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Abstract: Mutations in the gene coding for the bi-functional UDP-N-acetylglucosamine 2-epimerase/
N-acetylmannosamine kinase (GNE), the key enzyme of the sialic acid biosynthesis, are responsible for
autosomal-recessive GNE myopathy (GNEM). GNEM is an adult-onset disease with a yet unknown
exact pathophysiology. Since the protein appears to work adequately for a certain period of time even
though the mutation is already present, other effects appear to influence the onset and progression
of the disease. In this study, we want to investigate whether the late onset of GNEM is based on an
age-related effect, e.g., the accumulation of post-translational modifications (PTMs). Furthermore,
we also want to investigate what effect on the enzyme activity such an accumulation would have.
We will particularly focus on glycation, which is a PTM through non-enzymatic reactions between
the carbonyl groups (e.g., of methylglyoxal (MGO) or glyoxal (GO)) with amino groups of proteins
or other biomolecules. It is already known that the levels of both MGO and GO increase with age.
For our investigations, we express each domain of the GNE separately, treat them with one of the
glycation agents, and determine their activity. We demonstrate that the enzymatic activity of the
N-acetylmannosamine kinase (GNE-kinase domain) decreases dramatically after glycation with
MGO or GO—with a remaining activity of 13% ± 5% (5 mM MGO) and 22% ± 4% (5 mM GO).
Whereas the activity of the UDP-N-acetylglucosamine 2-epimerase (GNE-epimerase domain) is only
slightly reduced after glycation—with a remaining activity of 60% ± 8% (5 mM MGO) and 63% ± 5%
(5 mM GO).

Keywords: GNE-myopathy; glycation; methylglyoxal; sialylation; post-translational modification;
adult-onset disease

1. Introduction

GNE myopathy (GNEM; OMIM 605820) is an autosomal-recessive disease, caused by
mutations in the gene encoding the bi-functional UDP-N-acetylglucosamine 2-epimerase/N-
acetylmannosamine kinase (GNE), which is the key enzyme of the sialic acid biosynthe-
sis [1,2]. Sialic acids have a plethora of functions; they are important for cellular and
molecular recognition [3], they play a role in cell adhesion [4,5] and migration [4,6], and
they can be involved in the transport of charged molecules [3]. Until now, more than
200 mutations have been known which lead to GNEM [7,8]. Beside them are certain so-
called founder mutations, e.g., M743T (Note: In the original paper the mutation was named
M712T [9]. Nevertheless, a change in the nomenclature of GNE-variants led to a rename
into M743T [10].), which is a founder mutation in the Middle Eastern population [9], or
V603L, which is a founder mutation in Japanese individuals [11,12].
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Another genetically related disease that is also based on mutations in GNE is sialuria
(OMIM 269921) [13–15]. GNEM is associated with hyposialylation [16–18]—but it should
be noted here, however, that the connection between (hypo)sialylation and GNEM has not
yet been finally clarified [19,20].

The GNE gene consists of 14 exons, exon A1 and exons 1 to 13 [21]. So far, nine
different mRNA splice variants are known, leading to the six already found GNE isoforms
1-6 (two transcripts, NM_001190388.2 and NM_001374798.1, are leading to isoform 3 [22]),
and the two predicted isoforms X1 and X2 [23,24]. Furthermore, GNE and its different
isoforms are unevenly expressed in different tissues, with high RNA expression in the liver
and low RNA expression in skeletal muscle [23,25–27].

The two domains of the GNE—the epimerase (E.C. 5.1.3.14; [28–30]) and the kinase
(E.C. 2.7.1.60; [31–33])—are linked and act as a bi-functional enzyme [34,35]. Nevertheless,
they also show activities, albeit lower than the wild-type enzyme, when considered individ-
ually [36]. One benefit of a bi-functional enzyme with two domains at once is the possibility
for substrate channeling, as for example is already known for the formiminotransferase
cyclodeaminase (FTCD) [37] or the dihydrofolate reductase-thymidylate synthase [38].
Overall, there are different ways of transferring the substrate between the two active cen-
ters of an enzyme, e.g., through a kind of tunnel in the enzyme [39] or via its surface [38].
Although it has not yet been shown for GNE, which is particularly the case since no 3D
structure is available for the entire enzyme, substrate channeling could also be a possibility
for substrate handover here.

The epimerase domain catalyzes the formation of N-acetylmannosamine (ManNAc)
from uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) with a simultaneous cleav-
age of UDP [29,30] (Figure 1). The so-formed ManNAc is then phosphorylated by the
kinase domain whereby ATP is converted to ADP at the same time [32]. Accordingly,
the newly formed substance is called ManNAc-6-phosphate. Alternatively, this step can
also be accomplished by the N-acetylglucosamine kinase (GlcNAc kinase/also known as
NAGK; [40,41]; indicated in orange in Figure 1). The main substrate of this enzyme is
usually GlcNAc, as supported, for example, by the corresponding km-values for the two
substrates ManNAc and GlcNAc [40,42].

After a few more steps (for a complete overview of all steps see [8,43]), cytidine
5′-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac; [44,45]) is synthesized. CMP-
Neu5Ac acts as substrate for sialyltransferases [46] and its bioavailability regulates their
expression [47]. Additionally, it feedback-inhibits the activity of the epimerase ([48]; indi-
cated by the red arrow in Figure 1). The allosteric site is located in the epimerase domain
between the amino acids 255 and 303 (hGNE1) [14,43,49,50].

The amino acid side chains that are involved in substrate binding or in the formation
and stabilization of the active site can be seen in Figure 2Aa,Ab (GNE-epimerase domain),
Figure 2Ba,Bb (GNE-kinase domain), and Figure 2Ca,Cb (GlcNAc kinase) [sequences in
2Aa,Ba,Ca: amino acids involved are marked with a diamond �]. In the epimerase domain,
these are R19, A20, D21, S23, K24, P27, M29, H49, G111, D112, R113, H132, E134, G136,
D143, D144, R147, G182, D187, H220, D225, N253, V282, F287, S301, S302, C303, R306, E307
and R321 [43,50–53]. Please note: Since we show the amino acid sequence of hGNE1, the
isoform examined in this study, in Figure 2, we also use the amino acid numbering based
on this “old” variant. In the kinase domain, these are D413, R420, G476, R477, T489, N516,
D517, G545, E566, H569, C579, C581, C586, and E588 [43,51,52,54]. In the GlcNAc-kinase,
these are N36, W38, S76, G77, D107, T127, G128, S129, N130, C131, C143, G145, W146, G147,
D152, A156, L201, Y205, A214, C217, R218, S271, V272, K274, and S275 [55,56].
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Figure 1. Schematic representation of the sialic acid biosynthetic pathway.

GNEM is a distal myopathy with a worldwide predicted prevalence of 1 to 9 patients
per 1 million people [8] that first affects the tibialis anterior, the biceps femoris short
head, and the adductor muscles [57,58] leading to certain gait problems and a typical
foot-drop [59,60]. After an average of 12 to 15 years after disease onset, most of the patients
will be dependent on a wheelchair [61,62]. Other hallmarks of GNEM are the finding of
rimmed vacuoles in affected muscles [60,63], an onset in early adulthood [62,64], and a
quite slow progression of the disease [8,65]. GNEM-triggered inflammatory changes are
not typical features of this disease [60,63,66], although there are confirmed exceptions to
this statement [67–69].

Muscles/Muscle groups, which are least affected, are the quadriceps [60]—especially
the vastus lateralis [57,58]—as well as the muscles in the face [8,59,63] and the deltoid mus-
cle [60]. An influence on the heart and especially on cardiomyocytes is still under debate.
While mouse models suggest an influence on cardiac muscle cells [70,71], patient data-based
studies do not find direct correlations between GNEM and cardiomyopathy [61,64,72].

