derived information for the classification of different pathological gaits.
Specifically, the presented methodology allowed for proper discrimination against gait
data from HD patients and healthy elderly controls using data from inertial measurement
units placed at the shank and waist. Furthermore, alterations in oculomotor performance
are among the first observable physical alterations during the pre-symptomatic stages of
HD. In the pre-symptomatic and early symptomatic stages of HD, quantifiable assessments
of oculomotor function have been investigated as potential markers of disease state and
development. In [44], Miranda et al. reported the application of the SVM algorithm to
oculomotor features pooled from a four-task psychophysical experiment. They were able
to automatically distinguish control participants from pre-symptomatic HD participants
and HD patients with high accuracy. Finally, quantitative electroencephalography (qEEG)
may also provide a quantification method for possible sub-cortical dysfunction occurring
before, or concomitant with, motor or cognitive disturbances observed in HD. In this pilot
study [45], the authors constructed an automatic classifier, distinguishing healthy controls
from HD gene carriers using qEEG. Derived qEEG features that correlated with clinically
known markers represented new potential biomarkers of HD disease progression.

Starting from the assumption that bio-imaging technologies are increasingly impacting
life sciences, and that sharing of image data is required to enable innovative future research,
there are several rare disease studies that use images as input data. Parkinson’s disease
(PD) and multiple system atrophy (MSA) are two neurodegenerative diseases that can have
overlapping clinical manifestations. MSA is a progressive rare neurodegenerative disorder
characterized by a combination of symptoms that affect both the autonomic nervous system
and movement. This is caused by the progressive degeneration of neurons in several parts
of the brain and spinal cord. The objective of the studies described in [46,47] were to
assess the potential of SVM techniques to distinguish between PD and MSA patients
at the single-patient level. Measures of cerebellar-brain network and cerebellar-striatal
connectivity and subcortical edge-wise tractography data were used as predicting features
in the articles respectively. Convolutional neural networks (CNN) were used in [48] to
distinguish each representative parkinsonian disorder using a single midsagittal MRI. CNN
enabled accurate discrimination among PD, progressive supranuclear palsy, MSA with
predominant parkinsonian features, and normal status, although the dataset was limited.

Amyotrophic lateral sclerosis (ALS) is also a neurodegenerative rare disorder that
affects nerve cells in the brain and spinal cord. The disease is progressive and leads to
increasing disability, with patients eventually losing the ability to speak, swallow, and
breathe. There is no known cure for ALS, and treatment options are focused on managing
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symptoms and prolonging survival. In [49], a deep CNN was developed for the classifica-
tion of ALS patients and healthy individuals. Based on the recent insight that regulatory
regions harbor the majority of disease-associated variants, authors employed a two-step
approach: promoter regions that are likely associated with ALS have been identified, and
individuals were classified based on their genotype in the selected genomic regions to
identify potentially ALS-associated promoter regions. The application of a new advanced
neuroimaging method, which delineates the profile of tissue properties along the corti-
cospinal tract of patients with ALS using diffusion tensor imaging (DTI), was described
in [50]. RF was used to assess the clinical utility of DTI in discriminating ALS from controls,
with the potential to be of diagnostic utility in ALS. Finally, in [51], the authors utilized
independent component analysis to derive brain networks based on resting-state functional
magnetic resonance imaging and used those derived networks to build an ALS disease
state classifier using SVM.

More generally, SVM methods have been widely and differently applied in the field
of rare diseases. In this study, Palstrøm et al. [52] aimed to improve the diagnosis of
amyloidosis by developing unbiased models based on proteomics data for the recognition of
amyloid-containing biopsies, followed by accurate subtyping of amyloidosis. The authors
demonstrated that using SVM on proteomics data can identify and classify patients with
high accuracy. Hypophosphatasia is a rare genetic disease in which patients may have
stress fractures, bone and joint pain, or premature tooth loss. In [53], the authors developed
several ML algorithms based on specific biomarkers of this disease, determining the
best way to diagnose this condition. SVM was the ML algorithm that provided the best
predictive models in terms of classification. Nguyen, et al. [54] proposed a measuring
instrument based on ML to quantitatively assess impairment levels while engaged in daily
activity, for monitoring the progression of neurodegenerative conditions of Friedreich ataxia.
Movement patterns during a simulated eating task were captured and kinematic biomarkers
were extracted that were consistent with the frequently used clinical rating scales. SVM and
other methods have been shown to accurately classify individuals with Friedreich ataxia
and control subjects. The work in [55] aimed to assess the feasibility of a supervised
ML algorithm for the assisted diagnosis of patients with clinically diagnosed progressive
supranuclear palsy (PSP), a rare neurodegenerative disorder that shares similar clinical
symptoms with PD. Morphological MRI of PD patients, PSP patients, and healthy control
subjects was used as the input of a supervised ML algorithm based on the combination of
PCA as a feature extraction technique and SVM as a classification algorithm. The authors
in [56] characterized the 3D structure of the cortical bone in high-resolution micro-CT
images to analyze the micro-structural properties of bone in cases of osteogenesis imperfecta
(OI), a genetic disorder of connective tissues caused by an abnormality in the synthesis or
processing of collagen. Numerous features computed from the image were used in an SVM
model to classify between healthy and OI bone.

