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Abstract

In healthcare domain, complication risk profiling which can be seen as multiple clinical risk
prediction tasks is challenging due to the complex interaction between heterogeneous clinical
entities. With the availability of real-world data, many deep learning methods are proposed for
complication risk profiling. However, the existing methods face three open challenges. First, they
leverage clinical data from a single view and then lead to suboptimal models. Second, most
existing methods lack an effective mechanism to interpret predictions. Third, models learned from
clinical data may have inherent pre-existing biases and exhibit discrimination against certain social
groups. We then propose a multi-view multi-task network (MuViTaNet) to tackle these issues.
MuViTaNet complements patient representation by using a multi-view encoder to exploit more
information. Moreover, it uses a multi-task learning to generate more generalized representations
using both labeled and unlabeled datasets. Last, a fairness variant (F-MuViTaNet) is proposed

to mitigate the unfairness issues and promote healthcare equity. The experiments show that
MuViTaNet outperforms existing methods for cardiac complication profiling. Its architecture also
provides an effective mechanism for interpreting the predictions, which helps clinicians discover
the underlying mechanism triggering the complication onsets. F-MuViTaNet can also effectively
mitigate the unfairness with only negligible impact on accuracy.
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1 Introduction

Cardiovascular diseases are widely known as the leading causes of mortality in breast
cancer survivors [1-4]. With the recent substantial improvement of breast cancer survival
rates, predicting the onset of multiple cardiac complications has become a critical task for
enhancing patients’ life quality. It is also a key to cost-effective disease management and
prevention. However, this task is highly challenging because of the complex interactions
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between heterogeneous clinical entities. Effectively capturing these interactions may lead to
more precise prediction and treatment for cancer survivors.

Over the past few decades, the rapid growth of real-world clinical data such as electronic
health record (EHR) and insurance claims makes them valuable data sources used in data-
driven (e.g., deep learning) systems for clinical risk prediction, especially complication
risk profiling [5-7]. As shown in Fig. 1, this data includes heterogeneous clinical entities
(e.g., visit, disease, medication) and can be considered from multiple views (i.e., sequence
of visits, set of features). However, the existing methods for complication risk profiling
have some limitations: (C1) these models cannot capture complex relationships between
heterogeneous clinical entities and may result in the less optimal treatments for cancer
survivors; (C2) most of them lack an efficient mechanism to interpret the predictions,
thereby cannot help clinicians discover the underlying mechanism triggering the onset and
make better clinical decisions; (C3) these models may be biased and violate fairness with
respect to different patient groups in their predictions.

The potential reasons for these limitations are as follows. First, due to the heterogeneous
and hierarchical structure of clinical data, there are multiple views to consider patient
records: treating them as sequences of visits or as sets of clinical features. Encoding patient
records from either view cannot provide comprehensive representations of patients, and may
fail to capture dynamic patterns of clinical features or dependencies among clinical visits.
Second, treating each complication onset prediction independently can lead to suboptimal
models, because the dependencies among complications that are manifestations caused by
their common underlying condition cannot be captured. This is particularly the case when
data are limited. Third, interpretable predictions help clinicians better interact with models
and make optimal treatment decisions. However, it is challenging to establish a simple

and effective interpretation mechanism for complex models. Fourth, models built with
heterogeneous, unbalanced clinical data may easily exhibit discrimination against certain
patient groups. As shown in Sect. 4 (i.e., Table 10), the existing approach for optimizing
clinical risk prediction models (i.e., minimizing binary cross-entropy objective function)
exhibits disparities in model predictions across different social groups and prediction tasks.
This phenomenon is more critical for minority groups and rare diseases. Then, how to
ensure the fairness and health equity while preserving a sufficient level of model accuracy is
another challenge [8].

To tackle the aforementioned challenges, we propose a new neural network-based
framework named Multi-View Multi-Task Network (MuViTaNet) and its fairness variant
(F-MuViTaNet) for cardiac complication risk profiling. These proposed models consist

of a multi-view encoder and a novel multi-task learning (MTL) scheme (deal with

C1 and C2), and a fairness-informed objective function (deal with C3). In particular,

the multi-view encoder includes visit-viewand feature-view encoders that simultaneously
capture information from clinical visits and features: visit-view encoder considers a patient
record as the sequence of clinical visits and captures their temporal relation by Gated
Recurrent Unit (GRU) network; feature-view encoder considers the patient record as

the set of temporal medical features whose temporal patterns are extracted separately
using convolutional neural networks (CNN), following which are max-pooling operations
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that extract the most significant signals from temporal sequences. The MTL scheme

utilizes an attention mechanism to learn complication-specific representation from shared
information generated by the multi-view encoder. This scheme allows MuViTaNet to

exploit additional information from related complications and unlabeled data to generate
more generalized representations for patients, which enables more accurate predictions.

By leveraging the attention mechanism associated multi-view encoder, the proposed model
provides an efficient way to interpret its predictions from multiple perspectives, thereby
helping clinicians discover the underlying mechanism triggering the onset and making better
clinical treatments. Figure 2 distinguishes our multi-view multi-task learning approach from
the existing works for clinical risk prediction. To mitigate unfairness in clinical prediction
across different patient groups, we incorporate fairness constraint by adding regularization to
the model objective function (F-MuViTaNet) during training.

By conducting experiments on multiple datasets derived from real-world data (i.e.,
insurance claim database) under the real clinical scenario (i.e., predicting chances of
developing cardiac complications in the future for breast cancer patients), we demonstrate
that the proposed model MuViTaNet is interpretable (i.e., Tables 8 and 9, and Fig. 5)

and significantly outperforms the state-of-the-art approaches (i.e., Tables 5 and 6) for
complication risk profiling. We show that compared to task-specific models, MTL scheme
can affect fairness property by mitigating group disparity in predictions (i.e., Table 10).
Further, when enforcing fairness constraint to MuViTaNet, the fairness can be improved
significantly with only negligible impacts on model accuracy (i.e., Figs. 6, 7, 8). These
results indicate that our proposed model can be applied to achieve both fair and accurate
predictions for cardiac complication risk profiling in clinical practice. Our contributions can
be summarized as follows:

. We design a multi-view multi-task neural network architecturel (MuViTaNet)
that accurately predicts multiple complication onsets and efficiently interprets
its predictions. It includes (1) a multi-view encoder to explicitly capture
dependencies among clinical visits and clinical features from clinical data; (2)

a MTL scheme that utilizes a complication-specific attention mechanism on top
of the multi-view encoder to capture additional clinical information from related
complications and unlabeled datasets.

. We design a fairness variant (F-MuViTaNet) that mitigates unfairness across
different patient groups while maintaining accurate predictions.

. Finally, we conduct comprehensive experiments to demonstrate the effectiveness
of MuViTaNet in terms of both accuracy, interpretability, and fairness for cardiac
complication risk profiling.

