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Abstract

In healthcare domain, complication risk profiling which can be seen as multiple clinical risk 

prediction tasks is challenging due to the complex interaction between heterogeneous clinical 

entities. With the availability of real-world data, many deep learning methods are proposed for 

complication risk profiling. However, the existing methods face three open challenges. First, they 

leverage clinical data from a single view and then lead to suboptimal models. Second, most 

existing methods lack an effective mechanism to interpret predictions. Third, models learned from 

clinical data may have inherent pre-existing biases and exhibit discrimination against certain social 

groups. We then propose a multi-view multi-task network (MuViTaNet) to tackle these issues. 

MuViTaNet complements patient representation by using a multi-view encoder to exploit more 

information. Moreover, it uses a multi-task learning to generate more generalized representations 

using both labeled and unlabeled datasets. Last, a fairness variant (F-MuViTaNet) is proposed 

to mitigate the unfairness issues and promote healthcare equity. The experiments show that 

MuViTaNet outperforms existing methods for cardiac complication profiling. Its architecture also 

provides an effective mechanism for interpreting the predictions, which helps clinicians discover 

the underlying mechanism triggering the complication onsets. F-MuViTaNet can also effectively 

mitigate the unfairness with only negligible impact on accuracy.
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1 Introduction

Cardiovascular diseases are widely known as the leading causes of mortality in breast 

cancer survivors [1–4]. With the recent substantial improvement of breast cancer survival 

rates, predicting the onset of multiple cardiac complications has become a critical task for 

enhancing patients’ life quality. It is also a key to cost-effective disease management and 

prevention. However, this task is highly challenging because of the complex interactions 
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between heterogeneous clinical entities. Effectively capturing these interactions may lead to 

more precise prediction and treatment for cancer survivors.

Over the past few decades, the rapid growth of real-world clinical data such as electronic 

health record (EHR) and insurance claims makes them valuable data sources used in data-

driven (e.g., deep learning) systems for clinical risk prediction, especially complication 

risk profiling [5–7]. As shown in Fig. 1, this data includes heterogeneous clinical entities 

(e.g., visit, disease, medication) and can be considered from multiple views (i.e., sequence 

of visits, set of features). However, the existing methods for complication risk profiling 

have some limitations: (C1) these models cannot capture complex relationships between 

heterogeneous clinical entities and may result in the less optimal treatments for cancer 

survivors; (C2) most of them lack an efficient mechanism to interpret the predictions, 

thereby cannot help clinicians discover the underlying mechanism triggering the onset and 

make better clinical decisions; (C3) these models may be biased and violate fairness with 

respect to different patient groups in their predictions.

The potential reasons for these limitations are as follows. First, due to the heterogeneous 

and hierarchical structure of clinical data, there are multiple views to consider patient 

records: treating them as sequences of visits or as sets of clinical features. Encoding patient 

records from either view cannot provide comprehensive representations of patients, and may 

fail to capture dynamic patterns of clinical features or dependencies among clinical visits. 

Second, treating each complication onset prediction independently can lead to suboptimal 

models, because the dependencies among complications that are manifestations caused by 

their common underlying condition cannot be captured. This is particularly the case when 

data are limited. Third, interpretable predictions help clinicians better interact with models 

and make optimal treatment decisions. However, it is challenging to establish a simple 

and effective interpretation mechanism for complex models. Fourth, models built with 

heterogeneous, unbalanced clinical data may easily exhibit discrimination against certain 

patient groups. As shown in Sect. 4 (i.e., Table 10), the existing approach for optimizing 

clinical risk prediction models (i.e., minimizing binary cross-entropy objective function) 

exhibits disparities in model predictions across different social groups and prediction tasks. 

This phenomenon is more critical for minority groups and rare diseases. Then, how to 

ensure the fairness and health equity while preserving a sufficient level of model accuracy is 

another challenge [8].

To tackle the aforementioned challenges, we propose a new neural network-based 

framework named Multi-View Multi-Task Network (MuViTaNet) and its fairness variant 

(F-MuViTaNet) for cardiac complication risk profiling. These proposed models consist 

of a multi-view encoder and a novel multi-task learning (MTL) scheme (deal with 

C1 and C2), and a fairness-informed objective function (deal with C3). In particular, 

the multi-view encoder includes visit-view and feature-view encoders that simultaneously 

capture information from clinical visits and features: visit-view encoder considers a patient 

record as the sequence of clinical visits and captures their temporal relation by Gated 

Recurrent Unit (GRU) network; feature-view encoder considers the patient record as 

the set of temporal medical features whose temporal patterns are extracted separately 

using convolutional neural networks (CNN), following which are max-pooling operations 
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that extract the most significant signals from temporal sequences. The MTL scheme 
utilizes an attention mechanism to learn complication-specific representation from shared 

information generated by the multi-view encoder. This scheme allows MuViTaNet to 

exploit additional information from related complications and unlabeled data to generate 

more generalized representations for patients, which enables more accurate predictions. 

By leveraging the attention mechanism associated multi-view encoder, the proposed model 

provides an efficient way to interpret its predictions from multiple perspectives, thereby 

helping clinicians discover the underlying mechanism triggering the onset and making better 

clinical treatments. Figure 2 distinguishes our multi-view multi-task learning approach from 

the existing works for clinical risk prediction. To mitigate unfairness in clinical prediction 

across different patient groups, we incorporate fairness constraint by adding regularization to 

the model objective function (F-MuViTaNet) during training.

By conducting experiments on multiple datasets derived from real-world data (i.e., 

insurance claim database) under the real clinical scenario (i.e., predicting chances of 

developing cardiac complications in the future for breast cancer patients), we demonstrate 

that the proposed model MuViTaNet is interpretable (i.e., Tables 8 and 9, and Fig. 5) 

and significantly outperforms the state-of-the-art approaches (i.e., Tables 5 and 6) for 

complication risk profiling. We show that compared to task-specific models, MTL scheme 

can affect fairness property by mitigating group disparity in predictions (i.e., Table 10). 

Further, when enforcing fairness constraint to MuViTaNet, the fairness can be improved 

significantly with only negligible impacts on model accuracy (i.e., Figs. 6, 7, 8). These 

results indicate that our proposed model can be applied to achieve both fair and accurate 

predictions for cardiac complication risk profiling in clinical practice. Our contributions can 

be summarized as follows:

• We design a multi-view multi-task neural network architecture1 (MuViTaNet) 

that accurately predicts multiple complication onsets and efficiently interprets 

its predictions. It includes (1) a multi-view encoder to explicitly capture 

dependencies among clinical visits and clinical features from clinical data; (2) 

a MTL scheme that utilizes a complication-specific attention mechanism on top 

of the multi-view encoder to capture additional clinical information from related 

complications and unlabeled datasets.

• We design a fairness variant (F-MuViTaNet) that mitigates unfairness across 

different patient groups while maintaining accurate predictions.

• Finally, we conduct comprehensive experiments to demonstrate the effectiveness 

of MuViTaNet in terms of both accuracy, interpretability, and fairness for cardiac 

complication risk profiling.