ANN and DL models have been shown to be highly effective in identifying and
classifying diseases, and are becoming increasingly popular in the medical field as a tool
for accurate and efficient diagnosis. In both [57,58], NN models were applied to eye
photographs with the aim of identifying rare diseases. A hybrid learning-based neural
network classifier (HLNNC) was implemented in [57] to identify mucormycosis disease
by comparing images of patients with and without mucormycosis, a rare fungal infec-
tion caused by a group of molds. In [58], the discrimination ability of a deep CNN for
ultrawide-field pseudocolor imaging and ultrawide-field autofluorescence was demon-
strated for the detection of retinitis pigmentosa, a complex hereditary eye condition that
causes cells in the light-sensitive retina to degenerate. Using the proposed model, retinitis
pigmentosa was distinguished from healthy eyes with high sensitivity and specificity on
ultrawide-field pseudocolor and ultrawide-field imaging. Automatic segmentation was
instead implemented in [59,60]. In the first study, a deeply supervised 3D V-Net was used to
automatically segment the arteriovenous malformations volume on CT images, demonstrat-
ing its clinical feasibility by validating the shape, positional accuracy, and dose coverage of
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the automatic volume. In the second study, a DL approach based on a holistically-nested
network reliably segmented the lung across the breathing cycle to accurately analyze the
lung and respiratory muscle movement in Duchenne muscular dystrophy. This is a severe
form of childhood muscular dystrophy that affects 1 in 5000 boys, characterized by progres-
sive muscle degeneration caused by alterations in a protein that helps to keep muscle cells
intact. In [61], authors constructed an ANN diagnostic model capable of differentiating
primary immune thrombocytopenic purpura (pITP) patients and established a potential
pITP diagnosis platform. pITP is defined as isolated autoimmune thrombocytopenia with
idiopathic low platelet count, normal bone marrow, and unexplained causes of thrombocy-
topenia. In a recent study described in [62], authors studied multiple osteochondromas,
an autosomal dominant disease characterized by the formation of osteochondromas or
exostoses. The aim of this study was to create an efficient system based on a switching neu-
ral networks approach to characterize multiple osteochondromas patients in three classes,
according to the number of bone segments affected, the presence of skeletal deformities,
and functional limitations. Finally, due to the urgent need for biomarkers for the early
detection of neurodevelopmental spectrum disorders, in [63], authors applied a trained
neural network, ConvNetACh, with heart rate variation data of Rett syndrome patients,
capable of distinguishing them from subjects showing typical development.

Ensemble learning (EL) can help to improve the accuracy of rare disease diagnosis
by combining the predictions of multiple models and leveraging the strengths of each
individual model. This can be particularly useful in the context of rare diseases, where
the number of cases is limited and the diagnostic criteria can be complex. Pulmonary arte-
rial hypertension (PAH) is a rare but progressive cardiopulmonary disease that leads to
heart failure and premature death. MicroRNAs are small, non-coding molecules of RNA,
previously shown to be dysregulated in PAH, and contribute to the disease process in
animal models. In [64], EL techniques were used to select miRNAs able to distinguish
PAH and healthy controls. These circulating miRNAs and their target genes may provide
insight into PAH pathogenesis and reveal novel regulators of disease and putative drug
targets. Primary sclerosing cholangitis (PSC) is a rare, chronic, cholestatic liver disorder
characterized by inflammation and fibrosis in the bile ducts, and it is known for its frequent
concurrence with inflammatory bowel disease. Dysbiosis of the gut microbiota in PSC was
reported in several studies, but the microbiological features of the salivary microbiota in
PSC have not been established. In [65], Iwasawa et al. implemented a random forest (RF)
algorithm able to distinguish the salivary microbial communities of PSC patients, ulcerative
colitis patients, and healthy controls, indicating the potential of salivary microbiota as
biomarkers for the non-invasive diagnosis of PSC. In [66], an ML method based on RF
was developed to automatically detect the early deterioration of photoreceptor integrity
caused by inherited retinal degenerative diseases. An application example is choroideremia,
which is an X-linked chorioretinal dystrophy characterized by progressive degeneration
of the choroid. This tool can be used for choroidal flow assessment in order to provide a
more comprehensive description of disease progression. Finally, authors in [67] used RF
methodology in patients with three groups of rare myopathic conditions, which includes
any disease that affects the muscles that control voluntary movement, showing that the
methodology was able to classify myotonic dystrophy type 1 and inflammatory myopathy.
Table 1 summaries the described above ML methods applied for the diagnosis of rare diseases.
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Table 1. Summary of studies investigating ML methods applied for the diagnosis of rare diseases.

Disease Methods Data Type Sample Size Model Performance References

Huntington disease

ANN footstep pressure data 180 ACC: 89% [42]

SVM gait data 15 (post stroke patients), 17 (HD patients),
10 (Controls) ACC: 90.5% [43]

SVM eye tracking data 22 (Controls), 14 (pre-HD patients),
14 (HD patients)

ACC: 73.47%, TPR: 74.31%, TNR: 72.64% pre-HD vs.
Controls

ACC: 81.84%, TPR: 76.19%, TNR: 87.48% HD vs.
Controls

ACC: 83.54%, TPR: 92.62%, TNR: 74.45 % pre-HD vs.
HD

[44]

BM quantitative electroencephalography data 26 (preHD patients), 25 (Controls) TNR: 83%, TPR: 83%, ACC: 83%. [45]

Multiple system atrophy

SVM MRI data 30 (MSA patients), 62 (PD patients), 59 (Controls) ACC: 77.17% [46]