Note that the present work is an extension of our conference paper [9], in which MuViTaNet
was first introduced. The key differences are the followings:

. We focus on the unfairness issues in this work. To mitigate group disparity
and promote health equity, we propose a fairness mechanism by incorporating

1Code is available at https://github.com/pth1993/MuViTaNet.
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the fairness objective function as regularization into MuViTaNet. The resulting
model (F-MuViTaNet) achieves both accurate and fair predictions for cardiac
complication risk profiling tasks.

. We conduct comprehensive empirical studies to investigate the impact of MTL
on unfairness and examine the impact of enforcing fairness constraint on
prediction performances under MTL setting.

The remainder of the paper is organized as follows. Section 2 summarizes related works
on clinical risk prediction as well as complication risk profiling, and fairness in machine
learning and healthcare applications. Section 3 describes the technical details of the
proposed models (MuViTaNet and F-MuViTaNet). Section 4 presents experimental results
and discussions. Finally, Sect. 5 concludes the paper.

2 Related works

In this section, we briefly review existing works related to our study, including patient
representation learning and MTL for clinical risk prediction and complication risk profiling.
We also review the fair machine learning literature by presenting the common fairness
criteria and approaches to satisfying these criteria, and the recent advances in domain of
healthcare.

Patient representation learning.

The abundance of real-world data in recent years creates an unprecedented opportunity to
apply machine learning and data mining methods for clinical risk predictions [10-12]. With
the advancement of deep learning theory and the acceleration in computational technologies,
neural network-based architectures can significantly improve prediction performance due

to their ability to extract rich representations from data. Because of the temporal nature

of clinical data, most existing methods rely on recurrent neural network architectures to
learn patient representations, which are then used to make predictions for future clinical
events (e.g., diagnosis, mortality, readmission, etc.) [5-7, 13, 14]. These works focused on
designing attention mechanisms to capture dependencies among clinical visits [5, 13, 14]
and time-aware mechanisms to incorporate temporal information [6, 15, 16] into patient
representation for making better predictions. Nonetheless, these models cannot explicitly
capture the relationships among clinical features. Instead of considering EHR data as
sequences of clinical visits, Concare [17] treats the record as the set of clinical features

and extracts dynamic patterns of these features separately. Then, the predictions are made
by aggregating representations of all clinical features. However, all the existing methods
only extract information from a single view of clinical data which makes the learned

patient representations suboptimal. In contrast, we propose a multi-view model for capturing
information from multiple views of clinical data simultaneously.

Multi-task learning.

Multi-task learning (MTL) has been used widely across many applications of machine
learning and data mining. By sharing information among related tasks, the prediction model
can generalize better. In healthcare domain, some existing works applied MTL techniques
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to leverage information from related tasks to improve model performance in clinical risk
prediction. In particular, both classical machine learning [18-20] and deep learning models
[21-23] are formulated as MTL frameworks and are applied on a wide range of healthcare
applications including disease progression modeling [18], mortality prediction [21], disease
onset prediction [22], and diagnosis classification [23].

Complication risk profiling.

Mitigating the risk of complications is crucial for many disease management programs.
Despite its importance, there have not been many existing methods designed for this
task. Unlike a single clinical risk prediction task, complication risk profiling requires
multiple predictions for onset of complications. Thus, capturing relationships among
related complications is crucial to achieving good prediction performances. Some methods
have been proposed to predict the onset of complications of some diseases and

clinical procedures. For example, multi-task logistic regression has been used to predict
complication risks for diabetes care [19, 24]. Besides linear models, the deep learning
method is also used to predict complications of this chronic disease [25] but this work
considers each complication independently. For breast cancer survivors, relationships
between cardiac complications and cancer were also investigated [3, 4, 26] to show the
correlation between these two diseases.

Fairness in machine learning.

Machine learning has been increasingly used in domains with intensive impacts on society
such as healthcare, policy and hiring. While the hope is to improve the societal benefits,

they may exhibit biases against certain demographic groups [8, 27-29]. To measure and
remedy the unfairness, various fairness notions have been proposed in the literature and

they can be roughly classified into two classes: group fairness and individual fairness. For
group fairness notions (e.g., demographic parity [30], equalized odds [31], equal opportunity
[31]), the entire population is categorized into different groups based on some sensitive
attributes (e.g., age, gender, race, etc.), and certain statistical measures are (approximately)
equalized across these groups. For example, demographic parity [31, 32] requires the
similar ratio of positive outcomes for every sensitive groups; equalized odds [31] states

that the protected and unprotected groups should have equal rates for true positives and

false positives; equal opportunity [31] only requires equal true positive rates for different
groups. In contrast, individual fairness notions (e.g., counterfactual fairness, fairness through
awareness) target the individual, rather than group level. It requires the similar individuals to
be treated similarly [30]. For example, counterfactual fairness implies that a prediction for
an individual is fair if it is unchanged when individual belonged to a different group [33].

To satisfy certain fairness notions, many methods haven been proposed and they can

be roughly classified into three categories: (1) Pre-processing approach that modifies
training data to eliminate confounding bias from data [34-36]. For example, variational
autoencoder and generative adversarial network have been proposed to obfuscate sensitive
information in the learned representations, thereby allowing machine learning models to
learn fair predictions [37-39]. (2) /n-processing approach that introduces fairness during
training by modifying the learning algorithms such as imposing fairness constraints or
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changing objective functions. For example, [40-42] learn fair models by solving constrained
optimization with fairness criteria serving as constraints; [43-45] achieve fairness by
imposing fairness-specific regularization term in optimization. (3) Post-processing approach
that calibrates model predictions across sensitive groups to remove bias [31, 46].

Fairness in healthcare applications.

Unfairness issues arisen from using machine learning models have also been well-
documented in many healthcare applications. For example, the accuracy of predictive
systems for intensive care unit monitoring differs across different racial groups [8, 27];
medical resources may be disproportionately allocated among patients with different
socioeconomic status [8]; skin-cancer detection models may fail to detect early-stage disease
in patients with dark skin [29]; atherosclerotic cardiovascular disease risk prediction models
may have racial bias [28]. Fairness notions and approaches introduced above have also

been used in clinical applications. For example, [27] uses the disparity in false-positive/
false-negative/accuracy as a measure of unfairness and mitigates the unfairness via data
collection; [47] considers the disparity in conditional prediction/calibration/AUROC as
unfairness measures and reduces disparity by adjusting models through regularization;

[28] adopts equalized odds fairness notion [31] and uses adversarial learning approach

to satisfying fairness constraint; [48] extends counterfactual fairness [33] and trains a fair
model via counterfactual inference using a variational autoencoder.

3 Methodology

In this section, we first give brief introduction about patient records, complication risk
profiling task and the corresponding notations. Then, we present our proposed model
MuViTaNet as well as its fairness variant F-MuViTaNet.