Note that the present work is an extension of our conference paper [9], in which MuViTaNet 

was first introduced. The key differences are the followings:

• We focus on the unfairness issues in this work. To mitigate group disparity 

and promote health equity, we propose a fairness mechanism by incorporating 

1Code is available at https://github.com/pth1993/MuViTaNet.
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the fairness objective function as regularization into MuViTaNet. The resulting 

model (F-MuViTaNet) achieves both accurate and fair predictions for cardiac 

complication risk profiling tasks.

• We conduct comprehensive empirical studies to investigate the impact of MTL 

on unfairness and examine the impact of enforcing fairness constraint on 

prediction performances under MTL setting.

The remainder of the paper is organized as follows. Section 2 summarizes related works 

on clinical risk prediction as well as complication risk profiling, and fairness in machine 

learning and healthcare applications. Section 3 describes the technical details of the 

proposed models (MuViTaNet and F-MuViTaNet). Section 4 presents experimental results 

and discussions. Finally, Sect. 5 concludes the paper.

2 Related works

In this section, we briefly review existing works related to our study, including patient 

representation learning and MTL for clinical risk prediction and complication risk profiling. 

We also review the fair machine learning literature by presenting the common fairness 

criteria and approaches to satisfying these criteria, and the recent advances in domain of 

healthcare.

Patient representation learning.

The abundance of real-world data in recent years creates an unprecedented opportunity to 

apply machine learning and data mining methods for clinical risk predictions [10–12]. With 

the advancement of deep learning theory and the acceleration in computational technologies, 

neural network-based architectures can significantly improve prediction performance due 

to their ability to extract rich representations from data. Because of the temporal nature 

of clinical data, most existing methods rely on recurrent neural network architectures to 

learn patient representations, which are then used to make predictions for future clinical 

events (e.g., diagnosis, mortality, readmission, etc.) [5–7, 13, 14]. These works focused on 

designing attention mechanisms to capture dependencies among clinical visits [5, 13, 14] 

and time-aware mechanisms to incorporate temporal information [6, 15, 16] into patient 

representation for making better predictions. Nonetheless, these models cannot explicitly 

capture the relationships among clinical features. Instead of considering EHR data as 

sequences of clinical visits, Concare [17] treats the record as the set of clinical features 

and extracts dynamic patterns of these features separately. Then, the predictions are made 

by aggregating representations of all clinical features. However, all the existing methods 

only extract information from a single view of clinical data which makes the learned 

patient representations suboptimal. In contrast, we propose a multi-view model for capturing 

information from multiple views of clinical data simultaneously.

Multi-task learning.

Multi-task learning (MTL) has been used widely across many applications of machine 

learning and data mining. By sharing information among related tasks, the prediction model 

can generalize better. In healthcare domain, some existing works applied MTL techniques 
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to leverage information from related tasks to improve model performance in clinical risk 

prediction. In particular, both classical machine learning [18–20] and deep learning models 

[21–23] are formulated as MTL frameworks and are applied on a wide range of healthcare 

applications including disease progression modeling [18], mortality prediction [21], disease 

onset prediction [22], and diagnosis classification [23].

Complication risk profiling.

Mitigating the risk of complications is crucial for many disease management programs. 

Despite its importance, there have not been many existing methods designed for this 

task. Unlike a single clinical risk prediction task, complication risk profiling requires 

multiple predictions for onset of complications. Thus, capturing relationships among 

related complications is crucial to achieving good prediction performances. Some methods 

have been proposed to predict the onset of complications of some diseases and 

clinical procedures. For example, multi-task logistic regression has been used to predict 

complication risks for diabetes care [19, 24]. Besides linear models, the deep learning 

method is also used to predict complications of this chronic disease [25] but this work 

considers each complication independently. For breast cancer survivors, relationships 

between cardiac complications and cancer were also investigated [3, 4, 26] to show the 

correlation between these two diseases.

Fairness in machine learning.

Machine learning has been increasingly used in domains with intensive impacts on society 

such as healthcare, policy and hiring. While the hope is to improve the societal benefits, 

they may exhibit biases against certain demographic groups [8, 27–29]. To measure and 

remedy the unfairness, various fairness notions have been proposed in the literature and 

they can be roughly classified into two classes: group fairness and individual fairness. For 

group fairness notions (e.g., demographic parity [30], equalized odds [31], equal opportunity 

[31]), the entire population is categorized into different groups based on some sensitive 

attributes (e.g., age, gender, race, etc.), and certain statistical measures are (approximately) 

equalized across these groups. For example, demographic parity [31, 32] requires the 

similar ratio of positive outcomes for every sensitive groups; equalized odds [31] states 

that the protected and unprotected groups should have equal rates for true positives and 

false positives; equal opportunity [31] only requires equal true positive rates for different 

groups. In contrast, individual fairness notions (e.g., counterfactual fairness, fairness through 

awareness) target the individual, rather than group level. It requires the similar individuals to 

be treated similarly [30]. For example, counterfactual fairness implies that a prediction for 

an individual is fair if it is unchanged when individual belonged to a different group [33].

To satisfy certain fairness notions, many methods haven been proposed and they can 

be roughly classified into three categories: (1) Pre-processing approach that modifies 

training data to eliminate confounding bias from data [34–36]. For example, variational 

autoencoder and generative adversarial network have been proposed to obfuscate sensitive 

information in the learned representations, thereby allowing machine learning models to 

learn fair predictions [37–39]. (2) In-processing approach that introduces fairness during 

training by modifying the learning algorithms such as imposing fairness constraints or 
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changing objective functions. For example, [40–42] learn fair models by solving constrained 

optimization with fairness criteria serving as constraints; [43–45] achieve fairness by 

imposing fairness-specific regularization term in optimization. (3) Post-processing approach 

that calibrates model predictions across sensitive groups to remove bias [31, 46].

Fairness in healthcare applications.

Unfairness issues arisen from using machine learning models have also been well-

documented in many healthcare applications. For example, the accuracy of predictive 

systems for intensive care unit monitoring differs across different racial groups [8, 27]; 

medical resources may be disproportionately allocated among patients with different 

socioeconomic status [8]; skin-cancer detection models may fail to detect early-stage disease 

in patients with dark skin [29]; atherosclerotic cardiovascular disease risk prediction models 

may have racial bias [28]. Fairness notions and approaches introduced above have also 

been used in clinical applications. For example, [27] uses the disparity in false-positive/

false-negative/accuracy as a measure of unfairness and mitigates the unfairness via data 

collection; [47] considers the disparity in conditional prediction/calibration/AUROC as 

unfairness measures and reduces disparity by adjusting models through regularization; 

[28] adopts equalized odds fairness notion [31] and uses adversarial learning approach 

to satisfying fairness constraint; [48] extends counterfactual fairness [33] and trains a fair 

model via counterfactual inference using a variational autoencoder.

3 Methodology

In this section, we first give brief introduction about patient records, complication risk 

profiling task and the corresponding notations. Then, we present our proposed model 

MuViTaNet as well as its fairness variant F-MuViTaNet.