SVM MRI data 31 MSA patients, 65 PD patients, 54 (Controls) ACC: 78% [47]

ANN MRI data 125 (PD patients), 98 (PSP patients),
54 (MSA-P patients), 142 (Controls)

PD ACC: 96.8%, AUC: 0.995
PSP ACC: 93.7%, AUC: 0.982

MSA-P ACC: 95.2%, AUC: 0.990
Controls ACC: 98.4%, AUC: 1.000

[48]

Amyotrophic lateral sclerosis

ANN whole-genome data 4511 (ALS patients), 7397 (Controls) ACC: 77% [49]

RF brain MRI data 24 (ALS patients), 24 (Controls) ACC: 80% [50]

SVM fMRI data 32 (ALS patients), 31 (Controls) ACC: 71% [51]

Amyloidosis SVM proteomics data 75 (amyloid positive), 78 (Controls) ACC: 96–99% [52]

Hypophosphatasia SVM clinical data 23 (HPP patients), 22 (Controls) ACC: 90%, TPR: 87%, TNR: 93%, AUC: 0.936 [53]

Friedreich ataxia SVM kinematic data 30 (Friedreich patients), 14 (Controls) ACC: 91%, TPR: 90%, TNR: 93%, AUC: 0.91 [54]

Progressive supranuclear palsy SVM MRI data 28 (PSP patients), 28 (PD patients), 28 (Controls)
ACC: 85.8%, TPR: 86%, TNR: 86% PD vs. Controls

ACC: 89.1%, TPR: 89.5%, TNR: 89.1% PSP vs. Controls
PSP vs. PD 84.7 87.5 83.8

[55]

Osteogenesis imperfecta SVM µCT images 21 (specimens of 13 OI patients),
19 (specimens from 15 Controls) AUC: 96% [56]

Mucormycosis disease ANN eye photographs Not clear ACC: 99.5% [57]

Retinitis pigmentosa ANN ultrawide-field images 150 (RP patients), 223 (Controls)

AUC: 0.998, TPR: 99.3%, TNR: 99.1% of the
ultrawide-field pseudocolor group

AUC: 1.000, TPR: 100%, TNR: 99.5% of the
ultrawide-field autofluorescence

[58]

Cerebral arteriovenous malformation ANN Brain CT images 80
DSC: 85.2%
TPR: 88%
TNR: 99%

[59]

Duchenne muscular dystrophy ANN cine MRI data 15 (Duchenne patients), 16 (Controls)
DSC: 97.2 for the sagittal view

DSC: 96.1 for the axial view
DSC: 96.6 for the coronal view

[60]
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Table 1. Cont.

Disease Methods Data Type Sample Size Model Performance References

Immune thrombocytopenic purpura ANN proteomics data 64 (pITP patients), 70 (sITP patients),
82 (Controls) TPR: 87.5%, TNR 69.7%, ACC: 75.0% [61]

Multiple osteochondromas ANN clinical data 96 (class I), 137 (class II), 56 (class III)
Class I ACC: 94%
Class II ACC: 80%
Class III ACC: 79%

[62]

Rett syndrome ANN heart rate variation data 35 (Rett patients), 40 (Controls) ACC: 88% [63]

Pulmonary arterial hypertension EL microRNA expression data 64 (PAH patients), 43 (Controls) TPR: 91%, TNR: 64%, ACC: 81%, AUC: 0.85 [64]

Primary sclerosing cholangitis RF bacterial 16S rRNA gene sequence data 24 (PSC patients), 16 (UC patients), 24 (Controls) PSC AUC: 0.7423
UC AUC: 0.8756 [65]

Choroideremia RF OCT/OCTA data 16 (eyes with choroideremia), 5 (Controls eyes) J: 0.876 ± 0.066 [66]

Dermatomyositis RF sonographic muscle images 11 (IBM patients), 19 (DM1 patients),
21 (PM-DM patients) ACC: 78.4% [67]

Performance Metrics Abbreviations: true positive rate (TPR), true negative rate (TNR), positive predictive value (PPV), negative predictive value (NPV), accuracy (ACC), mean reciprocal
rank (MRR), Relative Absolute Error (RAE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Concordance index (C-index), area under the curve (AUC), Coefficient of
determination (R2), Confidence interval (CI), Sørensen–Dice coefficient (DSC), Jaccard similarity index (J).
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3.2. Prognosis

The prognosis includes information about the likely or expected evolution, duration,
and outcome of the condition. In most cases, the possibility of a cure is also mentioned;
however, most rare conditions are chronic and lifelong, so the goal is to manage the
condition rather than cure it [6]. The difficulty in making a predictive prognosis not only
affects the physical health of the patient, but also their mental health, leading to stress,
anxiety, and depression [68].

AI can play a significant role in the prognosis of rare disorders by helping to fill in the
gaps in data and experience [69]. By analyzing large amounts of data, such as electronic
health records, genomic data, and imaging studies, ML algorithms can identify patterns and
predict outcomes for individuals with rare diseases, providing valuable insights that can
inform prognoses and guide decisions [70]. Additionally, AI can be used to develop new
prognostic tools, such as risk prediction models, which can identify potential factors and
early warning signs of disease progression, allowing for early intervention and potentially
improving patient outcomes [71].