One therapeutic approach aims to compensate for potential hyposialylation by adding
precursors of individual metabolites of the sialic acid pathway or other heavily sialylated
proteins. This approach also led to positive effects in mouse models [8,70,73–77]. Unfortu-
nately, the direct transferability of the results of the animal experiments did not turn out
to be that easy [8,78]. Overall, although some trials are quite promising, the disease is not
yet curable.
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Figure 2. Localization of potential glycation sites in the proteins of interest: the two domains of the
human GNE, mRNA variant 2 (hGNE1) and the N-acetylglucosamine kinase. Amino acid sequences
of the GNE epimerase (Aa), GNE kinase domain (Ba), and of the N-acetylglucosamine kinase (Ca).
Secondary structure elements are highlighted by an orange (sheet) or yellow (helix) background
color. Lysines (red), arginines (green) and cysteines (blue) are also color-coded to indicate potential
glycation sites. A diamond � over an amino acid indicates whether it is within the active site. Lysines,
arginines and cysteines found on the surface of the proteins are represented in Ac, Ad, Bc, Bd,
Cc, and Cd. Interactions between the substrate and the active-site amino acids are indicated by
green-dashed lines in Ab, Bb and Cb. All visualizations (PDB-IDs: 4ZHT (GNE epimerase domain;
3D structure published in [53]), 2YHW (GNE kinase domain; 3D structure published in [54]), 2CH5
(N-acetylglucosamine-kinase; 3D structure published in [56])) were created with iCn3D [79,80].

A particular sticking point of this disease, especially in the diagnosis, is the compara-
tively late onset of the disease. Other muscle disorders as Duchenne muscular dystrophy
(DMD), Emery-Dreifuss muscular dystrophy (EDMD), or Facioscapulohumeral muscular
dystrophy (FSHD) have an onset in early or late childhood [81]. This suggests that age-
related effects may play a role in this disease. One hallmark of molecular aging is glycation.
Glycation describes an enzyme-independent process of a post-translational modification
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(PTM) of proteins; in particular, of the amino acid side chains lysine, which has a primary
amino group, arginine with its guanidine group [82], cysteine with its sulfhydryl group [83],
or of other substances with a preferably terminal amino group [84].

To simplify the identification of potential glycation sites in the sequences of the GNE-
epimerase domain, GNE-kinase domain, and GlcNAc kinase, we used a specific color
code for arginines, cysteines, and lysines (Figure 2Aa,Ba,Ca). The same color code was
also used in our three-dimensional representations of the enzymes—shown once in the
ribbon (Figure 2Ac,Bc,Cc) and once in the molecular surface variant (Figure 2Ad,Bd,Cd).
In particular, the amino acids that are part of the active site can strongly affect the activity
of an enzyme—e.g., if they are mutated or otherwise modified, as they may be critical for
stabilization of the binding site or for interaction with the substrate through hydrogen
bonds. The functions of arginines, cysteines, and lysines that are part of the active site are
listed in Table 1.

Since it is already known that mutations at some of the positions of these amino acids
lead to reduced enzyme activities [50,51,53,55], it seems very likely that glycations of these
amino acids would also have an impact on enzyme activity. To complete this picture, it is
important to mention that the activity of the GNE can be influenced by phosphorylation [85]
and O-GlcNAcylation [86].

The first step in glycation is a condensation between the amino group and a glycation
agent, which can be, for example, a certain type of sugar [87], a derivate of sugar [88],
di-carbonyls such as glyoxal (GO) or methylglyoxal (MGO) [89,90], or ascorbic acid [91].
A Schiff base adduct is formed, which can be converted into an Amadori product by
an Amadori rearrangement [92]. This reaction can be followed by further steps—e.g.,
dehydration, enolizations, or oxidations [84,87,93]—leading to a multitude of possible
advanced glycation endproducts (AGEs) [90,94]. The AGEs formed are also dependent
on the glycation agent used ([95]; see also Figure 3A–C). Additionally, the reactivity of
different amino acid side chains with different glycation agents varies [96].

The level of AGEs increases steadily over the course of life [97–99], which could
possibly also have an influence on the symptomatic onset of GNEM. This hypothesis can
be supported by the fact that there are already examples in which it has been shown that
post-translational modifications caused by MGO lead to a decrease in the activity of an
enzyme [100,101].

Table 1. Lysines, Arginines and Cysteines involved in the active site—Functions, Mutations, and Activity.

Residues Function So-Far Known Mutations
in Patients

In Vitro—Loss of Activity Due
to Mutations (Compared to WT)

UDP-N-acetylglucosamine 2-epimerase (hGNE1, mRNA variant 2)

K24 Involved in forming the vicinity of
the active site [52] n.d.a. n.d.a.

R19 UDP binding [52] n.d.a. n.d.a.

R113 Involved in forming the vicinity of
the active site [52] n.d.a. R113A: completely inactive [53]

R147 Involved in forming the vicinity of
the active site [52] n.d.a. n.d.a.

R306 Involved in forming the vicinity of
the active site [50] R306Q [102] n.d.a.

R321 Interaction with the phosphate of
UDP [53] R321C [103] n.d.a.

C303
Hydrophobic interactions, but

probably no specific function in the
enzymatic reaction [50]

C303V [104]
C303X [9]

C303V: epimerase 80%,
kinase 60%

C303X: epimerase 0%,
kinase 0% [50]
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Table 1. Cont.

N-acetylmannosamine kinase (hGNE1, mRNA variant 2)

Residues Function So-Far Known Mutations
in Patients

In Vitro—Loss of Activity Due
to Mutations (Compared to WT)

R420 Interaction with the phosphate
oxygens [51,52]

R420X [105]
R420Q [106]

→ patient not yet
suffering from myopathy

R420M: epimerase activity
comparable to WT; kinase activity

drastically reduced [51]

R477 ManNAc binding [54] n.d.a. n.d.a.

C579 Zinc binding [54] C579Y [12] n.d.a.

C581 Zinc binding [54] C581R [7] n.d.a.

C586 Zinc binding [54] C586X [7] n.d.a.

N-acetylglucosamine kinase

Residues Function In Vitro—Loss of Activity Due to Mutations (Compared to
WT)

K274 Nucleotide binding [56] n.d.a.

R218 Nucleotide binding [56] n.d.a.

C131 Phosphate transfer from ATP to the
hydroxyl groups of GlcNAc [55]

C131S: overall activity reduced (approx.. 10% activity remaining
[55])

C143 Phosphate transfer from ATP to the
hydroxyl groups of GlcNAc [55]

C143S: overall activity reduced (approx.. 20% activity remaining
[55]); 75% of WT activity [107]

C217 Nucleotide binding [56] C217S: overall activity reduced (approx.. 30% activity remaining
[55])

n.d.a.: no data available.

Biomolecules 2023, 13, x FOR PEER REVIEW 6 of 30 
 

R321 
Interaction with the phos-

phate of UDP [53] 
R321C [103] n.d.a. 

C303 
Hydrophobic interactions, but 
probably no specific function 
in the enzymatic reaction [50] 

C303V [104] 
C303X [9] 

C303V: epimerase 80%, 
kinase 60% 

C303X: epimerase 0%, 
kinase 0% [50] 

N-acetylmannosamine kinase (hGNE1, mRNA variant 2) 

Residues Function So-Far Known Mutations 
in Patients 

In Vitro—Loss of Activity 
Due to Mutations (Com-

pared to WT) 

R420 
Interaction with the phos-

phate oxygens [51,52] 

R420X [105] 
R420Q [106] 

→ patient not yet suffer-
ing from myopathy 

R420M: epimerase activity 
comparable to WT; kinase 

activity drastically reduced 
[51] 

R477 ManNAc binding [54] n.d.a. n.d.a. 
C579 Zinc binding [54] C579Y [12] n.d.a. 
C581 Zinc binding [54] C581R [7] n.d.a. 
C586 Zinc binding [54] C586X [7] n.d.a. 

N-acetylglucosamine kinase 

Residues Function In Vitro—Loss of Activity Due to Muta-
tions (Compared to WT) 

K274 Nucleotide binding [56] n.d.a. 
R218 Nucleotide binding [56] n.d.a. 