3.1 Definitions and basic notations

Definitions and notations used in this study are shown in the following paragraphs and are 

summarized in Table 1.

Patient record.—The heterogeneous and hierarchical structure of a patient record is 

defined as follows.

• Definition 1 (Clinical code). C = {c1, c2, …, c|C|} is the set of unique clinical 

codes including diagnosis, procedure, and medication codes with |C| is the 

number of these unique codes. Each code ci can be represented by binary vector 

xi ∈ {0, 1}|C| where ith element of this vector is 1 and other elements are 0.

• Definition 2 (Clinical visit). A visit is a hospital stay from admission to 

discharge. Each visit vj is a tuple of (cj, tj) where cj = {cj1, cj2, ⋯, cj|cj|
} ∈ 

C|cj| with set of indexes {j1, ⋯, j|cj|} ∈ {1, 2, ⋯, |C|} and tj is the timestamp 

of the visit. cj can be represented by binary vector Vj ∈ {0, 1}|C| where the ith 

element is 1 if cj contains the code ci. Besides vector representation, cj can also 

be expressed as matrix Xj ∈ {0, 1}|cj|×|C| where ith row of this matrix is the binary 

vector xji ∈ {0, 1}|C| of code cji.
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• Definition 3: (Patient record). The patient record P is a sequence of visits [v1, 

v2, ⋯, vT] where T is the number of visits. Like clinical visit representation, 

P can be represented at the two different granularities. At visit-level, P can be 

represented as a binary matrix Xvisit ∈ {0, 1}T×|C| where jth row of this matrix is 

binary vector Vj of visit vj. At feature-level, P can be represented as the sequence 

of matrices Xfeature = [X1, X2, ⋯, XT].

• Definition 4: (Demographic information). Besides clinical information, a patient 

record can have demographic information about the patient such as age, gender, 

and region. It can be represented by binary vector ddemo ∈ {0, 1}ddemo, where 

ddemo is the number of demographic attributes.

Clinical risk profiling.—The aim of this task is to find a set of functions F = (F1, F2, 

⋯, FN} that predicts the onset of complications Y ∈ ℝN from patient record P, where N is 

the number of complications. In MTL setting, F1, F2, …, FN generally have some shared 

parameters to learn shared information from related tasks for better predictions.

3.2 MuViTaNet

Overview architecture.—This section presents our proposed multi-view multi-task 

network (MuViTaNet) for predicting onset of multiple complications from patient records. 

MuViTaNet is designed to explicitly capture the dependencies among clinical visits 

and clinical features from patient records. It also leverages additional information from 

both related labeled and unlabeled data to achieve accurate predictions and efficient 

interpretation. In particular, MuViTaNet consists of four main components as follows. (1) 

Feature-view Encoder. This component considers a patient record as a set of temporal 

clinical features and then encodes information of each feature separately. (2) Visit-view 

Encoder. This component formulates a patient record as a sequence of visits and then 

learns a representation for each visit in the sequential context. Specifically, this component 

is designed as a hierarchical model that exploits patient records in the two levels, 

including feature-level and visit-level. (3) Task-specific Attention. After learning the 

shared representation from feature-view and visit-view encoders, an attention mechanism is 

employed to extract task-specific representation for each task from the shared representation. 

(4) Task-specific Decoder. The task-specific representations are fed into the corresponding 

task-specific decoders to predict clinical outcomes for patients in complication datasets and 

to project representations to unit hypersphere for patients in unlabeled dataset. Figure 3 

shows the overview architecture of MuViTaNet and technical details of its components are 

presented as follows.

Feature-view encoder.—This component treats patient data as a set C of clinical codes 

which are represented by the set of temporal sequences (i.e., columns of matrix Xvisit ∈ {0, 

1}T×|C|). In particular, given clinical code ci, its temporal data can be represented by a binary 

vector fi ∈ {0, 1}T which is ith column of Xvisit. Then, one-dimensional convolutional neural 

networks (Conv1d) and max-pooling (MaxPool) operation are employed to extract temporal 

patterns from each clinical code separately. In particular, Conv1d with kernel size k (i.e., k 
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= 3 in our setting) takes as inputs the sub-sequences of length k from vector fi to learn the 

representation of code ci as follows.

Hi
f = Conv1d fi (1)

where Hi
f ∈ ℝ4d × T are the output of Conv1d and 4d is the number of filters used in 

convolution operations. Next, the row-wise max-pooling is applied to Hi
f to generate vector 

representation for clinical code ci.

hi
f = MaxPool Hi

f
(2)

Note that the weights of Conv1d are not shared between clinical codes. The output of 

feature-view encoder is matrix Hf = h1
f, h2

f, ⋯, h|C|
f ∈ ℝ|C | × 4d.

Visit-view encoder.—This component formulates patient data as a sequence of visits 

in which each visit can be seen as a set of clinical codes. Due to the hierarchical 

characteristic of this data structure, the visit-view encoder is also designed hierarchically 

to capture information at different levels. Given visit vj, we represent this visit by matrix 

Xj ∈ {0, 1}|cj|×|C| which is jth element of the sequence Xfeature. Because different clinical 

codes associated with the same visit can have disparate impacts, instead of treating these 

clinical codes uniformly when aggregating them to represent the visit, the location attention 

mechanism is employed to learn the contributions of these clinical codes to their visit 

representation. In particular, given a binary representation xji ∈ Xj of code cji, 1-layer 

feed-forward neural network is applied to learn the dense representation from sparse vector 

of this clinical code as follows.

eji = FFNN1 xji = ReLU W 1xji + b1 (3)

where W 1 ∈ ℝd × |C| is the learned weight matrix of clinical codes, b1 ∈ ℝd is the bias vector, 

and ReLU is rectified linear unit activation function. Then, the 2-layer feed-forward neural 

network FFNN2 with Tanh activation function is used to generate the attention score αji for 

this clinical code as follows.

αji = FFNN2 eji (4)

The attention vector αj = [αj1, αj2, ⋯, αj|cj|] which represents the contributions of clinical codes 

in visit vj is fed into the softmax layer to get the normalized vector αj = [αj1, αj2, ⋯, αj|cj|] ∈ ℝ|cj|.

αj = Softmax αj (5)

Then, the representation of visit vj are computed as the weighted average of its clinical 

codes.

ej
v = αj

Tej (6)
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where ej = [ej1, ej2, ⋯, ej|cj|] ∈ ℝ|cj| × d denotes the jth visit’s representation. To generate 

personalized representation for each visit, demographic information including age and 

region is incorporated into every clinical visit as follows.

ëj
v = W 2 Concat ej

v, ddemo (7)

where Concat is the concatenation operation and W 2 ∈ ℝ d + ddemo × d is the weight matrix 

mapping concatenated vectors to the original embedding space. Besides clinical codes, each 

visit is also associated with its timestamp. In order to capture the elapsed time between 

visits, we add the temporal encoding vector to each visit as follows.

e j
v = ëj

v + δj (8)

where δj ∈ ℝd is the temporal encoding vector whose design is inspired by the positional 

encoding used in Transformer architecture [49]. In particular, it is computed by 

trigonometric functions as follows.