The commonly used AI approaches in the prognosis phase are supervised learning
with EL, ANN, and SVM as the most widely used methods. Unsupervised methods, such
as clustering, are used less frequently.

Two recent studies [72,73] used ML to identify new biomarkers that could be employed
for prognostic purposes for adrenocortical carcinoma (ACC), a rare and aggressive cancer
that arises from the cells of the outer layer of the adrenal gland. The prognosis for ACC
is generally poor, with a 5-year survival rate of only about 10–20%, so early detection is
crucial for improving the chances of survival, as well as identifying new markers. In [72],
the authors applied a simple and unsupervised ML method called uniform manifold
approximation and projection (UMAP) to mRNA expression data from the TCGA-ACC
study, the largest multi-platform study of ACC. UMAP is a dimension reduction technique,
and it found two distinct clusters that strongly correlated with patient prognosis. They then
used an RF algorithm to identify the transcriptional differences between the two clusters,
finding 100 genes that could serve as new biomarkers or novel targets for treatment. In [73],
the authors performed a proteomic analysis of ACC at different stages and identified 7000
individual proteins. They selected 117 differentially expressed proteins (DEPs) using three
feature selection algorithms (ReliefF, infoGain, and ANOVA) and conducted a survival
analysis to assess the effect of the identified DEPs on patient survival. They were able to
identify five new candidate protein biomarkers as prognostic factors, which can help in
defining new therapeutic targets. Both studies highlight the importance of using ML with
multi-omic data to better understand the biology of ACCs and to identify biomarkers for
the disease.

The study of alkaptonuria is an example of how multiple ML techniques have been
applied to an ultra-rare disease. Alkaptonuria (AKU) is an autosomal, recessive, and
metabolic disorder caused by a defect in the enzyme homogentisic acid oxidase. As a
result, homogentisic acid accumulates in the body and causes the formation of ochronotic
pigments, and this can lead to various symptoms such as arthritis, amyloidosis, and
kidney stones. Due to the rarity of the disease and the lack of a standardized method of
assessment, studying AKU can be challenging. A recent study [74] has implemented a
digital platform, ApreciseKUre, which is designed to collect, integrate, and analyze data
for patients with AKU. The platform includes a wide range of data, including genetic,
biochemical, histopathological, clinical, therapeutic resources, and quality of life (QoL)
scores, which can be shared among researchers and clinicians to create a precision medicine
ecosystem. The authors describe how ML applications were used to analyze and interpret
the data in ApreciseKUre to achieve patient stratification, and tailor care and treatment to
specific subgroups of patients. Two specific studies show the potential of ML in the context
of AKU data. The first study [75] aimed to predict QoL scores based on patient’s clinical
data using the XGBoost algorithm and a k-NN algorithm. The second study [76] aimed to
compare different algorithms (K-means and hierarchical clustering) to explore phenotype-
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genotype relationships that were previously unknown in AKU. Both studies showed that
ML successfully predicted clinical outcomes and QoL scores, and also identified new
biomarkers and subgroups of patients with AKU. These studies highlight the need for the
development of databases for rare diseases, helping to optimize the benefit-risk ratio, and
improving overall patient outcomes.

ALS is another rare and very serious disease that has been studied with AI methods.
In [77], the authors used pharmacometabolomics approaches and ML algorithms to iden-
tify metabolic changes in patients with ALS and the effects of two different treatments:
riluzole and olesoxime. They applied multivariate statistical techniques such as partial
least squares regression, orthogonal partial least squares discriminant analysis, and a novel
algorithm called Biosigner. This algorithm, which is based on bootstrapping and different
methods like RF and SVM, was found to have better predictive power than other ap-
proaches. The study found that certain lipids and amino acids were differentially expressed
in the two treatment groups, and that these changes might be linked to changes in energy
metabolism and glutamate metabolism, which are known to be important in ALS patho-
physiology. In [78], Huang et al. present a novel non-parametric survival analysis method
called GuanRank that aims to improve the reliability and robustness of survival predictions
in clinical trials. This method is based on the Kaplan-Meier estimator and transforms the
problem into a general regression problem that can be solved by ML regression algorithms
such as Lasso regression, Gaussian process regression, and RF. The method was validated
on the PRO-ACT database, a large de-identified dataset of patients in ALS clinical trials,
and it demonstrated superior performance over the traditional survival models such as the
Cox proportional hazard model. Gordon & Lerner [79] also used data from the PRO-ACT
database to predict the state of ALS patients. They used RF, XGBoost, cumulative link
models, ordinal decision trees, and cumulative probability trees as the prediction models
and BM for knowledge representation. They found that ordinal classification models im-
proved predictive performance and identified variables that were not previously known
to be related to ALS, such as creatinine, CK, and phosphorus. In addition, data related to
language and MRI images of ALS patients can be used to better understand the progression
of the disease. Wang et al. [80] aimed to develop an automated assessment tool for speech
impairment in ALS to improve the early detection and monitoring of bulbar dysfunction in
ALS patients. They proposed the use of ML to detect abnormal speech patterns in ALS from
both acoustic and articulatory samples and to help in the assessment of disease progression.
The speech data is in the form of features extracted from speech recordings, which can
be done using open-source algorithms such as openSMILE. Gradient boosting was used
as the feature selection technique and SVM was used to predict intelligible speaking rate
from speech acoustic and articulatory samples. In [81], the authors aimed to use DL to
predict the survival time of ALS patients based on clinical characteristics and advanced MRI
metrics. They collected high-resolution diffusion-weighted and T1-weighted images from
135 ALS patients at their first visit, and then monitored each patient’s survival time until
death. Then, they used DL to create four different networks: one based on clinical data, one
based on structural connectivity MRI data, one based on morphology MRI data, and one
based on a combination of the three sources of information. The results showed that MRI
data alone can provide valuable predictions of survival time and that combining clinical
characteristics and MRI data into a DL approach can further improve predictions about
a patient’s survival time. These studies on ALS highlight the importance of combining
multiple sources of data such as clinical characteristics and MRI metrics to improve the
accuracy of predictions.