C131 
Phosphate transfer from ATP to the hy-

droxyl groups of GlcNAc [55] 
C131S: overall activity reduced (approx.. 

10% activity remaining [55]) 

C143 
Phosphate transfer from ATP to the hy-

droxyl groups of GlcNAc [55] 

C143S: overall activity reduced (approx.. 
20% activity remaining [55]); 75% of WT 

activity [107] 

C217 Nucleotide binding [56] 
C217S: overall activity reduced (approx.. 

30% activity remaining [55]) 
n.d.a.: no data available. 

 
Figure 3. Structural formulas showing different advanced glycation end products (AGEs). Struc-
tural formulas of advanced glycation end products (AGEs) formed from lysine [95,108,109] (A), ar-
ginine [95,110–112] (B), or cysteine [83,95,113] (C) and glyoxal (GO; black) or methylglyoxal (MGO; 
blue). 
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can arise as a byproduct of the glycation process itself via the so-called Namiki pathway 
[84,117] or by autoxidation of glucose via the Wolff pathway [84,118–120]. They are also 
ingested through food: MGO and GO, e.g., by consuming coffee and wine [121] and Vita-
min C through fruits and vegetables [122].  

One of the most well-studied AGEs is carboxymethyllysine (CML; Figure 3A), whose 
formation is based primarily on a reaction between lysine and glyoxal [108,123,124]. Fur-
thermore, most anti-AGE antibodies preferentially recognize CML [125]. In our study, we 

Figure 3. Structural formulas showing different advanced glycation end products (AGEs). Struc-
tural formulas of advanced glycation end products (AGEs) formed from lysine [95,108,109] (A), argi-
nine [95,110–112] (B), or cysteine [83,95,113] (C) and glyoxal (GO; black) or methylglyoxal (MGO; blue).

The aforementioned di-carbonyl substances can occur naturally as a breakdown prod-
uct of glycolysis, amino acid, and fatty acid degradation [114–116]. In addition, they can
arise as a byproduct of the glycation process itself via the so-called Namiki pathway [84,117]
or by autoxidation of glucose via the Wolff pathway [84,118–120]. They are also ingested
through food: MGO and GO, e.g., by consuming coffee and wine [121] and Vitamin C
through fruits and vegetables [122].

One of the most well-studied AGEs is carboxymethyllysine (CML; Figure 3A), whose
formation is based primarily on a reaction between lysine and glyoxal [108,123,124]. Fur-
thermore, most anti-AGE antibodies preferentially recognize CML [125]. In our study, we
also used an antibody against CML as a marker for the glycation level of our proteins—the
epimerase and the kinase domain of the GNE and the GlcNAc kinase.

In this study, we attempted to find an explanation for the late onset of GNEM by
relating it to PTMs, focusing specifically on glycation. Therefore, we investigated the
extent of the influence of MGO- or GO-triggered glycation on the activity of the individual
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domains of the GNE (hGNE1) and on the GlcNAc kinase. For this purpose, all three
enzymes were expressed separately from each other, purified, treated with increasing
concentrations of one of the glycation agents, and then analyzed for their activity.

Furthermore, we examined the expression of the GNE—as a whole protein—and the
GlcNAc kinase in undifferentiated but MGO- or GO-treated C2C12 cells. These cells belong
to a murine skeletal muscle cell line. In addition, the effect of the glycation agents on cell
viability was investigated by a MTT assay.

2. Materials and Methods
2.1. Cell Culture and MGO/GO-Treatment

Murine C2C12 myoblasts were cultured in DMEM (Dulbecco’s Modified Eagle’s
Medium; 11960044; Gibco/Thermo Fisher Scientific; Waltham, MA, USA) supplemented
with 10% FBS (Fetal Bovine Serum; A5256801; Gibco/Thermo Fisher Scientific; Waltham,
MA, USA), 1% penicillin-streptomycin (P/S; 10,000 units/mL (P) and 10,000 µg/mL (S);
15140122; Gibco/Thermo Fisher Scientific; Waltham, MA, USA) and 1% L-glutamine (L-Gln;
200 mM; A2916801; Gibco/Thermo Fisher Scientific; Waltham, MA, USA) at 37 ◦C in a
humidified atmosphere with 5% CO2. The C2C12 cell line was kindly provided to us by
the Poserns Lab (Martin-Luther-University Halle-Wittenberg, Institute for Physiological
Chemistry; Halle (Saale), Germany). Growth medium was changed every 48 h.

To assess the effect of MGO and GO on C2C12 myoblasts, the cells were seeded at
a density of 9000 cells/cm2; in a 10 cm (Ø) dish and incubated at 37 ◦C in a humidified
atmosphere with 5% CO2. After one day, the cells were cultured in starvation medium
(DMEM + 1% FBS + 1% P/S + 1% L-Gln) with MGO or GO (0.2 mM, 0.5 mM, or 2 mM).
Following another day, the cells were divided into two pellets, one for protein isolation and
one for RNA isolation.

2.2. RNA Extraction and RT-qPCR

Total RNA was isolated using the Quick-RNA Miniprep Kit (R1054; Zymo Research;
Irvine, CA, USA). cDNA was synthesized, using 2 µg of total RNA and SuperScript™
II reverse transcriptase (18064022; 2000 units; Thermo Fisher Scientific; Waltham, MA,
USA), following the manufacturer’s instructions. RT-qPCR was performed using qPCR
SybrMaster (PCR-372S; Jena Bioscience; Jena, Germany) and the CFX Connect™ Real-Time
PCR Detection System (1855201; Bio-Rad; Hercules, CA, USA).

The following primers were used:

Gene Name Direction Sequence

RPL26 forward GGTCTATGCCCATTCGGAAGG

RPL26 reverse TCGTTCGATGTAGATGACGTACT

GAPDH forward CCTGGAGAAACCTGCCAAGTATG

GAPDH reverse AGAGTGGGAGTTGCTGTTGAAGTC

Isoform 1 (short) forward GGCGTCCGGGTTCTACGCA

Isoform 2 (long) forward GGAAACACACGCGCATCTCCAC

Isoform 1 and 2 reverse AATGGTCCCGCTGACCTCGC

GNE1 forward GGTGGACAATGACGGCAACTGT

GNE1 reverse CAGTTCGTGCTGGTGGATGATC

GlcNAc kinase forward GGTAGTATGGCCGCGCTTTA

GlcNAc kinase reverse GGTGTGCAATCCAGTAGGCT
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Cq values were normalized to the housekeeping gene RPL26, and relative gene expres-
sion was calculated using the ∆∆Cq-method.

2.3. Protein Isolation from Cell Culture

For protein isolation, cells were washed with PBS and lysed using RIPA buffer con-
taining protease inhibitor cocktail (Sigma Aldrich; St. Louis, MO, USA), 1 mM NaVO4, and
1 mM PMSF. Following 30 min incubation on ice, total protein was isolated by centrifuga-
tion at 14,000× g, 4 ◦C for 5 min and quantified using the Pierce™ BCA Protein Assay Kit
(23225; Thermo Fisher Scientific; Waltham, MA, USA).

2.4. MTT Assay

C2C12 myoblasts were seeded at a density of 3 × 103 cells in a 96-well cell culture
plate and treated with six different concentrations of MGO (0 mM, 0.1 mM, 0.2 mM, 0.5 mM,
0.7 mM, and 1 mM) and GO (0 mM, 0.5 mM, 1 mM, 1.5 mM, 2 mM, and 2.5 mM) for 24 h in
DMEM containing 1% FBS. Thiazolylblue-tetrazolimbromide (M5655; Sigma-Aldrich; St.
Louis, MO, USA) was added to the cells according to the manufacturer’s instructions and
incubated for 4 h.

2.5. Protein Expression in E.coli and Purification

The GNE domains of human GNE/MNK were expressed according to a protocol
published by the Chen Group [53]. The gene encoding the UDP-GlcNAc 2-epimerase
domain with an N-terminal His6-tag was bought from Biocat in a pET21a(+) vector. The
plasmid was codon optimized to be expressed in Escherichia coli BL21 (DE3) cells. The
transformed BL21 (DE3) cells were stored until use as glycerol stocks (5%).