3.1 Definitions and basic notations

Definitions and notations used in this study are shown in the following paragraphs and are
summarized in Table 1.

Patient record.—The heterogeneous and hierarchical structure of a patient record is
defined as follows.

. Definition 1 (Clinical code). C = {cy, ¢, ..., cj} is the set of unique clinical
codes including diagnosis, procedure, and medication codes with |C| is the
number of these unique codes. Each code c;jcan be represented by binary vector
X, € {0, 1} where /1 element of this vector is 1 and other elements are 0.

. Definition 2 (Clinical visit). A visit is a hospital stay from admission to
discharge. Each visit v;is a tuple of (c;, #) where c;={cj, ¢, -, G IS
Cl5i with set of indexes {1, -+, Jief} €412, -+, IC} and #is the timestamp
of the visit. ¢;can be represented by binary vector V; € {0, 1}/l where the
element is 1 if c;contains the code ¢;. Besides vector representation, ¢;can also
be expressed as matrix X; € {0, 1}ICl where 7 row of this matrix is the binary
vector x; € {0, 1}l of code c¢j;
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. Definition 3: (Patient record). The patient record P is a sequence of visits [vq,
Vo, ---, V7] where T'is the number of visits. Like clinical visit representation,
P can be represented at the two different granularities. At visit-level, P can be
represented as a binary matrix X ;s € {0, 13} ™I where /# row of this matrix is
binary vector V;of visit v;. At feature-level, P can be represented as the sequence
of matrices X gogre = [X1, Xo, =+, X7

. Definition 4: (Demographic information). Besides clinical information, a patient
record can have demographic information about the patient such as age, gender,
and region. It can be represented by binary vector dgg,, € {0, 1}9demo, where
Ohemo 1S the number of demographic attributes.

Clinical risk profiling.—The aim of this task is to find a set of functions F = (Fy, £,
-+, Fp} that predicts the onset of complications Y € R" from patient record P, where NVis
the number of complications. In MTL setting, /1, A, ..., Fy generally have some shared
parameters to learn shared information from related tasks for better predictions.

3.2 MuViTaNet

Overview architecture.—This section presents our proposed multi-view multi-task
network (MuViTaNet) for predicting onset of multiple complications from patient records.
MuViTaNet is designed to explicitly capture the dependencies among clinical visits

and clinical features from patient records. It also leverages additional information from
both related labeled and unlabeled data to achieve accurate predictions and efficient
interpretation. In particular, MuViTaNet consists of four main components as follows. (1)
Feature-view Encoder. This component considers a patient record as a set of temporal
clinical features and then encodes information of each feature separately. (2) Visit-view
Encoder. This component formulates a patient record as a sequence of visits and then
learns a representation for each visit in the sequential context. Specifically, this component
is designed as a hierarchical model that exploits patient records in the two levels,

including feature-level and visit-level. (3) Task-specific Attention. After learning the

shared representation from feature-view and visit-view encoders, an attention mechanism is
employed to extract task-specific representation for each task from the shared representation.
(4) Task-specific Decoder. The task-specific representations are fed into the corresponding
task-specific decoders to predict clinical outcomes for patients in complication datasets and
to project representations to unit hypersphere for patients in unlabeled dataset. Figure 3
shows the overview architecture of MuViTaNet and technical details of its components are
presented as follows.

Feature-view encoder.—This component treats patient data as a set C of clinical codes
which are represented by the set of temporal sequences (i.e., columns of matrix X, € {0,
1} 7XICl). In particular, given clinical code c;, its temporal data can be represented by a binary
vector f; € {0, 1} 7 which is #7 column of X,z Then, one-dimensional convolutional neural
networks (Convld) and max-pooling (MaxPool) operation are employed to extract temporal
patterns from each clinical code separately. In particular, Convld with kernel size k(i.e., k

Knowl Inf Syst. Author manuscript; available in PMC 2024 April 01.
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= 3 in our setting) takes as inputs the sub-sequences of length k from vector f,to learn the
representation of code c;as follows.

H/ = Convl1d(f) (6h)

where HY € R**" are the output of Conv1d and 44'is the number of filters used in
convolution operations. Next, the row-wise max-pooling is applied to H/ to generate vector
representation for clinical code c;.

h/ = MaxPool(H/) )

Note that the weights of Convld are not shared between clinical codes. The output of
feature-view encoder is matrix H’ = [h{, h{, -+, hic] € R"**.

Visit-view encoder.—This component formulates patient data as a sequence of visits

in which each visit can be seen as a set of clinical codes. Due to the hierarchical
characteristic of this data structure, the visit-view encoder is also designed hierarchically
to capture information at different levels. Given visit v; we represent this visit by matrix
X; € {0, 1}eI% which is /7 element of the sequence X sz Because different clinical
codes associated with the same visit can have disparate impacts, instead of treating these
clinical codes uniformly when aggregating them to represent the visit, the location attention
mechanism is employed to learn the contributions of these clinical codes to their visit
representation. In particular, given a binary representation x;; € X;of code ¢;, 1-layer
feed-forward neural network is applied to learn the dense representation from sparse vector
of this clinical code as follows.

e, = FFNN(x,) = ReLU(W x; + b)) A3)

where W, € R*'“ is the learned weight matrix of clinical codes, b, € R’ is the bias vector,
and ReLU is rectified linear unit activation function. Then, the 2-layer feed-forward neural
network FFNN, with Tanh activation function is used to generate the attention score a;; for
this clinical code as follows.

a; = F FNNZ(e/i) 4

The attention vector «; = [a;,, @, -+, ;] Which represents the contributions of clinical codes

lejl

in visit v;is fed into the softmax layer to get the normalized vector &, = [a,, @), il € RV

a, = Softmax(a;) (5)

Then, the representation of visit v;are computed as the weighted average of its clinical
codes.

¢ =(@)e ©
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lejl x d

where e; = [e;,, e, e ] ER denotes the /7 visit’s representation. To generate

personalized representation for each visit, demographic information including age and
region is incorporated into every clinical visit as follows.

& = W(Concat(e), d,...)) %

(d +dgemo) x d

where Concat is the concatenation operation and W, € R is the weight matrix
mapping concatenated vectors to the original embedding space. Besides clinical codes, each
visit is also associated with its timestamp. In order to capture the elapsed time between
visits, we add the temporal encoding vector to each visit as follows.

e'=¢é+6, G))

where §;, € R” is the temporal encoding vector whose design is inspired by the positional
encoding used in Transformer architecture [49]. In particular, it is computed by
trigonometric functions as follows.

o tr—1t
0= sinl )
tT_t_/ ) (9)

e = 0 5550

where 0 < 2¢< d- 1. From Equation (9), we can see that temporal embedding encodes
similar time intervals into similar vectors in embedding space.