As already seen for diagnosis, AI can be of great help in the prognostic phase of HD
as well. Lauraitis et al. [82] proposed a hybrid model that uses artificial ANN and a Fuzzy
Logic expert system (FLS) to predict, through finger-tapping tests, the deterioration of
reaction state in individuals with neurological movement disorders such as hand tremors
and non-voluntary movements. This model is composed of four sub-models (dataset
formation, ANN prediction, FLS, and a decision module for determining the person’s con-
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dition) and was tested on a dataset of 3032 records from 20 test subjects. Results show that
the feed-forward backpropagation neural network model achieved the best performance
results. The authors plan to validate the proposed system using a larger dataset including
data from PD and Alzheimer’s patients, as well as using more sophisticated finger-tapping
features and comparing ANN results with those of SVM regression. In [83], they present
a new approach that uses a combination of brain function and structure imaging data to
identify whether a person with HD will receive a clinical diagnosis within 5 years, known
as premanifest HD (preHD). The researchers used an SVM to classify individuals with
preHD from controls. The input data were resting-state functional connectivity, subcortical
gray matter volume, and cortical thickness. The SVM was trained using a linear kernel
and a weighted cost function to account for class imbalances, and then the models were
evaluated using leave-one-out validation and permutation testing. They also applied inde-
pendent validation to test the generalizability of the findings. Asadi et al. [84] also wanted
to predict the progression of a disease, i.e., cerebral arteriovenous malformations (cAVMs).
They noticed that the lack of large observational studies on the long-term outcome of unrup-
tured cAVMs has made it difficult to determine the best course of action. cAVMs are rare,
abnormal connections between the arteries and veins in the brain that typically form before
birth. They can vary in size and location, and may cause a rupture, leading to hemorrhage
and reduced blood flow to the brain. Since cAVMs can present symptoms at any age, the
goal is to identify factors that can be used to predict hemorrhagic risk and to develop a
risk stratification model that can be used to guide treatment decisions. They used ANN
and SVM to predict the outcome of cAVMs post-endovascular treatment with relatively
high accuracy and precision. The ANN was found to be the strongest predictor of fatal
outcome, with the presence or absence of nidal fistulae having the greatest predictive
power. The study also found out that the classical regression model had mediocre accuracy
in predicting the outcome of mortality, with the type of treatment-related complication
being the most important predictor. In [85], the authors developed an ML algorithm based
on DTI to predict the clinical severity of PSP. The algorithm was trained on data from a
cohort of PSP patients and was found to be accurate in predicting the severity of the disease
as measured by various clinical scales. Moreover, the algorithm identified regions of the
brain related to motor function, such as the thalamus, and regions related to psychomotor
interactions, such as the parahippocampus gyrus, that are associated with the severity of
the disease.

Other examples of where SVMs have been successfully applied include the works of
Zhutovsky et al. [86] and An et al. [87]. In [86], they wanted to determine the prognos-
tic accuracy of clinical and structural MRI data of patients with a behavioral variant of
frontotemporal dementia (bvFTD) presenting late-onset behavioral changes. This disorder
presents with behavioral and cognitive symptoms that overlap with other neurological
and psychiatric disorders, so the authors suggest that predictive biomarkers could facil-
itate early detection. They used data from 73 patients, divided into three groups based
on 2-year follow-up diagnosis: probable/definite bvFTD, neurological, and psychiatric.
They then used SVM classifiers to perform classification tasks and evaluated performance
using cross-validation. They found that the combination of clinical and voxel-wise whole
brain data showed the best performance overall, and concluded that the results show the
potential for automated early confirmation of bvFTD using ML analysis of clinical and neu-
roimaging data in a diverse and clinically relevant sample of patients. In [87], the authors
used the SVM model to study mutations that cause Diamond-Blackfan anemia (DBA), a
rare hereditary disorder characterized by failure of erythropoiesis. They first conducted
a comprehensive study on the structural basis of human RPS19 mutations that occur in
DBA, based on its 3D structures, and then used this knowledge to train an SVM model to
predict the pathogenicity of all possible missense mutations of RPS19. They used 29 DBA
mutations (positive samples) and 30 neutral ones (negative samples) as training data, and
extracted 8 features to be used for each mutation, such as interaction with rRNA, structural
stability, and conservation. After five-fold cross-validation, the best hyperparameters were
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identified and the SVM model was able to predict 26 of the 29 DBA mutations correctly,
with a significantly reduced false-positive rate compared to other prediction tools.