Starting from this glycerol stock, an over-day culture was grown in 5 mL LB medium
with 100 mg/L ampicillin, for 8 h at 37 ◦C and 220 rpm. From the over-day culture, an
overnight culture was grown in 15 ml LB medium with 100 mg/L ampicillin, at 37 ◦C and
220 rpm. With 3.5 mL overnight cultures 4 × 500 mL LB medium with 100 mg/L ampicillin
in 2 L flasks were inoculated. This was grown at 37 ◦C and 180 rpm to an OD600 of 1.9.
Then all cultures were pooled, and 700 mL were diluted in 1.3 l LB medium with 100 mg/L
ampicillin (at 4 ◦C). This was redistributed to four 2 L flasks (4 × 500 mL), grown to an
OD600 of 0.7 and induced with IPTG (50 µM). Subsequently, the cells were kept for 42 h
at 8 ◦C and 120 rpm. Then, they were grown for 24 h at 16 ◦C and 180 rpm. The cells
were harvested by centrifugation with 4000× g for 15 min at 4 ◦C, and the cell pellet was
re-suspended in resuspension buffer (50 mM Tris-HCl, pH 8.0, 500 mM NaCl).

Afterwards, the cells were lysed by using a high shear fluid laboratory homogenizer
at 18 kPa (LM10; Microfluidics International Corporation; Newton, MA, USA) and the
cell lysate was centrifuged with 20,000× g for 25 min at 4 ◦C. The clarified supernatant
was filtered, and the protein was purified via Ni-NTA chromatography on 2 × 5 mL
His60 Ni Superflow column (635657; Takara Bio Inc./Clontech; Kusatsu, Japan) using a
Chromatography System (Bio-Rad NGC Discover 10; Bio-Rad Laboratories; Hercules, CA,
USA). Resuspension buffer and elution buffer (50 mM Tris-HCl pH 8.0, 500 mM NaCl,
500 mM Imidazole) were used in a linear gradient over 300 mL.

Fractions of the protein peak were pooled and concentrated to 10 mL using a Vivaspin
20 (VS2001; Sartorius; Göttingen, Germany) with a molecular weight cut of 10 kDa. The
sample was then buffer exchanged to 50 mM Tris-HCl pH 8.0, 100 mM NaCl, 5% glycerol
and 0.2 mM TCEP using a HiPrep 26/10 Desalting column (GE17-5087-01; Sigma-Aldrich;
St. Louis, MO, USA) and the aforementioned chromatography system. Fractions containing
the GNE protein were pooled. 20 mL with a concentration of about 7 mg/mL were obtained.

To avoid confusion with the proteins from cell culture, these proteins will be referred
to hereinafter as PROTEIN-ECOLI and the proteins from cell culture as PROTEIN-CC.
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2.6. Glycation of the Proteins (PROTEIN-ECOLI)

In order to investigate the concentration dependence of glycation of methylglyoxal
(MGO; 40% in H2O; Sigma Aldrich; St. Louis, MO, USA) and glyoxal (GO; 40% in H2O;
Sigma Aldrich; St. Louis, MO, USA), 6 µg each of N-acetylmannosamine kinase and
N-acetyl-glucosamine kinase or 4.8 µg of the UDP-N-acetylglucosamine 2 epimerase were
mixed with ascending concentrations of the reagents—0.5 mM, 2 mM, and 5 mM—and
incubated for 1 h at 37 ◦C.

2.7. Western Blot Analysis (PROTEIN-CC and PROTEIN-ECOLI)

Protein-CC:
Equal amounts of protein were mixed with 5× SDS-loading dye (containing 50 mM

DTT) and separated on a 4–12% Tris-Glycin gradient gel (Invitrogen by Thermo Fisher;
Waltham, MA, USA).

PROTEIN-ECOLI:
The glycated proteins were mixed with 5× SDS-loading dye (containing 50 mM

DTT) and separated on a 10–20% Tris-Glycin gradient gel (XP10205BOX; Invitrogen by
ThermoFisher; Waltham, MA, USA).

Proteins were transferred on a nitrocellulose-membrane and stained with Ponceau
S as loading control. Membranes were blocked with 5% skimmed milk in TBS-Tween
(TBS-T) for 1 h at RT. The membranes were then incubated with the primary antibodies:
mouse IgG-anti-carboxymethyl lysine (CML26; dilution: 1:10,000 (Protein-CC) or 1:2000
(Protein-Ecoli); ab125145; abcam; Cambridge, UK) or MG-H1 (1H7G5; dilution: 1:1000;
NBP2-62810; Novus Biologicals/Bio-Techne; Minneapolis, MN, USA) overnight at 4 ◦C.
Afterwards, the membranes were washed three times with TBS-T. Each washing step lasts
10 min. Following that, the membranes were incubated with the secondary antibody—goat
anti-mouse IgG H&L HRP (dilution 1:10,000; ab6789; abcam; Cambridge, UK)—for 1 h at
RT. Thereafter, the membranes were again washed 3 times for 10 min each with TBS-T and
the Western blot detection reagent from Amersham (cytiva, Marlborough, MA, USA) was
used. The ChemiDoc MP imaging system from Bio-Rad Laboratories (Hercules, CA, USA)
was used for visualization. Intensities were quantified by ImageLab Software from Bio-Rad
Laboratories (Hercules, CA, USA).

2.8. Epimerase Activity Assay (PROTEIN-ECOLI)

An UDP Glo™ Glycosyltransferase Assay (V6961; Promega Corporation; Madison,
WI, USA) was performed to determine UDP-N-acetyl-glucosamine 2-epimerase activity.
For this purpose, 747 µg epimerase were incubated at 37 ◦C with different MGO/GO
concentrations (0.5 mM, 2 mM, and 5 mM) for 1 h in a volume of 3 µL. The total volume of
the reaction mixture of 52.5 µL was prepared, consisting of 5 µM UDP-GlcNAc, 0.05% BSA,
and glycated epimerase in buffer. This mix was incubated for 1 h at 37 ◦C. Afterwards,
25 µL UDP-Detection Reagent™ were added and incubated at room temperature for
1 h. Afterwards, the luminescence was detected by ClarioStar™ (BMG Labtech GmbH,
Ortenberg, Germany).

2.9. Kinase Activity Assay (PROTEIN-ECOLI)

The N-acetylmannosamine kinase activity and the N-acetylglucosamine kinase activity
were determined by a coupled enzyme assay (based on the assays described by [19,126]).

Our enzyme assay used differently glycated GNE-kinase and GlcNAc kinase samples.
For this, 3 µg each of the GNE-kinase domain and the GlcNAc kinase were incubated with
ascending concentrations of MGO and GO—0.5 mM, 2 mM, and 5 mM—for 1 h at 37 ◦C.
Each of the enzyme samples had a total volume of 2.5 µL.
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Afterwards, a reaction mixture with a total volume of 623.5 µL was prepared, con-
sisting of one of each of the different enzyme samples, 62.6 mM Tris, 20.3 mM MgCl2,
9.6 mM ATP, 4.8 mM ManNAc, 4.8 mM phosphoenolpyruvate, 1.4 mM NADH, 6 µL Lactic
dehydrogenase (600–1000 U/mL)/Pyruvat kinase solution (900–1400 U/mL) (P0294; Sigma
Aldrich; St. Louis, MO, USA), and 7.7 mM sodiumphosphatebuffer.

This reaction mixture was incubated at 37 ◦C until further use. At time points 0 min
and 45 min in the case of the ManNAc kinase, and 0 min and 180 min in the case of the
GlcNAc kinase, 25 µL of this mixture was removed and added to 75 µL of an EDTA solution
(10 mM). The absorbance at the wavelength of 340 nm reflects the NADH concentration.
The ClarioStar™ (BMG Labtech GmbH, Ortenberg, Germany) was used to determine
the absorbance.

2.10. Structural Comparison

A structural comparison between GNE-kinase and GlcNAc kinase was performed
using the VAST+ algorithm (vector alignment search tool; [127–129]).