To generate the sequential representations for visits in the sequential context, we put the
independent representations for visits learned from previous steps into the bidirectional GRU
layer. Specifically, the sequential representation for these visits is computed as follows.

— L —>
h = GRU(e;, h,-,l)
— L —
h, = GRU(e/,hHI) (10)

h.h)

h) = Concat(hj, h,
where h/ € R™. Then, the patient representation is computed based on the last visit in the
visit sequence.
h" = FENN,(h;) (11)

In summary, the outputs of the visit-view encoder include the sequential representations of
clinical visits H' = [h{, h}, ---, hy] € R"** and the patient representation h* € R*.

Task-specific attention.—Given the shared representations generated by feature-view
and visit-view encoders, attention mechanisms are employed to generate the task-specific
representations for the patient. Specifically, the attention weights of clinical features and
visits for " task are computed as follows.

Knowl Inf Syst. Author manuscript; available in PMC 2024 April 01.
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f., = FFNN}(h/)

v, = FENN:(h))

Ek = Softmax([ﬁkp ﬂkza B ﬁk\c\])
7. = Softmax([ye,s Vip» **» Yirl)

(12)

where FFNN}, FENNY are 2-layer feed-forward neural networks with Tanh activation function
that compute the weights of clinical features and visits from their representations. Then, we
obtain the task-specific representation o* € R* for A’ task as follows.

g=(B)H
& =) H (13)
o, = Concat(g/, g, h")

Task-specific decoder.—For a patient in labeled dataset (i.e., complication dataset), the
2-layer feed forward neural network with Sigmoid activation function at the last layer is
employed to predict the probability of complication onset for this patient.

5. =FFNNi(0), ke {1, N} (14)

For a patient in unlabeled dataset, the 2-layer feed forward neural network with
normalization operation (Norm) is used to project the feature-view and visit-view
representations of this patient on the unit hypersphere.

z’ = Norm(FFNNy(g/)), k=N +1

z" = Norm(FFNNg(Concat(g,, h"))) (15)

Optimization.—To train MuViTaNet in MTL setting, we follow the alternating training
strategy [50] in which each task is selected randomly and then is optimized for a fixed
number of parameter updates before switching to other tasks (Algorithm 1). In our setting,

different tasks have datasets of different sizes, so we select a task to optimize with
DI~ g

————" __ where Dyand rare the dataset and batch size for A7 task,
IR VRN

probability 4, =
and Nis the number of complication datasets.

For labeled datasets, the binary cross-entropy (BCE) loss function is used to optimize the
prediction based on ground-truth labels. Specifically, for A’ task with dataset Dy, the loss
function for this task is computed as follows.

1Dyl
1 ~ ~
Li= =57 20 log(B) + (1 = y)log(1 - ) (16)
Hi=1

where y,and y, are the ground-truth and predicted outputs for A task, respectively. For

unlabeled dataset, we leverage the contrastive (CL) loss function [51] to pull together the
normalized representations of feature-view and visit-view of the same patient and to push
apart these representations from representations of other patients.
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|D,|
Li= -
i=lz ez .z

exp(z/ - z!)
} log sz € A(z) exp(z,- : z})

(1n

1Dl

where A(z) = Z\ z;in which Z = {2/, z{}

i=1"

Algorithm 1: Training procedure for MuViTaNet

Input: Datasets { D)2 ! (¥ labeled and | unlabeled datasets), set of clinical codes €, batch sizes iy,
Ry

Output: Trained meddel parameters @ = [ghored glost-ipecific

1 Randomly initialize 8;

* Calculate sampling rate for cach dataset g = - .\-:!J-‘!""L_ (ng =meifk =N+ Lag=n;s
parvan LU
otherwise)
3 for epoch = 1 to £ do
1 | repeat
$ Select dataset Iy ~ k;
w Initialize loss Ly = O;
7 Select sample batch b from dataser By
] for paiieas Py in batch b do
4 | X fearre. Xuisie) = Pz
w Obtain feature-view representation HY from X i using Eq. (1 (2
M Ofbain visit-view ion H* and patient rep fon B* from X rearure Using
Eq. (3(11)
o Caleulate task-specific atiention weights . 7 from 1/, H" using Eq. (12):
N Obain task-specific representations using Eq. (13);

7] irkefl.---.N)then
1" Caleulate prediction 5y, wsing Eq. (14):
6 Caleulate BCE loss Ly, using Eq. (16):

4] else
" Project multi-view representations to unit hypersphere using Eq. (15);
" Caleulate CL loss Ly, using Eq. (17)

k] Ly =Lp+ Ly

A end

2 Update parareters # using gradiem of Lg:
n Dy = Dy \ b

24 | unil {Di]i\:_’il ==

2 end

3.3 F-MuViTaNet with fairness constraint

Measures of unfairness.—Many group fairness criteria have been proposed in the
literature to mitigate the unfairness issues in machine learning systems. Under these criteria,
the population is partitioned into different groups based on some sensitive attributes (e.g.,
age, gender, race, etc.), and certain statistical measures are (approximately) equalized across
these groups. In this work, we focus on one of the most widely used criterion named equal
opportunity [31]. Formally, denote Y, ¥, Sas ground-truth label, prediction, and sensitive
attribute, respectively, then equal opportunity requires that given ¥, ¥ and Sare conditional
independent, i.e., Y LS1Y. In the case of binary classification, it means the equality of true/
false positive rates (TPR/FPR) across groups.

In our medical context, we will focus on FPR. The goal is to avoid the patients from certain
groups being mistakenly diagnosed as positive at a rate that is higher than other groups. That
is,

VseS:PrY =1|Y=0,S=s5)=Pr(Y =1|Y =0) (18)

where Sis the set of all possible values of sensitive attribute S. Above formulation can be
extended to non-binary settings where there exist scores Y that predict the likelihoods of
samples being positive. Specifically, we will study the following two cases:
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1) Threshold-based case: Predictions Y are binary and are attained by thresholding
prediction scores Y, i.e., ¥ = 1 if ¥ > r, otherwise ¥ = 0. We can quantify the violation of
equal opportunity using FPR gap (FPRG) defined below:

1 ~ ~
My = msze S:IPr(Y =1|Y=0,S=5)—Pr(¥ =1]|Y =0) (19)

2) Threshold-free case: In the presence of prediction scores ¥, we can use the earth
mover’s distance (EMD) [52] and mean distance (MD) to quantify violation of equal
opportunity ¥ L S1Y =1, i.e.,

Moy = ZEMD(Pr(Y [Y=0,5S=5) | Pe(Y | Y = 0)) 20)

181

My = lSIZI[E(Y|Y 0,8 =s)—EY|Y =0) 1)