As mentioned, the most widely used type of AI algorithms for the prognosis of rare
diseases are EL algorithms. Here, we give some examples of where these have been suc-
cessfully applied. In [88], they used a bootstrap aggregation (bagging) ensemble technique
with a reduced-error pruning regression tree as the underlying classifier to predict the
energy expenditure (EE) of children with DMD. Existing ML algorithms developed for
healthy populations do not accurately estimate EE for children with DMD, so they develop
a custom ML model specifically for this population. Bagging is an ensemble meta-algorithm
that improves the stability and accuracy of statistical regression obtained by a regression
tree. They demonstrate that this technique has proven to be superior to other models
such as multilayer perceptron, SVM, linear regression, naive Bayes, and reduced-error
pruning regression tree. Another example of boosting algorithm application is [89], where
the authors present a novel ML model named the PSC risk estimate tool (PREsTo) that
predicts the 5-year risk of hepatic decompensation in patients with PSC. Due to the rarity
of the disease, improved biomarkers are necessary to risk-stratify patients in clinical trials
and serve as surrogate endpoints. The PREsTo model used gradient boosting machines,
a step-wise method to create an ensemble of weak prediction models, typically decision
trees. Each decision tree may have different variables, and the ones with the strongest
predictive power are used more often and earlier in the model-building process. The study
reported that the model performed well compared to the existing prognostic markers, had
an excellent performance when applied to a later point in the disease course, and had good
performance among various PSC subgroups. The advantages of this model are that it uses
readily available clinical data, and it is non-invasive, inexpensive, and accurate. In [90],
Robinson et al. used immune cell frequency profiles, clinical, and serological data from patients
with juvenile-onset systemic lupus erythematosus (jSLE) to identify predictive disease outcome
signatures using RF and sparse partial least squares-discriminant analysis (sPLS-DA).

BRF was used to overcome difficulties in obtaining validation datasets because it does
not overfit to training data, and it was used to further define and validate the pathological
immune cell profile of the disease. sPLS-DA was used as a secondary validation method to
rank and validate the immunological variables by their distribution in patients with jSLE
and healthy controls. The analyses identified 8 immune cell subtypes that were consistently
correlated with jSLE patients, compared with healthy controls. Lastly, in the works of Chou
& Ghimire [91,92], they applied RF algorithms to identify prognostic factors in pediatric
myocarditis patients. In their first study [91], they used an RF algorithm on 500 factors from
a publicly available pediatric hospitalization database (Kids’ Inpatient Database) to identify
mortality risk factors, and validated these factors using linear and binomial regression
models. They also used negative binomial regression models to study the association
between the length of hospitalization and risk factors. The goal of the second study [92]
was to develop a model to predict in-hospital mortality among patients hospitalized for
pediatric myocarditis, since traditional logistic regression models have low sensitivity.
A total of 14 variables were included in model development and an RF algorithm was
applied because of the nature of the predictors, which are all two-level categorical variables.
Based on the importance scores of the risk factors, the top 5 variables were selected as
MV, ECMO use, cardiac arrest, ventricular fibrillation, and AKI. Table 2 summaries the
described above ML methods applied for the prognosis of rare diseases.
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Table 2. Summary of studies investigating ML methods applied for the prognosis of rare diseases.

Disease Methods Data Type Sample Size Model Performance References

Adrenocortical carcinoma
clustering, RF mRNA expression data 79 ACC: 96% [72]

DT differentially expressed proteins 117 [73]

Alkaptonuria XGBoost, k-NN genetic, biochemical, histopathological, clinical,
therapeutic resources, and QoL scores

129 RAE: 0.25, R2: 0.94 [75]
custering 112 [76]

Amyotrophic lateral sclerosis

RF, SVM metabolomics data 38 (treated), 36 (placebo) TPR: 71.4%, TNR: 71.4%, PPV: 71.4%,
NPV: 70.0% [77]

LASSO, RF a subset of the PRO-ACT dataset (survival and
clinical data) 6565 C-index: 0.7355 [78]

RF, XGBoost, BM, DT a subset of the PRO-ACT dataset 3772 ACC: 71–84.7% [79]
GBoost, SVM speech acoustic and articulatory data 1832 R2: 0.712, RMSE: 37.562 [80]

ANN Clinical and MRI data 135 ACC: 84.4%. [81]

Huntington disease ANN, FLS finger-tapping tests data 3032 R2: 0.98, MSE: 0.08 [82]
SVM, EL Neuroimaging data 19 (preHD), 21(Controls) F1: 74% [83]

Cerebral arteriovenous malformation ANN, SVM, Log Reg clinical and imaging data 199 ACC: 97.5% [84]

Progressive supranuclear palsy LASSO, Lin Reg Imaging data 53 R2: 0.892 [85]

Behavioral variant of frontotemporal
dementia SVM clinical and structural MRI data 73 ACC: 72–82%, TPR: 67–79%, TNR;

77–88%, AUC: 0.80–0.9 [86]

Diamond-Blackfan anemia SVM structural data of missense mutation 29 (positive samples), 30 (negative
samples)

ACC: 95%, TPR: 90%, TNR; 98% F1:
94% [87]

Duchenne muscular dystrophy EL inertial sensor (accelerometer) data 7 RMSE: 0.017 [88]

Primary sclerosing cholangitis GBoost clinical and laboratory data 509 C-index: 0.90 [89]

Juvenile-onset systemic lupus
erythematosus RF Immunophenotyping data 67 (jSLE), 39 (Controls) ACC: 86·8% [90]

Pediatric myocarditis RF Diagnoses/procedures data from the Kids’ Inpatient
Database