δj, 2t = sin tT − tj

100002t/d

δj, 2t + 1 = cos tT − tj

100002t/d

(9)

where 0 ≤ 2t < d − 1. From Equation (9), we can see that temporal embedding encodes 

similar time intervals into similar vectors in embedding space.

To generate the sequential representations for visits in the sequential context, we put the 

independent representations for visits learned from previous steps into the bidirectional GRU 

layer. Specifically, the sequential representation for these visits is computed as follows.

hj = GRU e j
v, hj − 1

hj = GRU e j
v, hj + 1

hj
v = Concat hj , hj

(10)

where hj
v ∈ ℝ2d. Then, the patient representation is computed based on the last visit in the 

visit sequence.

h∗ = FFNN3 hT
v

(11)

In summary, the outputs of the visit-view encoder include the sequential representations of 

clinical visits Hv = [h1
v, h2

v, ⋯, hT
v] ∈ ℝT × 2d and the patient representation h∗ ∈ ℝ2d.

Task-specific attention.—Given the shared representations generated by feature-view 

and visit-view encoders, attention mechanisms are employed to generate the task-specific 

representations for the patient. Specifically, the attention weights of clinical features and 

visits for kth task are computed as follows.
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βki = FFNN4
k hi

f

γkj = FFNN5
k hj

v

β k = Softmax [βk1, βk2, ⋯, βk|C|]
γk = Softmax [γk1, γk2, ⋯, γkT]

(12)

where FFNN4
k, FFNN5

k are 2-layer feed-forward neural networks with Tanh activation function 

that compute the weights of clinical features and visits from their representations. Then, we 

obtain the task-specific representation ok ∈ ℝ8d for kth task as follows.

gk
f = β k

THf

gk
v = γk

THv

ok = Concat gk
f, gk

v, h∗
(13)

Task-specific decoder.—For a patient in labeled dataset (i.e., complication dataset), the 

2-layer feed forward neural network with Sigmoid activation function at the last layer is 

employed to predict the probability of complication onset for this patient.

yk = FFNN6
k ok , k ∈ 1, ⋯, N (14)

For a patient in unlabeled dataset, the 2-layer feed forward neural network with 

normalization operation (Norm) is used to project the feature-view and visit-view 

representations of this patient on the unit hypersphere.

zf = Norm FFNN6
k gk

f , k = N + 1
zv = Norm FFNN6

k Concat gk
v, h∗ (15)

Optimization.—To train MuViTaNet in MTL setting, we follow the alternating training 

strategy [50] in which each task is selected randomly and then is optimized for a fixed 

number of parameter updates before switching to other tasks (Algorithm 1). In our setting, 

different tasks have datasets of different sizes, so we select a task to optimize with 

probability λk = |Dk| ∖ nk

k′ = 1
N + 1 |Dk′| ∖ nk′

, where Dk and nk are the dataset and batch size for kth task, 

and N is the number of complication datasets.

For labeled datasets, the binary cross-entropy (BCE) loss function is used to optimize the 

prediction based on ground-truth labels. Specifically, for kth task with dataset Dk, the loss 

function for this task is computed as follows.

LL
k = − 1

|Dk| i = 1

|Dk|
yki log yki + 1 − yki log 1 − yki (16)

where yk and yk are the ground-truth and predicted outputs for kth task, respectively. For 

unlabeled dataset, we leverage the contrastive (CL) loss function [51] to pull together the 

normalized representations of feature-view and visit-view of the same patient and to push 

apart these representations from representations of other patients.
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LU = −
i = 1

|Dk|

zi ∈ zi
f, zi

v
log exp zi

f ⋅ zi
v

zj ∈ A zi exp zi ⋅ zj
(17)

where A(zi) ≡ Z \ zi in which Z = zi
f, zi

v
i = 1

|Dk|
.

3.3 F-MuViTaNet with fairness constraint

Measures of unfairness.—Many group fairness criteria have been proposed in the 

literature to mitigate the unfairness issues in machine learning systems. Under these criteria, 

the population is partitioned into different groups based on some sensitive attributes (e.g., 

age, gender, race, etc.), and certain statistical measures are (approximately) equalized across 

these groups. In this work, we focus on one of the most widely used criterion named equal 
opportunity [31]. Formally, denote Y, Y , S as ground-truth label, prediction, and sensitive 

attribute, respectively, then equal opportunity requires that given Y, Y  and S are conditional 

independent, i.e., Y ⊥S |Y . In the case of binary classification, it means the equality of true/

false positive rates (TPR/FPR) across groups.

In our medical context, we will focus on FPR. The goal is to avoid the patients from certain 

groups being mistakenly diagnosed as positive at a rate that is higher than other groups. That 

is,

∀s ∈ S:Pr(Y = 1 ∣ Y = 0, S = s) = Pr(Y = 1 ∣ Y = 0) (18)

where S is the set of all possible values of sensitive attribute S. Above formulation can be 

extended to non-binary settings where there exist scores Y  that predict the likelihoods of 

samples being positive. Specifically, we will study the following two cases:
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1) Threshold-based case:  Predictions Y  are binary and are attained by thresholding 

prediction scores Y , i.e., Y = 1 if Y > τ, otherwise Y = 0. We can quantify the violation of 

equal opportunity using FPR gap (FPRG) defined below:

MFPRG = 1
|S| s ∈ S

|Pr(Y = 1 ∣ Y = 0, S = s) − Pr(Y = 1 ∣ Y = 0)| (19)

2) Threshold-free case:  In the presence of prediction scores Y , we can use the earth 

mover’s distance (EMD) [52] and mean distance (MD) to quantify violation of equal 

opportunity Y ⊥ S |Y = 1, i.e.,

MEMD = 1
|S| s ∈ S

EMD(Pr(Y ∣ Y = 0, S = s) ∥ Pr(Y ∣ Y = 0)) (20)

MMD = 1
|S| s ∈ S

|E(Y ∣ Y = 0, S = s) − E(Y ∣ Y = 0)| (21)

Above metrics can be empirically computed from sampled data D = yi, y i, yi, si i = 1
|D|  as 

follows.

MFPRG = 1
S s ∈ S

i 1 yi = 1, yi = 0, si = s
i 1 yi = 0, si = s − i 1 yi = 1, yi = 0

i 1 yi = 0 (22)

MEMD = 1
|S| s ∈ S

EMD y i:yi = 0, si = s ∥ y i:yi = 0 (23)

MMD = 1
|S| s ∈ S

1 y i:yi = 0, si = s
i 1 yi = 0, si = s − i y i:yi = 0

i 1 yi = 0 (24)

Fairness as regularization.—As introduced in Sect. 2 , there are roughly three types 

of approaches to achieving fairness: pre-processing, in-processing, and post-processing. 
In our study, we adopt in-processing approach by achieving fairness via regularization. 