In order to do this, we entered the PDB ID of the GNE-kinase (2YHW) into the search
field of the Website of the National Center of Biotechnology Information [130], called up
the entry listed under Protein/Structure, and then clicked on the “VAST+” button (similar
structures). Afterwards, we entered the PDB ID of the GlcNAc kinase (2CH5) into the
search field of the result list.

2.11. Statistical Analysis

For statistical analysis of the epimerase and the kinase activity assays, a two-way
analysis of variance (ANOVA) was performed (alpha = 0.05; OriginPro 2019 (OriginLab
Corporation; Northampton, MA, USA)). One factor (“way”) was the choice of glycation
agent—MGO or GO—and the other the concentration used—0.5 mM, 2 mM, or 5 mM. This
was followed by a Tukey post hoc-Test. Based on the determined p-values, asterisks were
used to classify the significance levels: p ≤ 0.05: *, 0.005 < p ≤ 0.01: **, and p ≤ 0.005: ***.

3. Results
3.1. Expression and Glycation of the UDP-N-Acetylglucosamine 2-Epimerase, the
N-Acetylmannosamine kinase, and the N-Acetylglucosamine Kinase

As it is possible that molecular aging is an important component in the progression
and onset of GNEM, this aspect will be the focus of the following experiments. Molecular
aging was therefore simulated by glycating the proteins/protein domains of interest us-
ing different physiological glycation agents. Afterwards, their individual activities were
determined by different assays further explained in the next result section.

First, the proteins/protein domains were expressed in Escherichia coli BL21 with a
6xHis-tag added to their N-terminal site. This His-tag was used for purification over
Ni-NTA-columns (details can be found in the Material and Methods section). Afterwards,
the purified proteins were incubated with ascending concentrations of the glycation agents
methylglyoxal (MGO) and glyoxal (GO) and the glycation success was verified by western
blots using an antibody specific for glycated lysine side chains (anti-CML; see Figure 4,
Supplementary Table S1 and the Supplementary Figures S1–S3 (showing the uncut West-
ern Blots)).

With ascending concentrations of MGO and GO, the level of relative glycation normal-
ized to Ponceau increases. Across both GNE domains, the signal of CMLs detected was
stronger when using the glycation agent GO than MGO.

Looking at the GlcNAc kinase, it is striking that the amount of CMLs and thus the
glycation success seems to be at the same level for both glycation agents. Overall, the
proteins/protein domains of interest were successfully glycated by both glycation agents.
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was stronger when using the glycation agent GO than MGO.  

Figure 4. Investigation of the glycation success of the two GNE-domains and the GlcNAc kinase. The
glycation success on each protein/protein domain was investigated through western blots by using an
anti-CML antibody specifically against glycated lysines—or more precisely against carboxy-methyl-
lysines. (A) shows the glycation of the UPD-N-acetylglucosamine 2-epimerase by methylglyoxal
(MGO; Aa) or glyoxal (GO; Ab). Correspondingly, (B) shows the glycation of N-acetylmannosamine
kinase by MGO (Ba) or GO (Bb) and (C) that of N-acetylglucosamine kinase by MGO (Ca) or GO
(Cb). For each protein/protein domain, a representative Ponceau stain, a representative Western blot,
and a bar graph with the anti-CML band intensities normalized to Ponceau (n = 2) were shown. At a
concentration of 0 mM, buffer was added instead of a glycation agent. The relative band intensities
were written directly above or underneath each band.
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3.2. Glycation of the GNE-Domains Interferes with Their Enzymatic Activity—Activity of the
GlcNAc Kinase Is Not Affected by Glycation

Having shown that the proteins/protein domains of interest were successfully gly-
cated, their activity should now be determined. The aim is to investigate whether glycation
can influence enzyme activity, to be able to assess whether the late onset of GNEM might
be due to age-related effects.

The first step of the GNE-epimerase activity assay is based on the GNE-epimerase
domain reaction, where UDP-N-acetylglucosamine (UDP-GlcNAc) is converted under ad-
dition of water to N-acetylmannosamine (ManNAc) and UDP (see Figure 5A). Afterwards,
the generated UDP is converted to ATP by adding UDP-Glo-Reagent and light is generated
in the form of luminescence (based on the Promega glycosyltransferase assay; details can
be found in the Material and Methods section). The amount of light produced was used
to back-calculate the UDP concentration. This is possible because the UDP concentration
and the amount of light produced are proportionally coupled. The determined UDP con-
centration was then used as an indicator for enzyme activity. Higher UDP concentrations
indicate higher enzyme activities.
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Figure 5. Investigation of the influence of glycation on the activity of the GNE-epimerase domain by
a luminescence-based assay. (A) Scheme of the enzyme activity test with all the relevant reactions.
(B) Boxplot showing the determined UDP concentration (n = 5; to minimize technical noise, three
technical replicates were made for each biological replicate and these values were then averaged
→ N = 3). (C) Bar graph showing whether the glycation agent affects the functionality of the assay
(n = 3; N = 3). No GNE-epimerase domain was added in this part, only the assay substances, UDP
and the glycation agent (MGO or GO). The abbreviation “a.u.” stands for arbitrary unit. The median
was included in all quantile calculations and is represented by a line in the boxplots. The mean is
indicated by x’s. Outliers are marked with circles. The boxes below the boxplots show the student’s
t-test results for each condition. Grey asterisks indicate the results versus the negative control and
black asterisks versus the positive control. p ≤ 0.05: *, 0.005 < p ≤ 0.01: **, and p ≤ 0.005: ***.
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The boxplot showing the determined UDP concentrations under the different con-
ditions can be seen in Figure 5B. All boxplot-related data, including mean and standard
deviation, can be found in Supplementary Table S2. All samples showed significant differ-
ences (p < 0.005; student’s t-test; all results can be seen in Supplementary Table S5) towards
the negative control (see Figure 5B). The negative control consists of water, instead of any
enzyme. The positive control consists of the non-glycated enzyme. With the exception
of the sample that was treated with 0.5 mM MGO, all other samples showed significant
differences towards the positive control (p < 0.05; student’s t-test), indicating reduced
enzyme activities—lower UDP-concentrations—compared to the non-glycated enzyme.

Two-factor ANOVA showed that the concentration of the glycation agent is a sig-
nificant factor for the activity (p-value: 1.43E-03; see also Supplementary Table S3) and
the choice of the glycation agent per se not (p-value: 1.96E-01). The interaction between
concentration and glycation agent is again significant (p-value: 3.58E-03), meaning that the
result obtained through different concentrations depends on the used glycation agent.

The subsequent Tukey post hoc-Test identified significant differences between the
conditions 0.5 mM MGO and 2 mM MGO, between the conditions 0.5 mM MGO and
0.5 mM GO, and between the concentrations 0.5 mM and 5 mM, regardless of the glycation
substance used (for the p-values see Supplementary Table S4).

To ensure that the glycation agents do not influence the activity assay itself, the
experiment was repeated without the GNE-epimerase domain, but with 0.25 nmol UDP
(see Figure 5C). The assay enzymes were exposed to one of the two glycation agents in the
same amount as in the normal activity assay (same volume; always assuming the highest
concentration used). No influences on the activity of the assay enzymes were found under
these conditions (p-value: 5.35E-01 (control and MGO); p-value: 9.07E-01 (control and
GO)). This indicates that the reduced UDP concentrations measured with differentially
glycated GNE-epimerase domains were a result of a reduced GNE-epimerase domain
enzyme activity and not a result of the glycation agents reacting with the assay itself.

In summary, it can be stated that the activity of the GNE-epimerase domain can be
influenced by glycation, with a remaining activity of 60% ± 8% after treatment with MGO
(5 mM) and 63% ± 5% after treatment with GO (5 mM) compared to the non-glycated
protein, which activity was set to 100%. The determination of the activity is based on the
UDP consumption (see Supplementary Table S2). This also shows that regardless of the
glycation agent used, the same level of activity is achieved when comparing the highest
glycation conditions.