Above metrics can be empirically computed from sampled data D = {(3, ., 7, s)}.", as

follows.
— Zﬂy:—lyx O7si:s) Z[ﬂ(i‘:lsyizo)
Mo = ISlseZs TIn=0s=5  2Im=0) @2
Mo = = ST D EMD({§,:y,= 0,5, = s} | {§.:3=0}) 23)
seS
ﬁ _ 1 |21{3’\1:y1=0»51=5} z,»{.i/\i:yion
MD —

S| X1 =05=5  2In=0 | (24)

Fairness as regularization.—As introduced in Sect. 2 , there are roughly three types
of approaches to achieving fairness: pre-processing, in-processing, and post-processing.
In our study, we adopt in-processing approach by achieving fairness via regularization.
Specifically, for k77 task, we penalize the fairness violation by adding an additional
regularization term to prediction loss, i.e.,

L'=L+wL; (25)

where L} is the prediction loss measured by binary cross-entropy mentioned in the previous
section, L; is the regularization term (fairness loss), and w is the hyper-parameter that
controls the ratio between prediction loss and fairness loss. In particular, we use maximum
mean discrepancy (MMD) [53], mean distance (MD) and correlation (COR) to quantify
fairness loss.
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1 ~ ~
L]}AMD=m E :MMD({yi:inO’ S,=S} I {yi:yi:O}) (26)
seSs

MD 1 |Zl(j;i=]’yi=0551':s) Z,l(f’le,)’,zo)'
L=« _
|S'z:l Y1 =0,5=5) Y1 =0) | 27)

sES

L = COR({y,s:y,=0}) (28)

where L™, L}®, L:°® are Lgcalculated by MMD, MD, and COR, respectively, and task
index kis omitted for simplicity.

4 Experiments

In this section, we evaluate the performances of MuViTaNet on six real-world insurance
claim datasets and compare its results with state-of-the-art clinical risk prediction models
to demonstrate the effectiveness of our method. Besides achieving accurate prediction, we
also show the robustness of MuViTaNet in terms of interpretability. Finally, we examine the
fairness properties of MuViTaNet and study the impact of imposing fairness constraint by
investigating the trade-off between accuracy and fairness. Note that although we conduct
experiments on insurance claim data which includes clinical codes only, our proposed
method is not limited to this setting. Specifically, it can be easily extended to work with
heterogeneous clinical data [54] (e.g., clinical notes, lab tests, vital signs) by incorporating
more encoders designed to handle these data types [55, 56].

4.1 Datasets

Breast cancer cohort construction.—We extract clinical records of female breast
cancer patients from the MarketScan Commercial Claims and Encounter (CCAE) database
provided by Truven Health? to construct cardiac complication risk profiling datasets.
According to the previous work [24], the records from 2012 to 2017 of de-identified patients
are selected based on the following criteria.

. Ages of the selected patients are from 18 to 65 at the initial diagnosis of breast
cancer.
. The selected patients have at least six months of records and ten clinical visits

before being diagnosed with breast cancer.

. There is no cardiac complication diagnosis until the initial diagnosis of breast
cancer of the selected patients.

Cardiac complication datasets construction.—After construing the breast cancer
cohort, we create a distinct dataset for each cardiac complication onset prediction task.
In our setting, we focus on profiling the risk of developing cardiac complications in a

2https://truvenhealth.com/markets/life—sciences/products/data—tooIs/marketscan—databases.
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six-month window after the initial diagnosis of breast cancer (i.e., prediction window), and
the positive instances are defined as patients who have cardiac complications in this window.
Following previous clinical research [3,4], we identify six cardiac complications including
atrial fibrillation (AF), coronary artery disease (CAD), heart failure (HF), hypertension,
peripheral arterial disease (PAD), and stroke. Patients with cardiac complication onsets
during prediction windows are considered positive instances. Patients without any cardiac
complication onsets during prediction windows are considered negative instances. The
negative instances are randomly selected from the breast cancer cohort with a ratio of 3:1
compared to positive instances. To mimic the real clinical scenario, information until the
initial diagnosis of breast cancer (i.e., index date) is used to predict whether patients develop
cardiac complication onsets during the prediction window. Descriptions, ICD codes, and the
corresponding numbers of positive/negative instances of these complications are shown in
Tables 2 and 3. The data construction process is visualized in Fig. 4.

Unlabeled dataset construction.—The negative patients that are not selected for
complication datasets are used to construct a dataset for contrastive learning. MuViTaNet
leverages this dataset as additional information to improve the prediction performances of
complication onset prediction tasks.

Feature selection.—We use the following information to profile cardiac complications
for breast cancer patients.

. Demographics including age and region information. \We cluster patients into
three age groups (i.e., 18 — 44, — 45 — 54, 55 — 65) and five region groups.

. Clinical codes including diagnosis, procedure, and medication codes. For
diagnosis codes, all ICD-9 codes are converted to ICD-10 codes. To alleviate
data sparsity, we group all diagnosis and procedure codes based on their
first three characters and remove codes that appear in less than 200 patients.
For medication codes, we group them by their therapeutic classes. This
preprocessing step results in 1188 features.

4.2 Experimental setup

Baseline models.—To validate the performance of the proposed model for cardiac
complication risk profiling task, we compare it with several state-of-the-art models. Based
on their architectures, these models are categorized into four main groups including classical
model, recurrent-based model, attention-based model, and time-aware model. The details of
these models are presented as follows.

. Logistic Regression (LR). A classical model used in binary classification.
To deal with insurance claim data, a patient record is converted to the
count vector € Z'“ whose 7 element is the frequency of # clinical code in that
record, and is then fed into LR.

. Random Forest (RF) [57]. A classical ensemble model whose prediction is
the average computed from predictions of a number of decision tree classifiers.
Inputs for RF are similar to LR.
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Gated Recurrent Unit (GRU) [58]. A variant of recurrent neural network
(RNN) that uses gating mechanism.

Bidirectional GRU (Bi-GRU) [25]. An improved version of GRU by employing
an additional GRU model to learn the sequence data in reverse order.

Dipole [5]. An attention-based model that utilizes attention mechanism over the
sequence generated by Bi-GRU to learn the dependencies between visits.

RETAIN [13]. An attention-based model that first employs a reverse RNN to
process clinical records in reverse order to mimic physicians’ decisions. Then
two attention modules are used to identify significant visits and variables.

T-LSTM [6]. A time-aware model designed for handling irregularity visits in
clinical records. The memory cell of LSTM is modified to capture time intervals
between two consecutive visits.

Transformer [49]. A fully attention-based model that uses multi-head attention
mechanisms to learn the dependencies among elements in sequential data.

LSAN [59]. An attention-based model that uses Transformer to capture global
information and CNN to capture local information.

MTL Models: We develop the MTL version for each of the aforementioned
neural network-based models by employing task-specific attention and decoder
over the output generated by these models.