Specifically, for kth task, we penalize the fairness violation by adding an additional 

regularization term to prediction loss, i.e.,

Lk = LL
k + ωLF

k
(25)

where LL
k is the prediction loss measured by binary cross-entropy mentioned in the previous 

section, LF
k is the regularization term (fairness loss), and ω is the hyper-parameter that 

controls the ratio between prediction loss and fairness loss. In particular, we use maximum 

mean discrepancy (MMD) [53], mean distance (MD) and correlation (COR) to quantify 

fairness loss.
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LF
MMD = 1

|S| s ∈ S
MMD y i:yi = 0, si = s ∥ y i:yi = 0 (26)

LF
MD = 1

|S| s ∈ S
i yi = 1, yi = 0, si = s

i 1 yi = 0, si = s − i 1 yi = 1, yi = 0
i 1 yi = 0 (27)

LF
COR = COR y i, si:yi = 0 (28)

where LF
MMD, LF

MD, LF
COR are LF calculated by MMD, MD, and COR, respectively, and task 

index k is omitted for simplicity.

4 Experiments

In this section, we evaluate the performances of MuViTaNet on six real-world insurance 

claim datasets and compare its results with state-of-the-art clinical risk prediction models 

to demonstrate the effectiveness of our method. Besides achieving accurate prediction, we 

also show the robustness of MuViTaNet in terms of interpretability. Finally, we examine the 

fairness properties of MuViTaNet and study the impact of imposing fairness constraint by 

investigating the trade-off between accuracy and fairness. Note that although we conduct 

experiments on insurance claim data which includes clinical codes only, our proposed 

method is not limited to this setting. Specifically, it can be easily extended to work with 

heterogeneous clinical data [54] (e.g., clinical notes, lab tests, vital signs) by incorporating 

more encoders designed to handle these data types [55, 56].

4.1 Datasets

Breast cancer cohort construction.—We extract clinical records of female breast 

cancer patients from the MarketScan Commercial Claims and Encounter (CCAE) database 

provided by Truven Health2 to construct cardiac complication risk profiling datasets. 

According to the previous work [24], the records from 2012 to 2017 of de-identified patients 

are selected based on the following criteria.

• Ages of the selected patients are from 18 to 65 at the initial diagnosis of breast 

cancer.

• The selected patients have at least six months of records and ten clinical visits 

before being diagnosed with breast cancer.

• There is no cardiac complication diagnosis until the initial diagnosis of breast 

cancer of the selected patients.

Cardiac complication datasets construction.—After construing the breast cancer 

cohort, we create a distinct dataset for each cardiac complication onset prediction task. 

In our setting, we focus on profiling the risk of developing cardiac complications in a 

2https://truvenhealth.com/markets/life-sciences/products/data-tools/marketscan-databases.
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six-month window after the initial diagnosis of breast cancer (i.e., prediction window), and 

the positive instances are defined as patients who have cardiac complications in this window. 

Following previous clinical research [3,4], we identify six cardiac complications including 

atrial fibrillation (AF), coronary artery disease (CAD), heart failure (HF), hypertension, 

peripheral arterial disease (PAD), and stroke. Patients with cardiac complication onsets 

during prediction windows are considered positive instances. Patients without any cardiac 

complication onsets during prediction windows are considered negative instances. The 

negative instances are randomly selected from the breast cancer cohort with a ratio of 3:1 

compared to positive instances. To mimic the real clinical scenario, information until the 

initial diagnosis of breast cancer (i.e., index date) is used to predict whether patients develop 

cardiac complication onsets during the prediction window. Descriptions, ICD codes, and the 

corresponding numbers of positive/negative instances of these complications are shown in 

Tables 2 and 3. The data construction process is visualized in Fig. 4.

Unlabeled dataset construction.—The negative patients that are not selected for 

complication datasets are used to construct a dataset for contrastive learning. MuViTaNet 

leverages this dataset as additional information to improve the prediction performances of 

complication onset prediction tasks.

Feature selection.—We use the following information to profile cardiac complications 

for breast cancer patients.

• Demographics including age and region information. We cluster patients into 

three age groups (i.e., 18 – 44, – 45 — 54, 55 – 65) and five region groups.

• Clinical codes including diagnosis, procedure, and medication codes. For 

diagnosis codes, all ICD-9 codes are converted to ICD-10 codes. To alleviate 

data sparsity, we group all diagnosis and procedure codes based on their 

first three characters and remove codes that appear in less than 200 patients. 

For medication codes, we group them by their therapeutic classes. This 

preprocessing step results in 1188 features.

4.2 Experimental setup

Baseline models.—To validate the performance of the proposed model for cardiac 

complication risk profiling task, we compare it with several state-of-the-art models. Based 

on their architectures, these models are categorized into four main groups including classical 

model, recurrent-based model, attention-based model, and time-aware model. The details of 

these models are presented as follows.

• Logistic Regression (LR). A classical model used in binary classification. 

To deal with insurance claim data, a patient record is converted to the 

count vector ∈ ℤ|C| whose ith element is the frequency of ith clinical code in that 

record, and is then fed into LR.

• Random Forest (RF) [57]. A classical ensemble model whose prediction is 

the average computed from predictions of a number of decision tree classifiers. 

Inputs for RF are similar to LR.
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• Gated Recurrent Unit (GRU) [58]. A variant of recurrent neural network 

(RNN) that uses gating mechanism.

• Bidirectional GRU (Bi-GRU) [25]. An improved version of GRU by employing 

an additional GRU model to learn the sequence data in reverse order.

• Dipole [5]. An attention-based model that utilizes attention mechanism over the 

sequence generated by Bi-GRU to learn the dependencies between visits.

• RETAIN [13]. An attention-based model that first employs a reverse RNN to 

process clinical records in reverse order to mimic physicians’ decisions. Then 

two attention modules are used to identify significant visits and variables.

• T-LSTM [6]. A time-aware model designed for handling irregularity visits in 

clinical records. The memory cell of LSTM is modified to capture time intervals 

between two consecutive visits.

• Transformer [49]. A fully attention-based model that uses multi-head attention 

mechanisms to learn the dependencies among elements in sequential data.

• LSAN [59]. An attention-based model that uses Transformer to capture global 

information and CNN to capture local information.

• MTL Models: We develop the MTL version for each of the aforementioned 

neural network-based models by employing task-specific attention and decoder 

over the output generated by these models.

• MuViTaNet-visit-view: A variant of MuViTaNet by removing the visit-view 

encoder.

• MuViTaNet-feature-view: A variant of MuViTaNet by removing the feature-view 

encoder.

• MuViTaNet-task-speciflc: A variant of MuViTaNet by removing the task-specific 

attention and decoder for single-task learning (STL) setting.

• MuViTaNet-unlabeled: A variant of MuViTaNet trained with labeled datasets 

only.

• F-MuViTaNet: A fairness variant of MuViTaNet by incorporating fairness loss 

as regularization.