The activities of the GNE-kinase domain and of the GlcNAc kinase were determined
by a coupled enzyme assay ([19,126]; see Figure 6A). This assay is based on the fact that
both kinases can phosphorylate ManNAc to ManNAc-6-phosphate, although ManNAc
is not the main substrate of GlcNAc kinase [40,42]. The ADP, which remains after the
release of the phosphate from the ATP, is then further used in the pyruvate kinase reaction.
The product of that reaction, pyruvate, is further converted to lactate. Concomitantly, the
coenzyme NADH is converted to NAD+. The decrease in the NADH concentration can
be measured by determining the absorbance at 340 nm. The level of NADH consumption
per minute can be seen as a measure of enzyme activity. Higher NADH consumption per
minute indicates higher enzyme activities.

The determined NADH consumption per minute for the GNE-kinase domain can be
seen in Figure 6B and for the GlcNAc kinase in Figure 6C (the boxplot-related data can be
found in the Supplementary Tables S6 and S10). The GlcNAc kinase, even non-glycated,
shows a lower NADH consumption rate per minute than the GNE-kinase domain—only
17% compared to the GNE-kinase domain.
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Figure 6. Investigation of the influence of glycation on the activity of the GNE-kinase domain and
of the GlcNAc kinase by a coupled enzyme assay. (A) Scheme of the enzyme activity test with all
the relevant reactions. (B) Boxplot showing the determined NADH consumption per minute of the
GNE-kinase domain (n = 5). (C) Boxplot showing the determined NADH consumption per minute
of the GlcNAc kinase domain (n = 5). (D) Bar graph showing whether the glycation agent affects
the functionality of the assay (n = 3). The abbreviation “a.u.” stands for arbitrary unit. The median
was included in all quantile calculations and is represented by a line in the boxplots. The mean is
indicated by x’s. Outliers are marked with circles. The boxes below the boxplots show the student’s
t-test results for each condition. Grey asterisks indicate the results versus the negative control and
black asterisks versus the positive control. p ≤ 0.05: *, 0.005 < p ≤ 0.01: **, and p ≤ 0.005: ***.
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Concerning the GNE-kinase domain, the positive control—again consisting of non-
glycated protein—and the samples treated with the lowest concentrations of the glycation
agents showed significant differences towards the negative control (p < 0.05; student’s t-test;
see Figure 6B and Supplementary Table S8). All other samples showed such low NADH
consumptions that they no longer show any significant differences from the negative control.
With the exception of the treatment with 0.5 mM GO, all samples showed a significant
difference from the non-glycated sample (pos. control; p < 0.005; see also Supplementary
Table S8). The overall trend related to the NADH consumption per min is that higher
concentrations of the glycation agent leads to lower consumption rates.

The two-factor ANOVA showed that the concentration of the glycation agent and the
glycation agent per se are significant factors (p < 0.005; see also Supplementary Table S7)
and the interaction between them is not (p-value: 1.22 × 10−1).

The subsequent Tukey post hoc-Test identified many significant differences between
the different conditions, which can all be seen in Figure 6B with the corresponding p-values
in Supplementary Table S9.

Concerning the GlcNAc kinase, all samples differ significantly from the negative
control (p < 0.01; see Figure 6C and Supplementary Table S13) and show no significant
difference from the positive control. Additionally, all other statistical tests do not reveal any
other significant effects (see Supplementary Tables S10 and S11). This is quite surprising, as
it states that glycation does not affect the enzymatic activity of this kinase, despite previous
results on the GNE-kinase domain suggesting otherwise.

Again, no influence of the glycation agents on the enzymes of the assay could be
determined (see Figure 6D; p-value: 4.23 × 10−1 (control and MGO); p-value: 6.52 × 10−1

(control and GO)). We exposed the assay enzymes to the same amounts of the two glyca-
tion agents as in the normal activity assay (same volume; always assuming the highest
concentration used).

3.3. Expression of the UDP-N-Acetylglucosamine 2-Epimerase/N-Acetylmannosamine Kinase, and
the N-Acetylglucosamine Kinase in MGO/GO-Treated Undifferentiated C2C12 Cells

We also investigated the effect of MGO and GO on undifferentiated C2C12-cells, a
murine skeletal muscle cell line. This should help to obtain a first impression of the effect of
glycation on the muscle type that is most affected by the disease. Phase-contrast images of
C2C12 cells treated with different concentrations of the glycation agents were then analyzed
to find out which concentrations appear to be quite well tolerated. An MTT assay was then
performed to determine the effect of the glycation agents on cell viability. Based on the
data from the MTT assay, the TC50-value was calculated whenever possible. Finally, the
effect of MGO and GO on mRNA expression of GNE and GlcNAc kinase was determined
using quantitative PCR (qPCR).

Looking at the phase-contrast images revealed that the cells tolerated higher con-
centrations of GO than of MGO. Accordingly, we found no morphological abnormalities
in the cell cultures at a maximum concentration of 0.2 mM MGO and 0.5 mM GO (see
Figure 7A and Supplementary Figure S4 (showing the unprocessed cell culture images)).
This can be confirmed by the results of the MTT assay (see Figure 7B; results and p-values
can be found in Supplementary Tables S14 and S15), where we determined a TC50-value
for MGO of 0.81 mM. With regard to GO, we decided against calculating this value based
on the underlying data basis, since we did not exceed the 50% cell viability mark with the
concentrations examined. Nevertheless, it is clear that the TC50-value of GO with respect
to C2C12 myoblasts must be higher than the TC50-value of MGO.
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Figure 7. Investigation of the effect of the two glycation agents, MGO and GO, on C2C12-cells
with a special focus on the expression of the GNE and the GlcNAc kinase. (A) Representative
phase contrast images of C2C12 cells, which were treated with different concentrations of the two
glycation agents (partly improved in contrast and brightness (the unprocessed images can be found
in supplementary Figure S4)). The cells in (Aa) were not treated with either MGO or GO, the cells
in (Ab) were treated with 0.2 mM MGO, the cells in (Ac) with 0.2 mM GO, and the cells in (Ad)
with 0.5 mM GO. Furthermore, (B) shows the influences of MGO (blue) and GO (green) on the cell
viability of the C2C12 cells, determined by an MTT assay (n = 3), and (C) on the mRNA expression of
the GNE and the GlcNAc kinase determined by qPCR (n = 4). (D) Representative Ponceau stains
and western blots showing GO- and MGO-derived glycation products (n = 4). GO-derived glycation
products were detected by using an anti-CML antibody and MGO-derived glycation products by
using an MG-H1-antibody (immunogen: Nα-acetyl-Nδ-(5-hydro-5-methyl)-4-imidazolone). The
band intensities were determined as the sum of all intensities per lane. Relative band intensities were
written directly under each column. p ≤ 0.05: * and p ≤ 0.005: ***.
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The western blots showed the same trend as previously observed when examining
the proteins/protein domains individually—that with ascending concentrations of MGO
and GO, the level of relative glycation increases (see Figure 7D). This also stays true after
normalization to Ponceau (see supplementary Figure S5).

The qPCR showed that the mRNA expression of the GlcNAc kinase was signifi-
cantly reduced after treatment with 0.5 mM GO (p-value: 4.56 × 10−2; see Figure 7C and
Supplementary Table S16). The expression of the GNE showed no significant changes
independent of the concentration or type of the glycation agent (all p-values can be found
in Supplementary Table S17).

Overall, these investigations showed that too high concentrations of glycation agents,
especially of MGO, lead to a reduced cell viability. At non-toxic concentrations, GO/MGO-
derived glycation products could be successfully detected in the cells/cell lysates; increas-
ing concentrations led to increasing amounts of glycation products. The mRNA expression
of GlcNAc kinase in C2C12 cells was affected by the addition of GO. However, the mRNA
expression of GNE was not affected by either of the two glycation agents investigated.