MuViTaNet Visit-View: A variant of MuViTaNet by removing the visit-view
encoder.

MuViTaNet feature-view: A variant of MuViTaNet by removing the feature-view
encoder.

MuViTaNettask-speciflc: A variant of MuViTaNet by removing the task-specific
attention and decoder for single-task learning (STL) setting.

MuViTaNet-unlabeled: A variant of MuViTaNet trained with labeled datasets
only.

F-MuViTaNet: A fairness variant of MuViTaNet by incorporating fairness loss
as regularization.

Implementation details.—All neural network-based architectures are implemented by
PyTorch.3 For classical models including LR and RF, we use their Python implementations
from Scikit-Learn [60]. We use ADAM algorithm [61] to optimize the prediction
performances for neural network-based models. The batch size is set as 16 for labeled
datasets and 256 for unlabeled dataset, and the initial learning rate is 0.0001. All
experiments are conducted on a single server with 8-core CPU, 16 GB memory of RAM,
and 16 GB memory of GPU V100.

3https://pytorch.org/.
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Evaluation metrics.—We conduct experiments under 5-fold cross-validation setting. 10%
instances from the training set are used to construct the validation set, and the results on

the testing set are determined based on the best results on the validation set. The area

under the receiver operating characteristic (AU-ROC) is used to measure the performances
of prediction models for cardiac complication risk profiling. To understand the impact of
imposing fairness constraint, we examine the fairness-accuracy trade-off for each task by
varying hyper-parameter w. We consider both threshold-based and threshold-free cases, and
metrics for accuracy and fairness of both cases are summarized in Table 4. To binarize
prediction scores (i.e., changing from threshold-free to threshold-based settings), we use
J-statistic [62] to select optimum thresholds from the validation sets. Age (i.e., 18-44, 45-54,
55-64) is treated as the sensitive attribute in the experiments.

4.3 Results

We conduct experiments to answer the following questions.

. Q1. How accurate is MuViTaNet for cardiac complication risk profiling task
comparing to previous works?

. Q2. How each component of MuViTaNet contributes to its prediction
performance?

. Q3. How to effectively interpret the predictions made by MuViTaNet?
. Q4. How is MuViTaNet’s fairness property can be affected by MTL scheme?

. Q5. How F-MuViTaNet performs in terms of fairness-accuracy trade-off for
cardiac complication risk profiling?

Cardiac complication risk profiling.—As shown in Table 5, MuViTaNet achieves the
best performances compared to other baselines for cardiac complication risk profiling task
measured by AU-ROC score. Generally, it achieves an average (i.e., over six datasets)
AU-ROC score of 0.8102, which is 11% better than the best previous method. Looking
into each complication dataset, we also observe that MuViTaNet consistently outperforms
other methods in terms of AU-ROC score. Such improvements indicate the advantage of
MuViTaNet by using (1) multi-view encoder to extract comprehensive information and (2)
MTL scheme to leverage information from both related labeled and unlabeled datasets to
improve its prediction performance.

To further support our conclusion, we conduct statistical tests for all models under a
multitask learning setting. According to the guidelines in [63], we first conduct Friedman
test [64, 65] to determine if there are any differences between the prediction performances of
models. This test returns a test statistic of 31.06 and the corresponding P-value of 7 x 107>
(< 0.05) resulting in the rejection of the null hypothesis (i.e., no difference). In other words,
we have sufficient evidence to conclude that there are differences between the performances
of models. However, this test does not tell us which models are different from each other.

To find out exactly whether our proposed model is significantly different from the baseline
models, we further conduct Quade’s post hoc test [66]. The adjusted p-value from the
statistical test of each pair of classifiers is shown in Table 6. All p-values between our
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proposed model and baseline models (i.e., in the last row/column) are significantly less than
0.05, then indicating that our model achieves significantly better prediction performances for
cardiac complication risk profiling.

For baseline methods, we can observe that formulating complication risk profiling as MTL
significantly improves the prediction performances of these methods. The improvements
are more noteworthy for small datasets, including AF (31%), CAD (19%), PAD (22%),

and stroke (13%). These results demonstrate the importance of leveraging task-related
information for predicting the onset of complications. We also see that GRU-based models
achieve slightly improved performances compared to other neural network models. For STL
setting, the averaged prediction performances of deep learning models are on par with RF
and are much better than LR. To investigate more, we zoom into the prediction performance
for each dataset and observe that RF outperforms deep learning models for AF, CAD,

PAD, and stroke datasets whose sizes are relatively small compared to HF and hypertension
datasets. This result is reasonable because deep learning methods generally require large
training data to achieve good prediction performance.

Ablation study.—To investigate the contribution of each component in MuViTaNet,

we conduct an ablation study by comparing MuViTaNet with its simpler

variants including MuViTaNet VisitView pMuyViTaNet feature-view ' py\/jTaNet-task-specific anqd
MuViTaNet unlabeled on the six aforementioned datasets. The AU-ROC scores of these
models are shown in Table 7. We can observe that encoding clinical data solely by a
single-view encoder is not as good as a multi-view encoder. AU-ROC score of MuViTaNet
decreases to 0.7906 (resp. 0.7942) when only using visit-view (resp. feature-view) encoder.
This result demonstrates the necessity of aggregating information from multiple views.
The performance of MuViTaNet also drops significantly when we remove the task-specific
attention mechanism and decoder, which further confirms the importance of formulating
complication risk profiling task as MTL with both labeled and unlabeled datasets.

Model interpretability.—The deployment of data-driven systems to healthcare applicants
in real-world requires not only models with good prediction performance but also efficient
mechanisms to interpret the automated decision to clinicians. By leveraging the multi-

view multi-task architecture, our proposed model can interpret the prediction for each
complication in multiple perspectives, thereby helping clinicians understand which clinical
entities contribute most to the prediction.

To characterize cardiac complications, we find the most important features for each of these
cardiac complications by averaging the feature-view attention weights over all positive
patients for clinical features in each complication dataset. Due to the varied number

of features across patients, we rescale attention weights by multiplying them with the
number of features appeared in the corresponding records before averaging. Then, top-10
clinical features for 6 cardiac complications are shown in Table 8. We observe that

these complications share many common features such as 134 (nonrheumatic mitral valve
disorders) and 149 (other cardiac arrhythmias). This result is reasonable because all of these
complications belong to cardiovascular disease class. Moreover, many important features
determined by our model are known to be clinically associated with the corresponding
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complications. For example, patients with type 1 diabetes are two to four times more likely
to develop heart diseases than someone without diabetes [67]. Obesity is another major
known risk factor for heart failure and hypertension patients [68, 69]. Angina pectoris is the
type of chest pain caused by reduced blood flow to the heart and is considered as a symptom
of coronary artery disease [70].