Implementation details.—All neural network-based architectures are implemented by 

PyTorch.3 For classical models including LR and RF, we use their Python implementations 

from Scikit-Learn [60]. We use ADAM algorithm [61] to optimize the prediction 

performances for neural network-based models. The batch size is set as 16 for labeled 

datasets and 256 for unlabeled dataset, and the initial learning rate is 0.0001. All 

experiments are conducted on a single server with 8-core CPU, 16 GB memory of RAM, 

and 16 GB memory of GPU V100.

3https://pytorch.org/.
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Evaluation metrics.—We conduct experiments under 5-fold cross-validation setting. 10% 

instances from the training set are used to construct the validation set, and the results on 

the testing set are determined based on the best results on the validation set. The area 

under the receiver operating characteristic (AU-ROC) is used to measure the performances 

of prediction models for cardiac complication risk profiling. To understand the impact of 

imposing fairness constraint, we examine the fairness-accuracy trade-off for each task by 

varying hyper-parameter ω. We consider both threshold-based and threshold-free cases, and 

metrics for accuracy and fairness of both cases are summarized in Table 4. To binarize 

prediction scores (i.e., changing from threshold-free to threshold-based settings), we use 

J-statistic [62] to select optimum thresholds from the validation sets. Age (i.e., 18-44, 45-54, 

55-64) is treated as the sensitive attribute in the experiments.

4.3 Results

We conduct experiments to answer the following questions.

• Q1. How accurate is MuViTaNet for cardiac complication risk profiling task 

comparing to previous works?

• Q2. How each component of MuViTaNet contributes to its prediction 

performance?

• Q3. How to effectively interpret the predictions made by MuViTaNet?

• Q4. How is MuViTaNet’s fairness property can be affected by MTL scheme?

• Q5. How F-MuViTaNet performs in terms of fairness-accuracy trade-off for 

cardiac complication risk profiling?

Cardiac complication risk profiling.—As shown in Table 5, MuViTaNet achieves the 

best performances compared to other baselines for cardiac complication risk profiling task 

measured by AU-ROC score. Generally, it achieves an average (i.e., over six datasets) 

AU-ROC score of 0.8102, which is 11% better than the best previous method. Looking 

into each complication dataset, we also observe that MuViTaNet consistently outperforms 

other methods in terms of AU-ROC score. Such improvements indicate the advantage of 

MuViTaNet by using (1) multi-view encoder to extract comprehensive information and (2) 

MTL scheme to leverage information from both related labeled and unlabeled datasets to 

improve its prediction performance.

To further support our conclusion, we conduct statistical tests for all models under a 

multitask learning setting. According to the guidelines in [63], we first conduct Friedman 

test [64, 65] to determine if there are any differences between the prediction performances of 

models. This test returns a test statistic of 31.06 and the corresponding P-value of 7 × 10−5 

(< 0.05) resulting in the rejection of the null hypothesis (i.e., no difference). In other words, 

we have sufficient evidence to conclude that there are differences between the performances 

of models. However, this test does not tell us which models are different from each other. 

To find out exactly whether our proposed model is significantly different from the baseline 

models, we further conduct Quade’s post hoc test [66]. The adjusted p-value from the 

statistical test of each pair of classifiers is shown in Table 6. All p-values between our 
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proposed model and baseline models (i.e., in the last row/column) are significantly less than 

0.05, then indicating that our model achieves significantly better prediction performances for 

cardiac complication risk profiling.

For baseline methods, we can observe that formulating complication risk profiling as MTL 

significantly improves the prediction performances of these methods. The improvements 

are more noteworthy for small datasets, including AF (31%), CAD (19%), PAD (22%), 

and stroke (13%). These results demonstrate the importance of leveraging task-related 

information for predicting the onset of complications. We also see that GRU-based models 

achieve slightly improved performances compared to other neural network models. For STL 

setting, the averaged prediction performances of deep learning models are on par with RF 

and are much better than LR. To investigate more, we zoom into the prediction performance 

for each dataset and observe that RF outperforms deep learning models for AF, CAD, 

PAD, and stroke datasets whose sizes are relatively small compared to HF and hypertension 

datasets. This result is reasonable because deep learning methods generally require large 

training data to achieve good prediction performance.

Ablation study.—To investigate the contribution of each component in MuViTaNet, 

we conduct an ablation study by comparing MuViTaNet with its simpler 

variants including MuViTaNet-visit-view, MuViTaNet-feature-view, MuViTaNet-task-specific, and 

MuViTaNet-unlabeled on the six aforementioned datasets. The AU-ROC scores of these 

models are shown in Table 7. We can observe that encoding clinical data solely by a 

single-view encoder is not as good as a multi-view encoder. AU-ROC score of MuViTaNet 

decreases to 0.7906 (resp. 0.7942) when only using visit-view (resp. feature-view) encoder. 

This result demonstrates the necessity of aggregating information from multiple views. 

The performance of MuViTaNet also drops significantly when we remove the task-specific 

attention mechanism and decoder, which further confirms the importance of formulating 

complication risk profiling task as MTL with both labeled and unlabeled datasets.

Model interpretability.—The deployment of data-driven systems to healthcare applicants 

in real-world requires not only models with good prediction performance but also efficient 

mechanisms to interpret the automated decision to clinicians. By leveraging the multi-

view multi-task architecture, our proposed model can interpret the prediction for each 

complication in multiple perspectives, thereby helping clinicians understand which clinical 

entities contribute most to the prediction.

To characterize cardiac complications, we find the most important features for each of these 

cardiac complications by averaging the feature-view attention weights over all positive 

patients for clinical features in each complication dataset. Due to the varied number 

of features across patients, we rescale attention weights by multiplying them with the 

number of features appeared in the corresponding records before averaging. Then, top-10 

clinical features for 6 cardiac complications are shown in Table 8. We observe that 

these complications share many common features such as I34 (nonrheumatic mitral valve 

disorders) and I49 (other cardiac arrhythmias). This result is reasonable because all of these 

complications belong to cardiovascular disease class. Moreover, many important features 

determined by our model are known to be clinically associated with the corresponding 
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complications. For example, patients with type II diabetes are two to four times more likely 

to develop heart diseases than someone without diabetes [67]. Obesity is another major 

known risk factor for heart failure and hypertension patients [68, 69]. Angina pectoris is the 

type of chest pain caused by reduced blood flow to the heart and is considered as a symptom 

of coronary artery disease [70].