7241 CI: 95% [91]
RF, Log Reg 4144 TPR: 89.9% TNR: 85.8%, ACC: 87.9% [92]
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3.3. Treatment

There is an urgent need to identify novel treatment options for rare diseases, which
is a difficult challenge due to the lack of essential data including drug molecules, genes,
and protein structure information. The speed at which new biomedical knowledge is being
discovered makes it particularly challenging to connect disease mechanisms to drug action.
Almost 95% of rare diseases do not have FDA-approved drug treatment and the increasing
number of rare diagnoses puts pressure on scientists and clinicians to characterize these
conditions and match patients with appropriate treatments [93]. As biomedical discov-
eries continue to generate big amounts of data, an opportunity emerges for AI to help
in translating biomedical knowledge into a format that can be used to identify therapeu-
tic strategies for patients. Recently, The Hugh Kaul Precision Medicine Institute created
mediKanren [94], an AI platform based on knowledge graphs that uses the mechanistic in-
sight of genetic disorders to identify therapeutic strategies, enabling an efficient way to link
all relevant literature and databases. The method was tested by analyzing genetic data and
publications of two rare disorders related to missense variants in the TMLHE and RHOBTB2
genes, revealing molecular mechanisms and pathways which have provided new therapeutic
targets.

Currently, AI methods for treatment belong mostly to supervised learning, which uses
labeled datasets to train algorithms able to classify or predict outcomes accurately. In [95],
Bakkar et al. implemented the IBM Watson® [96] method to screen RNA-binding proteins
(RBPs) in the genome and identify additional RBPs involved in ALS. Numerous RBPs have
been shown to be altered in ALS, making them a contributing factor in disease pathobiology.
IBM Watson extracts domain-specific text features from published literature to identify
new connections between entities of interest. From these annotated documents, Watson
created a semantic model of the set of RBPs with known mutations that cause ALS, and
then applied that model to a candidate set of all other RBPs to cluster all the candidates
by similarity to the known set using a graph diffusion algorithm. Gated Recurrent Unit
Cooperation-Attention-Network (GCAN) was used in [97] to predict drugs for rare dis-
eases, with particular attention to Gaucher disease, a rare metabolic disorder in which
deficiency of the enzyme glucocerebrosidase results in the accumulation of toxic quantities
of certain lipids. Two heterogeneous networks were built for information enhancement;
one network contains the father nodes of the rare disease, while the other network contains
information on the son nodes. A biased random walk approach was used to collect data
from the father and son nodes, where nodes were linked in a hierarchical relationship
with two hop distances. The effectiveness of two Gaucher disease drugs predicted by
GCAN has been established. In [98], authors showed interest in sialidosis, an ultra-rare
lysosomal storage disease characterized by an excessive accumulation of glycoprotein-
derived oligosaccharides. J. Klein et al. applied the so-called Assay Central software [99] to
build Bayesian ML models to screen compounds in silico before in vitro testing. This ap-
proach has been applied to identify new compounds that can act as a potential disease
modulator in the treatment of sialidosis. In [100], the authors used an RF classifier for the
prediction of cell-penetrating peptides, which can facilitate the intracellular delivery of
large therapeutically-relevant molecules. The goal was to deliver phosphorodiamidate
morpholino oligonucleotides, a type of antisense therapy recently approved by the FDA
for the treatment of DMD. Multi-output regression ML methodologies were implemented
in [101] to predict the potential effect of external proteins on the signaling circuits that
trigger Fanconi anemia-related cell functionalities. This rare condition causes genomic
instability and a range of clinical features, including developmental abnormalities in major
organ systems and a high predisposition to cancer [102]. Thanks to these models, over
20 potential therapeutic targets were detected. In the last study [103], Spiga et al. developed
an RF model that performs a prediction of the QoL scores based on data deposited in Apre-
ciseKUre. Predicted QoL scores were then correlated with the drugs taken by AKU patients,
revealing that drugs typically used to treat AKU patients were effective in reducing pain,
but some common drugs not related to specific AKU symptoms also showed a correlation
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with some QoL scores. Table 3 summaries the described above ML methods applied for the
treatment of rare diseases.

Table 3. Summary of studies investigating ML methods applied for the treatment of rare diseases.

Disease Methods Data Type Sample Size Model Performance References

Amyotrophic lateral
sclerosis IBM Watson® RNA-binding proteins 1478 AUC: 0.935 [95]

Multiple diseases, exp.
Gaucher disease ANN disease, gene, and drug data 7000 Hits@10: 0.454, MRR 0.231 [97]

Sialidosis BM disease targets and accessible
bioactivity data 57 AUC: 0.737, PPV: 34.5%, TPR: 91%,

TNR: 58.7%, F1: 50% [98]

Duchenne muscular
dystrophy RF PMO activity data 64 ACC:72%, PPV:75%, TPR:69% [100]

Fanconi anemia EL gene expression data >11,000 R2: 0.62–0.97 [101]