Case study for model interpretability.—To further investigate the interpretability of
MuViTaNet, we look at two case studies to visualize the learned attention weights for
finding risk factors of each complication. The case studies include a positive patient

from heart failure dataset and a negative patient from hypertension dataset. Their clinical
records are illustrated in Fig. 5. The most important visits and features determined by

their associated attention weights from visit-view and feature-view task-specific attention
components are shown in Table 9. For the positive patient (Fig. 5a), the predicted probability
for heart failure onset is 0.7790. As shown in Table 9, the visit-view attention focuses

more on visits 3 and 9, which include clinical codes 250.00 (Type Il diabetes mellitus)

and 278.00 (Obesity) and these codes are also determined as the most important features
by the feature-view attention. This result is also consistent with clinical research in which
type Il diabetes mellitus and obesity have been shown as the common risk factors for heart
failure disease [67, 69], thereby demonstrating the effectiveness of MuViTaNet in capturing
the correlation between risk factors and corresponding diseases. To further investigate the
robustness of our model, we remove important visits and features indicating heart failure’s
risk factors from the patient record and predict the probability of heart failure onset based
on the modified records for capturing the changes in model output. Figure 5a shows that
the predicted score decreases to 0.5284 and 0.4834 when removing visits (3 and 9) and
codes (250.00, 278.00, and 796.2), respectively. Thus, MuViTaNet is capable to focus on
clinical-related visits and features when predicting onset of complications.

Figure 5b shows a clinical record of the negative patient who has type Il diabetes mellitus
but is also treated by M-174 (Metformin). Table 9 indicates that MuViTaNet pays more
attention on M-174 and 250.00 when predicting onset of hypertension. To verify whether
our model can capture the relationship between disease and treatment, we remove these
codes from the patient record as we did for the positive patient. Figure 5b shows that

the predicted probability increases from 0.2330 to 0.3380 when removing Metformin
(diabetes medication) and decreases to 0.0373 when removing code 250.00 (diabetes). This
result indicates that MuViTaNet considers the impact of both disease and treatment on
complication development when making predictions.

Impact of multi-task learning on unfairness.—In this task, we do not impose any
fairness constraint and empirically study the fairness property of MuViTaNet. We consider
three groups distinguished by age (i.e., 18-44, 45-54, 55-64). The statistic of each age
group corresponding to each complication onset dataset is shown in Table 3. We aim

to examine that without fairness intervention, whether MuViTaNet exhibits the disparate
performance across different groups, and how the disparity is affected under multi-task
learning. To this end, we compute AU-ROC and FPRG scores of MuViTaNet (MTL) and
MuViTaNet-task-specific (STL ). The results are shown in Table 10.
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The results show that MuViTaNet achieves superior performances compared to

MuViTaNet t@sk-specific jn terms of both accuracy and fairness. The improvements are more
significant for prediction tasks with limited data (i.e., AF, CAD, PAD, stroke). It further
illustrates that MTL can capture additional information from related datasets and is effective
in developing accurate and fair clinical prediction systems. Moreover, we recognize that
fairness property is also affected by the data quantity and groups’ similarity of incident rates:
the fairness violation is milder in the prediction tasks with abundant data (i.e., hypertension)
and similar incident rates (i.e., HF) than the tasks with limited data and different incident
rates across groups (i.e., AF, CAD, PAD, stroke).

Impact of imposing fairness constraints.—Although MTL can help mitigate
unfairness, there are still gaps in predictions generated by MuViTaNet across sensitive
groups. We further incorporate fairness constraint by adding regularization to the model
objective function (F-MuViTaNet) and then train the model on 6 cardiac complication onset
datasets. We empirically investigate the trade-off between fairness and accuracy by varying
the hyper-parameter w from 1073 (weak fairness violation penalty) to 10 (strong fairness
violation penalty). For each setting, we observe the accuracy and fairness violation, and
measure the performances of F-MuViTaNet by averaging over 6 prediction tasks. The results
are shown in Figs. 6, 7, and 8.

In the following, we focus on the experiments using MMD as the regularization method

and report the results of F-MuViTaNet in Fig. 6 by multiple metrics including AU-ROC,
AU-PRC, CE, accuracy, F1 (accuracy metrics), and FPRG, EMD, MD (fairness metrics).
Analogous patterns are also observed when using MD and COR to enforce fairness and are
shown in Figs. 7 and 8, respectively. The first observation is the effect of hyper-parameter w
on unfairness. In most settings, the larger w (i.e., more penalty on fairness violation) during
training leads to better fairness on the testing sets. When w approaches 10 (the largest value
in the experimental setting), the disparity across sensitive groups is almost eliminated that
FPR scores are similar across different groups. The only exception is the case of using COR
with large w (w > 0.1), where both accuracy and FPRG get worse under COR constraint.

In general, we observe the trade-off between accuracy and fairness in the testing when
varying w but this trade-off is negligible in most cases. In particular, when increasing w
from 0.001 to 0.1, the prediction performance remains almost the same with respect to all
accuracy metrics including AU-ROC, AU-PRC, CE, accuracy, and F1 while the fairness
violation is reduced significantly (i.e., from 0.0867 to 0.0723 for FPRG, from 0.3203 to
0.2414 for EMD, and from 0.1453 to 0.0789 for MD). When we continue increasing w

to 10, fairness violations are almost eliminated (i.e., 0.0245 for FPRG, 0.0356 for EMD,
and 0.0010 for MD) while most of the accuracy metrics remain almost the same, except

for AU-ROC which decreases from 0.8160 to 0.7989 (Fig. 6A). However, this trade-off is
acceptable as the predictions are almost perfectly fair. The only exception, as we mentioned
previously, is when using large w and COR as the regularization method. In that case,

large w significantly hurts both accuracy and fairness. However, we can still achieve a good
fairness-accuracy trade-off with COR as we have for MMD and MD when selecting the
suitable value for w (i.e., @ = 0.1 as shown in Fig. 8).
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We also compare different groups by looking into per-group results. Without imposing
fairness constraint, age group 18-44 experiences the worse performance in both fairness

and accuracy compared to the other two age groups (45-54 and 55-64). This is because

age groups 45-54 and 55-64 have the higher breast cancer and cardiac complication rates
than age group 18-44, leading to more data instances in training dataset. Consequently, the
trained model can be more in favor of majority group (e.g., age groups 45-54 and 55-64) but
less favorable to the minority group (18-44). However, as shown in the results, the disparity
across different age groups can be mitigated significantly by adding fairness constraint
during training.