Case study for model interpretability.—To further investigate the interpretability of 

MuViTaNet, we look at two case studies to visualize the learned attention weights for 

finding risk factors of each complication. The case studies include a positive patient 

from heart failure dataset and a negative patient from hypertension dataset. Their clinical 

records are illustrated in Fig. 5. The most important visits and features determined by 

their associated attention weights from visit-view and feature-view task-specific attention 

components are shown in Table 9. For the positive patient (Fig. 5a), the predicted probability 

for heart failure onset is 0.7790. As shown in Table 9, the visit-view attention focuses 

more on visits 3 and 9, which include clinical codes 250.00 (Type II diabetes mellitus) 

and 278.00 (Obesity) and these codes are also determined as the most important features 

by the feature-view attention. This result is also consistent with clinical research in which 

type II diabetes mellitus and obesity have been shown as the common risk factors for heart 

failure disease [67, 69], thereby demonstrating the effectiveness of MuViTaNet in capturing 

the correlation between risk factors and corresponding diseases. To further investigate the 

robustness of our model, we remove important visits and features indicating heart failure’s 

risk factors from the patient record and predict the probability of heart failure onset based 

on the modified records for capturing the changes in model output. Figure 5a shows that 

the predicted score decreases to 0.5284 and 0.4834 when removing visits (3 and 9) and 

codes (250.00, 278.00, and 796.2), respectively. Thus, MuViTaNet is capable to focus on 

clinical-related visits and features when predicting onset of complications.

Figure 5b shows a clinical record of the negative patient who has type II diabetes mellitus 

but is also treated by M-174 (Metformin). Table 9 indicates that MuViTaNet pays more 

attention on M-174 and 250.00 when predicting onset of hypertension. To verify whether 

our model can capture the relationship between disease and treatment, we remove these 

codes from the patient record as we did for the positive patient. Figure 5b shows that 

the predicted probability increases from 0.2330 to 0.3380 when removing Metformin 

(diabetes medication) and decreases to 0.0373 when removing code 250.00 (diabetes). This 

result indicates that MuViTaNet considers the impact of both disease and treatment on 

complication development when making predictions.

Impact of multi-task learning on unfairness.—In this task, we do not impose any 

fairness constraint and empirically study the fairness property of MuViTaNet. We consider 

three groups distinguished by age (i.e., 18-44, 45-54, 55-64). The statistic of each age 

group corresponding to each complication onset dataset is shown in Table 3. We aim 

to examine that without fairness intervention, whether MuViTaNet exhibits the disparate 

performance across different groups, and how the disparity is affected under multi-task 

learning. To this end, we compute AU-ROC and FPRG scores of MuViTaNet (MTL) and 

MuViTaNet-task-specific (STL). The results are shown in Table 10.
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The results show that MuViTaNet achieves superior performances compared to 

MuViTaNet-task-specific in terms of both accuracy and fairness. The improvements are more 

significant for prediction tasks with limited data (i.e., AF, CAD, PAD, stroke). It further 

illustrates that MTL can capture additional information from related datasets and is effective 

in developing accurate and fair clinical prediction systems. Moreover, we recognize that 

fairness property is also affected by the data quantity and groups’ similarity of incident rates: 

the fairness violation is milder in the prediction tasks with abundant data (i.e., hypertension) 

and similar incident rates (i.e., HF) than the tasks with limited data and different incident 

rates across groups (i.e., AF, CAD, PAD, stroke).

Impact of imposing fairness constraints.—Although MTL can help mitigate 

unfairness, there are still gaps in predictions generated by MuViTaNet across sensitive 

groups. We further incorporate fairness constraint by adding regularization to the model 

objective function (F-MuViTaNet) and then train the model on 6 cardiac complication onset 

datasets. We empirically investigate the trade-off between fairness and accuracy by varying 

the hyper-parameter ω from 10−3 (weak fairness violation penalty) to 10 (strong fairness 

violation penalty). For each setting, we observe the accuracy and fairness violation, and 

measure the performances of F-MuViTaNet by averaging over 6 prediction tasks. The results 

are shown in Figs. 6, 7, and 8.

In the following, we focus on the experiments using MMD as the regularization method 

and report the results of F-MuViTaNet in Fig. 6 by multiple metrics including AU-ROC, 

AU-PRC, CE, accuracy, F1 (accuracy metrics), and FPRG, EMD, MD (fairness metrics). 

Analogous patterns are also observed when using MD and COR to enforce fairness and are 

shown in Figs. 7 and 8, respectively. The first observation is the effect of hyper-parameter ω 
on unfairness. In most settings, the larger ω (i.e., more penalty on fairness violation) during 

training leads to better fairness on the testing sets. When ω approaches 10 (the largest value 

in the experimental setting), the disparity across sensitive groups is almost eliminated that 

FPR scores are similar across different groups. The only exception is the case of using COR 

with large ω (ω > 0.1), where both accuracy and FPRG get worse under COR constraint.

In general, we observe the trade-off between accuracy and fairness in the testing when 

varying ω but this trade-off is negligible in most cases. In particular, when increasing ω 
from 0.001 to 0.1, the prediction performance remains almost the same with respect to all 

accuracy metrics including AU-ROC, AU-PRC, CE, accuracy, and F1 while the fairness 

violation is reduced significantly (i.e., from 0.0867 to 0.0723 for FPRG, from 0.3203 to 

0.2414 for EMD, and from 0.1453 to 0.0789 for MD). When we continue increasing ω 
to 10, fairness violations are almost eliminated (i.e., 0.0245 for FPRG, 0.0356 for EMD, 

and 0.0010 for MD) while most of the accuracy metrics remain almost the same, except 

for AU-ROC which decreases from 0.8160 to 0.7989 (Fig. 6A). However, this trade-off is 

acceptable as the predictions are almost perfectly fair. The only exception, as we mentioned 

previously, is when using large ω and COR as the regularization method. In that case, 

large ω significantly hurts both accuracy and fairness. However, we can still achieve a good 

fairness-accuracy trade-off with COR as we have for MMD and MD when selecting the 

suitable value for ω (i.e., ω = 0.1 as shown in Fig. 8).
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We also compare different groups by looking into per-group results. Without imposing 

fairness constraint, age group 18-44 experiences the worse performance in both fairness 

and accuracy compared to the other two age groups (45-54 and 55-64). This is because 

age groups 45-54 and 55-64 have the higher breast cancer and cardiac complication rates 

than age group 18-44, leading to more data instances in training dataset. Consequently, the 

trained model can be more in favor of majority group (e.g., age groups 45-54 and 55-64) but 

less favorable to the minority group (18-44). However, as shown in the results, the disparity 

across different age groups can be mitigated significantly by adding fairness constraint 

during training.