Alkaptonuria RF
genetic, biochemical,

histopathological, clinical, therapeutic
resources, and QoL scores

129 ACC: 70% [103]

4. Discussion

In this review, we studied the scientific literature of the last decade to understand
which AI methods are most widely used in the field of rare and ultra-rare diseases, revealing
that the most applied algorithms are SVM, RF, and ANN. One of the reasons these methods
are so popular is their ability to handle complex, high-dimensional data, and indeed images
were found to be the most widely used type of input. Medical imaging techniques, such
as PET, CET, MRI, and ultrasound, produce large amounts of this type of data, which can
be standardized and therefore easily processed by AI methods. Moreover, these methods
can also learn from small datasets, as is often the case in rare diseases due to their low
prevalence, and are able to identify important features, which can help researchers better
understand the mechanisms underlying the disease and potentially identify new targets
for treatment. Another point to highlight is that most studies have focused on using AI
methods for the diagnosis and prognosis of rare diseases, which is a typical application of
classification and prediction, and this is also understandable given the challenges associated
with identifying and predicting rare disorders. However, it is worth noting that ML could
also play a significant role in improving the treatment, accelerating drug development by
identifying potential drug candidates, predicting their efficacy and optimizing their dosages,
as well as identifying drugs already on the market and repurposing them for other diseases.

However, the application of ML models can also present various challenges, starting
with the difficulty of applying them to unstructured and poorly standardized textual data,
such as medical records. This is because the presence of label-noise and sparsity can lead to
model overfitting, meaning that the method has high prediction accuracy on training data
and low prediction accuracy on new evaluation data. In addition, the aforementioned most
widely used methods focus on classification tasks while few algorithms are applied to the
study of the biological mechanisms of these diseases. This is probably due to the complexity
of the systems biology that are these disorders, which sometimes have molecular bases that
are still unknown, or a pathological picture that is unclear and overlaps with that of other
diseases. This implies that there is a scarcity of already developed and validated methods
that can tolerate these constraints, but there is also a high demand for AI approaches from
the biomedical world. It is therefore essential to intentionally develop methods and analytic
workflows that can address these challenges, and it is up to the developers of such methods
to ensure that the resulting models are reliable. Thus, to increase confidence in the end user
(i.e., clinicians and researchers), explanations of the behavior of the developed algorithms
must be provided, and robust error analysis must be conducted.

Another issue that needs to be addressed is that only few studies have validated their
models on external datasets, thus assessing their potential in clinical practice. External val-
idation studies can help assess the generalizability and reliability of the algorithm and
determine its potential use in clinical settings, but unfortunately only a few of the reported
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studies have conducted this type of validation. This is partly due to the difficulty in this
field of obtaining large and diverse datasets and the lack of standardized methods for data
collection and analysis, but without adequate validation, there is a risk that the algorithms
will produce unreliable or inaccurate results when applied to new datasets or patient
cohorts. Solving this problem requires collaboration among researchers, clinicians, and
data scientists to develop standardized methods, as well as sharing of data and algorithms
to facilitate external validation studies.

5. Conclusions

ML methods have shown promise in the identification and diagnosis of rare diseases.
With the vast amounts of data now available through electronic health records and hetero-
geneous databases, AI algorithms can help quickly identify patterns and associations that
would be difficult or impossible for human analysts to detect. For example, researchers use ML
algorithms to analyze patient data and identify characteristic patterns associated with certain
rare diseases. By doing so, these tools can help to narrow down the list of possible diagnoses,
making it more likely that patients will receive a correct diagnosis in a timely manner.

Predictive modeling techniques, such as DL, have been used to forecast the progres-
sion of rare diseases, allowing for earlier interventions and better treatment planning.
This could potentially lead to a more accurate classification of rare diseases and enable
the development of more targeted treatments. From a precision medicine perspective, by
identifying biomarkers associated with a particular rare disease, AI algorithms can help to
develop personalized treatment plans, helping to improve patient outcomes and reduce
the risk of side effects.

AI has also shown promise in the field of drug development for rare diseases. AI algo-
rithms can be used to analyze patient data and identify subpopulations of patients who
may be most likely to respond to a particular drug. This can help to make clinical trials
more efficient and increase the chances of a drug being approved for use in patients with
rare disorders. Despite the potential benefits of ML, there are still challenges that must
be overcome to fully realize its potential in the field of rare diseases. These include a
lack of large, well-annotated datasets, and the need for interpretable models that can be
easily understood and trusted by clinicians. Rare diseases usually present an unusually big
data regime, which is characterized by huge omics data but a limited number of patients.
The rarity of orphan patients, despite the presence of registries, still has a large impact
on ML analyses, and thus open data can contribute significantly to support the modeling
attempt. In the future, patient registries and open data need to be integrated, translating
the largest amounts of data available into potential connections. Finally, a current limitation
is the lack of interpretability, which makes it difficult for clinicians and researchers to
understand algorithm outputs. In fact, explainability is one of the most debated topics
for the application of AI in healthcare. While AI-based systems have been shown to out-
perform humans in certain analytical tasks, the lack of explainability continues to attract
criticism. In this context, explainable AI approaches are the new frontier of ML applications
in healthcare, in order to ensure the understanding, by both clinicians and patients, of the
“mental process” followed by the artificial brain to reach a certain decision.

In conclusion, the application of ML techniques can greatly assist rare disease research
and treatment, but to use it effectively, it needs to be implemented under the right ethical
principles, avoid biases, and also be transparent for the patient. To fully tap into its potential,
AI needs to be validated through clinical trials and real-world evidence. Furthermore, it
needs to be accompanied by regulatory frameworks that ensure the safety and reliability
of AI-based medical devices and diagnostic tools. More work is needed to overcome
data-related challenges, ensure fair and trustworthy models, and help translate the research
findings into practical applications that can benefit patients and their families.
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