5 Conclusions

In this paper, we propose a novel multi-view multi-task network (MuViTaNet) that leverages
clinical data to profile multiple complications for patients. To tackle the issues of existing
methods, MuViTaNet considers patient record as both the sequence of clinical visits (visit-
view) and the set of clinical features (feature-view) and then employs the multi-view
encoder to effectively exploit patient information. Due to the correlation among different
complications, we utilize MTL architecture to learn task-specific representations of patients
from both labeled and unlabeled datasets. Finally, the predictions for each complication
onset are generated from the task-specific representation by the corresponding decoder. To
prevent MuViTaNet unfairly treating certain patient groups, we further propose a fairness
mechanism (F-MuViTaNet) by incorporating the fairness constraint into the optimization
objective. We evaluate the prediction performances of MuViTaNet and F-MuViTaNet on
the insurance claim database. The experiments demonstrate that our proposed model
outperforms other state-of-the-art models for the complication risk profiling task. More
importantly, MuViTaNet provides an efficient mechanism to interpret their prediction from
multiple perspectives, and F-MuViTaNet can significantly mitigate unfairness in predictions
across different groups with only an negligible impact on accuracy.
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ngeral schemes for learning from clinical data. a Single-view single-task learning, b
single-view multi-task learning, ¢ multi-view multi-task learning. Our proposed model
belongs to multi-view multi-task learning with the multi-view encoder (i.e., visit-view and
feature-view) and the task-specific attention mechanisms and decoders for both labeled and
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The overall architecture of MuViTaNet. The proposed framework consists of four main
components: feature-view encoder, visit-view encoder, task-specific attention, and task-
specific decoder. Given a patient record, MuViTaNet first extracts information from clinical
visits and features by looking at the record in two different ways: sequence of clinical visits
and set of clinical features. Then, the shared representation learned by these two encoders
is put into the task-specific attention to learn the task-specific representation. Finally, the
clinical predictions are generated by the task-specific decoders. Note that the figure only
shows the task-specific attention for one prediction task for simplicity
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Fig. 4.

Cgrdiac complication datasets construction. Data for six cardiac complication prediction
tasks (i.e., atrial fibrillation (AF), coronary artery disease (CAD), heart failure (HF),
hypertension, peripheral arterial disease (PAD), and stroke) are extracted from the breast
cancer cohort. Index dates are dates when patients are initially diagnosed to have breast
cancer. Patients with cardiac complication onsets during prediction windows are considered
positive instances. Patients without any cardiac complication onsets during prediction
windows are considered negative instances. The ratio between positive and negative
instances is 1:3 for all six datasets. Information until the index dates is used to predict
whether patients develop cardiac complication onsets during the prediction window
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Fig. 5.
Visualization of 2 patient records (i.e., positive patient from heart failure dataset and

negative patient from hypertension dataset) from breast cancer cohort. We only show
important visits in clinical records due to limited space
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Fig. 6.
Performances of F-MuViTaNet (using MMD to enforce fairness) for cardiac complication

risk profiling with respect to accuracy (i.e., AUROC (1), AU-PRC (1), CE (}), Accuracy (1),

F1 (1)) and fairness (FPRG (¥), EMD (V), MD (V)) metrics. The arrows show the direction to
optimum scores for these metrics. Performances of baseline method (MuViTaNet) are shown
by dash lines. The shade areas represents standard deviation ranges of scores calculated from
cross-validation setting
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Fig. 7.
Performances of F-MuViTaNet (using MD to enforce fairness) for cardiac complication risk

profiling with respect to accuracy (i.e., AUROC (1), AU-PRC (1), CE (V), Accuracy (1), F1
(1) and fairness (FPRG (1), EMD (¥), MD (V)) metrics. The arrows show the direction to
optimum scores for these metrics. Performances of baseline method (MuViTaNet) are shown
by dash lines. The shade areas represents standard deviation ranges of scores calculated from
cross-validation setting
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Fig. 8.
Performances of F-MuViTaNet (using MMD to enforce fairness) for cardiac complication

risk profiling with respect to accuracy (i.e., AUROC (1), AU-PRC (1), CE (}), Accuracy (1),
F1 (1)) and fairness (FPRG (¥), EMD (¥), MD ({)) metrics. The arrows show the direction to
optimum scores for these metrics. Performances of baseline method (MuViTaNet) are shown
by dash lines. The shade areas represents standard deviation ranges of scores calculated from
cross-validation setting
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Notation definition

Table 1

Notation Description

C Set of clinical codes/features

P A patient record

Ci #h clinical codes in set C

x;€ {0, 1} \ector representation of code ¢;
\7i Jth clinical visit in P

C; Set of clinical codes in visit v;
Ly Timestamp of visit v,

V; € {0, 1}/ Vector representation of visit v;

X; € {0, 1yieicl
Xyisit € {0, 13719

X foature € T ({0, 131
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&l c R\(‘/I

ﬁ/ e R

7, ER’
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o, € R¥
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Vi

Matrix representation of visit v;

Visit-level representation of P

Feature-level representation of P

Vector representation of demographics

Attention weights of codes in visit v;
Task-specific attention weights for features
Task-specific attention weights for visits
Temporal encoding vector of visit v;
Representation learned by visit-view encoder
Patient representation

Representation learned by feature-view encoder
Visit-view task-specific representation for A7 task
Feature-view task-specific representation for A task
Task-specific representation for A% task
Ground-truth output for &% task

Predicted output for A task
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Table 4

Accuracy/fairness metrics for threshold-based/free cases

Accuracy metric Fairness metric
Threshold-based A FPR gap (FPRG)
Accuracy

Threshold-free

Area under the receiver operating characteristic (AU-ROC)  Earth mover’s distance (EMD)
Area under the precision-recall curve (AU-PRC) Mean distance (MD)

Cross-entropy (CE)
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Table 7

Page 40

Average performances of MuViTaNet variants over 6 complication datasets (F Feature-view, V' Visit-view, L

Labeled, U Unlabeled)

Models Multi-view  Multi-task  AU-ROC

F \% L U
MuViTaNet taskspecific v ¥ x  0.7385+0.0239
MuViTaNet feature-view v v X 0.7906 + 0.0286
MuViTaNet Visitview v/ X v x 0.7942 +0.0248
MuViTaNetunlabeled v v x  08102+0.0136
MuViTaNet v v v v 0816000117
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Table 9

Top 5 most important clinical visits and features (i.e., with the highest attention weights) for the 2 patients
illustrated in Fig. 5

Positive patient from heart failure dataset

Visits Visit9 (0.11)  Visit3(0.11)  Visit11 (0.10)  Visit 8 (0.09) Visit 6 (0.09)
Features 796.2(0.26)  250.00 (0.25)  278.00 (0.12)  882.0 (0.05) 19083 (0.04)
Negative patient from hypertension dataset

Visits Visit9 (0.11)  Visit11 (0.11)  Visit7 (0.10)  Visit 4 (0.10)  Visit 3 (0.09)
Features M-174 (0.56) 250.00 (0.22)  S0612 (0.13)  J3010 (0.02) 82043 (0.02)
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