5 Conclusions

In this paper, we propose a novel multi-view multi-task network (MuViTaNet) that leverages 

clinical data to profile multiple complications for patients. To tackle the issues of existing 

methods, MuViTaNet considers patient record as both the sequence of clinical visits (visit-

view) and the set of clinical features (feature-view) and then employs the multi-view 

encoder to effectively exploit patient information. Due to the correlation among different 

complications, we utilize MTL architecture to learn task-specific representations of patients 

from both labeled and unlabeled datasets. Finally, the predictions for each complication 

onset are generated from the task-specific representation by the corresponding decoder. To 

prevent MuViTaNet unfairly treating certain patient groups, we further propose a fairness 

mechanism (F-MuViTaNet) by incorporating the fairness constraint into the optimization 

objective. We evaluate the prediction performances of MuViTaNet and F-MuViTaNet on 

the insurance claim database. The experiments demonstrate that our proposed model 

outperforms other state-of-the-art models for the complication risk profiling task. More 

importantly, MuViTaNet provides an efficient mechanism to interpret their prediction from 

multiple perspectives, and F-MuViTaNet can significantly mitigate unfairness in predictions 

across different groups with only an negligible impact on accuracy.
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Fig. 1. 
Visit-view (sequence of clinical visits (rows)) and feature-view (set of clinical codes 

(columns)) of clinical data
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Fig. 2. 
General schemes for learning from clinical data. a Single-view single-task learning, b 
single-view multi-task learning, c multi-view multi-task learning. Our proposed model 

belongs to multi-view multi-task learning with the multi-view encoder (i.e., visit-view and 

feature-view) and the task-specific attention mechanisms and decoders for both labeled and 

unlabeled datasets
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Fig. 3. 
The overall architecture of MuViTaNet. The proposed framework consists of four main 

components: feature-view encoder, visit-view encoder, task-specific attention, and task-

specific decoder. Given a patient record, MuViTaNet first extracts information from clinical 

visits and features by looking at the record in two different ways: sequence of clinical visits 

and set of clinical features. Then, the shared representation learned by these two encoders 

is put into the task-specific attention to learn the task-specific representation. Finally, the 

clinical predictions are generated by the task-specific decoders. Note that the figure only 

shows the task-specific attention for one prediction task for simplicity
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Fig. 4. 
Cardiac complication datasets construction. Data for six cardiac complication prediction 

tasks (i.e., atrial fibrillation (AF), coronary artery disease (CAD), heart failure (HF), 

hypertension, peripheral arterial disease (PAD), and stroke) are extracted from the breast 

cancer cohort. Index dates are dates when patients are initially diagnosed to have breast 

cancer. Patients with cardiac complication onsets during prediction windows are considered 

positive instances. Patients without any cardiac complication onsets during prediction 

windows are considered negative instances. The ratio between positive and negative 

instances is 1:3 for all six datasets. Information until the index dates is used to predict 

whether patients develop cardiac complication onsets during the prediction window
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Fig. 5. 
Visualization of 2 patient records (i.e., positive patient from heart failure dataset and 

negative patient from hypertension dataset) from breast cancer cohort. We only show 

important visits in clinical records due to limited space
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Fig. 6. 
Performances of F-MuViTaNet (using MMD to enforce fairness) for cardiac complication 

risk profiling with respect to accuracy (i.e., AUROC (↑), AU-PRC (↑), CE (↓), Accuracy (↑), 

F1 (↑)) and fairness (FPRG (↓), EMD (↓), MD (↓)) metrics. The arrows show the direction to 

optimum scores for these metrics. Performances of baseline method (MuViTaNet) are shown 

by dash lines. The shade areas represents standard deviation ranges of scores calculated from 

cross-validation setting
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Fig. 7. 
Performances of F-MuViTaNet (using MD to enforce fairness) for cardiac complication risk 

profiling with respect to accuracy (i.e., AUROC (↑), AU-PRC (↑), CE (↓), Accuracy (↑), F1 

(↑)) and fairness (FPRG (↓), EMD (↓), MD (↓)) metrics. The arrows show the direction to 

optimum scores for these metrics. Performances of baseline method (MuViTaNet) are shown 

by dash lines. The shade areas represents standard deviation ranges of scores calculated from 

cross-validation setting
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Fig. 8. 
Performances of F-MuViTaNet (using MMD to enforce fairness) for cardiac complication 

risk profiling with respect to accuracy (i.e., AUROC (↑), AU-PRC (↑), CE (↓), Accuracy (↑), 

F1 (↑)) and fairness (FPRG (↓), EMD (↓), MD (↓)) metrics. The arrows show the direction to 

optimum scores for these metrics. Performances of baseline method (MuViTaNet) are shown 

by dash lines. The shade areas represents standard deviation ranges of scores calculated from 

cross-validation setting
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Table 1

Notation definition

Notation Description

C Set of clinical codes/features

P A patient record

ci ith clinical codes in set C

xi ∈ {0, 1}|C| Vector representation of code ci

v j jth clinical visit in P

c j Set of clinical codes in visit vj

tj Timestamp of visit vj

Vj ∈ {0, 1}|C| Vector representation of visit vj

Xj ∈ {0, 1}|ci|×|C| Matrix representation of visit vj

Xvisit ∈ {0, 1}T×|C| Visit-level representation of P

Xfeature ∈ T × ({0, 1}|ci|×|C|) Feature-level representation of P

d demo Vector representation of demographics

αj ∈ ℝ|cj| Attention weights of codes in visit vj

β j ∈ ℝ|C| Task-specific attention weights for features

γ j ∈ ℝT Task-specific attention weights for visits

δj ∈ ℝd Temporal encoding vector of visit vj

Hv ∈ ℝT × 2d Representation learned by visit-view encoder

h∗ ∈ ℝ2d Patient representation

Hf ∈ ℝ|C | × 4d Representation learned by feature-view encoder

gk
v ∈ ℝ2d

Visit-view task-specific representation for kth task

gk
f ∈ ℝ4d

Feature-view task-specific representation for kth task

ok ∈ ℝ8d
Task-specific representation for kth task

yk Ground-truth output for kth task

yk Predicted output for kth task
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Table 4

Accuracy/fairness metrics for threshold-based/free cases

Accuracy metric Fairness metric

Threshold-based F1 FPR gap (FPRG)

Accuracy

Threshold-free Area under the receiver operating characteristic (AU-ROC) Earth mover’s distance (EMD)

Area under the precision-recall curve (AU-PRC) Mean distance (MD)

Cross-entropy (CE)
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Table 7

Average performances of MuViTaNet variants over 6 complication datasets (F Feature-view, V Visit-view, L 
Labeled, U Unlabeled)

Models Multi-view Multi-task AU-ROC

F V L U

MuViTaNet-task-specific ✓ ✓ ✗ ✗ 0.7385 ± 0.0239

MuViTaNet-feature-view ✗ ✓ ✓ ✗ 0.7906 ± 0.0286

MuViTaNet-visit-view ✓ ✗ ✓ ✗ 0.7942 ± 0.0248

MuViTaNet-unlabeled ✓ ✓ ✓ ✗ 0.8102 ± 0.0136

MuViTaNet ✓ ✓ ✓ ✓ 0.8160 ± 0.0117
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Table 9

Top 5 most important clinical visits and features (i.e., with the highest attention weights) for the 2 patients 

illustrated in Fig. 5

Positive patient from heart failure dataset

Visits Visit 9 (0.11) Visit 3 (0.11) Visit 11 (0.10) Visit 8 (0.09) Visit 6 (0.09)

Features 796.2 (0.26) 250.00 (0.25) 278.00 (0.12) 882.0 (0.05) 19083 (0.04)

Negative patient from hypertension dataset

Visits Visit 9 (0.11) Visit 11 (0.11) Visit 7 (0.10) Visit 4 (0.10) Visit 3 (0.09)

Features M-174 (0.56) 250.00 (0.22) S0612 (0.13) J3010 (0.02) 82043 (0.02)
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