3.4. Structural Comparison of the UDP-N-Acetylglucosamine
2-Epimerase/N-Acetyl-mannosamine kinase and the N-Acetylglucosamine Kinase

To understand similarities and differences between GNE-kinase and GlcNAc kinase, a
structural comparison of both was performed using the VAST+ algorithm (vector alignment
search tool; [127–129]; see Figure 8). The root mean square deviation (RMSD) of the aligned
residues between both kinases was 3.17 Å. Furthermore, a sequence accordance of 21%
was found (displayed by white capital letters with a red background in Figure 8A; or by a
red color in the three-dimensional image alignment in Figure 8B), and 219 residues could
be aligned in 3D space (displayed by blue capital letters in Figure 8A; or by a blue color
in Figure 8B). Regions in a gray color (Figure 8B) or with lowercase letters with a gray
background represent unaligned amino acids (Figure 8A). In addition, a diamond � marks
the amino acid side chains involved in the formation of the active site (Figure 8A).

Three amino acid side chains can be identified whose 3D structure can be aligned
against each other, which are identical, and which are part of the respective active sites.
An enclosed rectangle with a Roman numeral marks these amino acid side chains in the
amino acid sequence in Figure 8A. The amino acid side chain marked by I corresponds to
the GNE amino acid at position 476 and to the GlcNAc kinase amino acid at position 77,
which was in both cases a glycine. The amino acid side chain marked with III was also a
glycine, which was found at position 545 in the GNE and at position 128 in the GlcNAc
kinase. Furthermore, this glycine is part of the ATP binding motifs DXGGT and GTG (see
yellow rectangles in Figure 8A; [52,131]). The amino acid aspartic acid is located at position
II in the sequence. This corresponds to amino acid position 517 in GNE and position 107 in
GlcNAc kinase.

The nearly conserved ATP binding motifs in both kinases appear to represent the
greatest structural similarity. However, this is not a surprise since both require ATP to
transfer the phosphate group to their respective substrate.

The functions, pathogenicity predictions based on polymorphism phenotyping
(PolyPhen), statements concerning disease association, genetic locations, and the database
of single polymorphisms (dbSNP) IDs [132] of the amino acids at the positions I to III can
be found in the table displayed in Figure 8C (everything, except for the function, was based
on [133]).
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Figure 8. Structural comparison of the GNE-kinase domain (hGNE1) and the GlcNAc-kinase.
(A) Amino acid comparison of GNE-kinase domain (orange) and GlcNAc kinase (blue). (B) Three-
dimensional structural comparison of the two kinases. Both were based on the vector alignment
search tool VAST+ [127–129]. A blue color represent amino acids that are aligned in 3D space, a gray
color represent unaligned amino acids, and a red color represent identical amino acids. A diamond
� over an amino acid indicates whether it is within the active site. The three amino acids, which can
be aligned, which are identical, and which are part of the active site are marked by Roman numerals
from I to III. The amino acid marked with III—glycine—is part of the ATP-binding motifs DXGGT
and GTG [52,131]. All other functions of the marked amino acids can be found in the table in (C).
Most of the information given here was based on data found on https://www.uniprot.org, (accessed
on 20 December 2022) [133].
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4. Discussion and Outlook

All proteins/protein domains of interest—the GNE-epimerase domain, the GNE-
kinase domain, and the GlcNAc kinase—could be successfully expressed in E. coli, purified
via their 6xHis-tag, and post-translational modified by the two glycation agents methyl-
glyoxal (MGO) and glyoxal (GO). Afterwards, different activity assays were performed to
investigate the effect of glycation on the activity of the enzymes. In addition, we also exam-
ined the expression of GNE and the GlcNAc-kinase in undifferentiated, MGO/GO-treated
C2C12 cells, a murine skeletal muscle cell line.

The choice of a His-tag needs to be discussed, since it seems also possible that under
certain conditions histidine side chains could be modified [134,135]. However, it seems
that the histidine modifications described in these studies are based on oxidation and
not on glycation, and require at least certain amounts of Cu(II) [135], so a His-tag seems
like a safe choice from this standpoint. Furthermore, such a tag has already been used
successfully in another study in connection with GNE [53]. However, the His-tag itself
could also have an impact on the protein and its activity, e.g., due to steric hindrances
or due to electrostatic interferences that result in impeded binding of the substrate to the
active site [136,137]. Still, one could try introducing removable tags, such as the GST-tag
(Glutathione S-Transferase-tag; [138], and see if the purification success stays the same or
maybe even improves. Then, His-tag-based influences [139] could be excluded.

The stronger CML signal when examining the GO-treated GNE domains as opposed to
the MGO-treated ones can be explained by the fact that a fairly favorable pathway for the for-
mation of CMLs is the reaction between lysine side chains and GO (see Figure 3A; [95,124]).
In contrast, the reaction between lysine side chains and MGO leads to the formation of
carboxyethyllysines (CELs) (indicated in blue in Figure 3A; [95,109]). It is therefore quite
interesting that a putative specific antibody against carboxymethyllysines (CMLs) is also
able to detect MGO-derived modifications on our proteins/protein domains of interest (see
Figure 4). However, there are already some publications that document cross-reactions
of anti-CML antibodies with CELs [140], respectively, with MGO-derived AGEs [86,141].
Further, it seems quite surprising that although the GNE-epimerase domain has almost
twice as many lysines as the GNE-kinase domain, the relative glycation normalized to
Ponceau of the kinase domain is more than twice as high compared to the epimerase
domain and not the other way around. This could perhaps be a first indication of a higher
responsiveness/vulnerability of the kinase to glycation.

Based on the elevated MGO/GO-levels in diabetic patients [142,143], it might be
interesting to investigate whether there are patients who suffer from both diseases—GNEM
and diabetes mellitus (type I) and whether these patients develop the disease earlier
(statistically) than patients suffering from GNEM alone.

One-step further, one could also split up all so far known mutations, into the groups:

1. Mutation introduces a new potential glycation site,
2. Mutation has no effect on the number of potential glycation sites (both amino acids

lead to a potential glycation site),
3. Mutation deletes a potential glycation site.

This could then be used, for example, to examine whether different MGO/GO blood
levels can be detected in the individual groups.

Our preliminary analysis of the mutations listed on UniProt revealed 19 mutations
that lead to a reduction in a potential glycation site (see Supplementary Table S18A). These
mutations were mainly found in the epimerase domain and 31% of them are predicted to be
benign. In addition, five mutations were found in which one amino acid causing a potential
glycation site was exchanged for another, resulting in a new potential glycation site (see
Supplementary Table S18B). Interestingly, in all five cases, an arginine was exchanged for
a cysteine. Again, these mutations were predominantly found in the epimerase domain
and are mostly damaging or pathogenic; the one found in the kinase domain was probably
benign. Ten mutations were found that added an additional potential glycation site, 20%
in the epimerase domain and 80% in the kinase domain. These mutations were mainly
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malignant (70%), 20% uncertain, and 10% benign. This may lead one to hypothesize that
adding a potential glycation site is more likely to result in a malignant mutation—greater
impact on the protein—than removing a potential glycation site. However, this needs to be
verified further, e.g., in in vitro experiments on mutated versions of the protein. In addition,
the conclusions/hypotheses of this preliminary mutation analysis can be linked to the other
results in this study. Therefore, it seems fitting that adding an extra glycation site would
have such a big impact on the kinase domain, which we have previously shown to be more
responsive to glycation than the epimerase domain.

Furthermore, there are genetic mutations within one family that result in different
individual risks for disease progression and onset [12,103,144]. Since no genetic differences
can be associated with the interindividual variability in the development of the disease, a
possible difference in their lifestyles including different/other exposure of GNE to glycation
agents can be considered. This could possibly explain the very different courses of the
different mutations.

It is already known that mutations in the GNE gene lead to the development of GNEM.
Besides the introduction/deletion of glycation sites, mutations can also lead to changes
at different structural levels of the protein [50,52] or to alterations in the interaction of
substrate and protein [52]. Our experiments should help to see whether age might also
affect the onset and progression of GNEM.

Based on our experiments, which showed reduced activities for the glycated GNEM,
one could hypothesize that glycation, in addition to the effects that mutations already have
on the enzyme activity [50,51], causes the activity to drop to such a level that it can no
longer be compensated for (Figure 9). This hypothesis assumes a mutated GNE gene causes
a mutated GNE enzyme that appears to work adequately for a certain period of time/the
activity of the enzyme is sufficient for this period. Further, we would assume a constant
decrease in activity, which is due to an increasing accumulation of PTMs on the enzyme,
therefore assuming that these PTMs would also have a negative effect on the activity of the
enzyme (proven in this study). This would lead to reaching and exceeding the tilting point,
which in turn leads to the onset of the disease.
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Figure 9. Schematic explaining the main hypothesis of the article—how age can influence the late
onset of GNEM.

In the case of one aforementioned diabetes mellitus and GNEM patient, the higher
MGO/GO levels could increase the likelihood of reaching the required number of PTMs
faster; scheme in Figure 9: the slope of the “activity triangle” increases, causing the tilting
point to shift further to the left (Figure 9; towards younger years).

Nevertheless, the whole hypothesis has yet to be verified, for example, by comparing
the activity of mutated enzymes with the activity of mutated and glycated enzymes, or
by a study that initially deals with whether a glycated GNE can be detected at all—in cell
culture and in vivo—to rule out that it is just an artefact that does not exist in reality.
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Only the individual domains of the GNE were examined in this study because the
purification of the GNE as whole is still quite challenging. One critical point seems to be
the removal of chaperone proteins [145]. Furthermore, our approach enables us to better
estimate the individual effects of glycation of the two domains of the GNE. The overall
effect of glycation on the protein still stays unknown, and it is also uncertain whether
all the glycation sites that can be glycated when treated individually, are also accessible
in the overall protein in such a way that glycation is also possible at these sites. What
remains significant, however, is the fact that glycation of the individual domains leads to
reduced enzyme activities; the effect on the GNE-kinase domain seems to be stronger than
on the GNE-epimerase domain. In a next step, these experiments could be repeated on the
overall protein.

Further, it would also be interesting to investigate the downstream effects of a glycated
GNE in subsequent cell culture experiments. For example, one could check whether influ-
ences in sialylation are detectable. The result could then be compared with the assumption
that hyposialylation play a role in GNEMs pathophysiology [16–18].

Furthermore, PTMs such as phosphorylation or O-GlcNAcylation were not considered
here, although it has already been shown that these can also have an effect on activity [85,86].
However, O-GlcNAcylation and phosphorylation represent a special type of PTMs; they
are enzymatic modifications [146,147]. Therefore, at least in the part of the study where
only the protein was treated with the glycation agent, we exclude an influence of these
types of PTMs on the activity of the GNE, since the enzymes required for them are missing.

In addition, however, it is quite possible that the glycation reagents react with the
amino acid side chains of the protein in a different way than previously described in
this study (see, e.g., Figure 3A), thereby generating a different type of PTM. As an ex-
ample, lysine side chains could also be acylated by α-dicarbonyls as GO leading, e.g., to
N6-glycoloyllysine (GALA; [148,149]). The extent to which acylation occurs in our pro-
teins/protein domains of interest and what impact acylation can have on protein activity
needs to be investigated in future studies.

Another interesting point was that the activity of the GlcNAc kinase, which, at least
from just looking at its reaction schemes, appears to have the potential to stand in for the
GNE kinase when needed, was not affected by GO or MGO and so seems to be resistant
towards glycation—at least at the concentrations tested.

However, since there are amino acids in the sequence of the GlcNAc kinase that can
be glycated (see Figure 2Ca and Table 1) as well as structural similarities to the GNE kinase,
other reasons must be found why this kinase appears to be resistant to glycation—under
the given conditions. The different glycation resistance found in the two kinases could also
just be an artefact due to the individual examination of the GNE kinase domain. Thus, it is
possible that the GNE kinase exhibits the same glycation resistance as the GlcNAc kinase
when examined as whole enzyme, together with the epimerase domain. A possible steric
shielding of glycation sites by the epimerase domain could be a reason for this. All of this
shows once again how important it would be to study the protein as a whole.

Another cause for the different behavior of the GlcNAc kinase could be that the
investigated substrate ManNAc is not its main substrate [40,42]. It was already shown that
the choice and availability of the substrate have an influence on the GlcNAc kinase activity,
so only GlcNAc protects the GlcNAc kinase against cysteine modifiers and not ManNAc
(MalNEt + GlcNAc: 70% ± 4% (remaining activity) whereas MalNEt + ManNAc: 2% ± 1%
(remaining activity); [42]). This suggests that the binding and stabilization of ManNAc
in the active site of the GlcNAc kinase differs from GlcNAc, and maybe the interaction
partners/amino acids involved are less sensitive towards glycation. Therefore, it might be
interesting to repeat the GlcNAc activity assay with GlcNAc as substrate and MGO/GO
as the glycation agent so that one can compare the enzyme activity found there with the
activity found with ManNAc as substrate.

In the case that the GlcNAc kinase also shows a resistance to glycation with GlcNAc as
substrate, it might be interesting to see how this might help in the treatment of GNEM. How-
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ever, the biggest problem with seeing GlcNAc kinase as a possible replacement/substitute
for the GNE-kinase is that the protein is not expressed in human skeletal muscle [150],
which would make it impossible to function as a bypass in what are likely to be the most af-
fected cells. On the other hand, reactivating GlcNAc kinase protein expression could be an
interesting target in obtaining a functioning bypass for a non-/not-sufficient-working GNE-
kinase domain. The RNA is at least expressed in the corresponding muscle cells [150,151].
Having said that, one should not disregard that GlcNAc kinase expression seems to play a
role in certain types of human cancer [152].

Furthermore, it might also be interesting to investigate whether glycation can be
reversed and thus the activity of the enzyme can be restored or at least increased back
to a certain level (the pre-onset level). Fructosamine-3-kinase (FN3K; [153]) is such a
protein that is able to de-stabilize fructosamines—glycation products, based on the reaction
between glucose and an amino group—through phosphorylation and thus ultimately
leads to their cleavage from the protein [154]. Therefore, it would be interesting to see
if a correlation between FN3K and GNEM could be found—as it exists, for example, in
relation to diabetes mellitus [155,156]. A recent study investigating the effect of ex vivo
intravitreal FN3K injections on AGE-based cataracts seems to be quite promising as a
potential new treatment of certain types of cataracts [157]. Therefore, it might be good to
see if glucose-derived glycation products play a role in GNEM and whether activating the
FN3K in muscle cells—maybe it might be possible to inject FN3K-solutions directly into
the muscle (i.m.)—would remove these glycations, and so would raise the activity of the
GNE back to the pre-onset level.

Based on the aim to reduce or prevent glycations, one could also perform a correlation
analysis of enzymes of the glyoxalase system and GNEM. The glyoxalase system is a
system that can convert MGO into D-lactic acid [158,159]. Therefore, maybe upregulations
of glyoxalase I could help to prevent the GNE from being glycated by MGO, which is a
quite ubiquitous molecule in the human body, be it through ingestion through diet, or as
byproduct of glycolysis, amino acid, and fatty acid degradation [114–116,158]. However,
higher expression of glyoxalase I seems to be correlated with psychiatric problems such
as anxiety [160,161], something to keep in mind, if such a study should ever be tested as a
GNEM treatment.

Altogether, our study showed that glycations with the glycation agents MGO and GO
have a negative effect on the activity of the GNE-epimerase and GNE-kinase domain, but
not on the GlcNAc kinase. Furthermore, GlcNAc kinase expression can be altered by GO
in C2C12 cells, but not by MGO. However, none of the glycation agents tested altered the
expression of the GNE.
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glucosamine 2-epimerase activity assay; Supplementary Table S3: Two-Way analysis of variance
(ANOVA) of the UDP-N-acetylglucosamine 2-epimerase activity assay; Supplementary Table S4:
Tukey post hoc-test of the UDP-N-acetyl-glucosamine 2-epimerase activity assay; Supplementary
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