Skip to main content
. 2023 Mar 8;15(6):1673. doi: 10.3390/cancers15061673

Table 5.

Classification performances of the 10-fold machine learning classifiers on features extracted from each of the five pre-trained deep models.

Feature Extractor Classifier Accuracy Sensitivity Specificity Precision F1-Score
AlexNet NB 0.6695±0.0097 0.5323±0.0172 0.7866±0.0114 0.6806±0.0133 0.5969±0.0139
SVM 0.6880±0.0139 0.6894±0.0216 0.6868±0.0168 0.6530±0.0145 0.6702±0.0157
LDA 0.7100±0.0070 0.6934±0.0116 0.7241±0.0121 0.6826±0.0091 0.6877±0.0076
DT 0.6503±0.0187 0.6160±0.0290 0.6795±0.0270 0.6226±0.0215 0.6180±0.0214
GoogleNet NB 0.7176±0.0101 0.5689±0.0139 0.8446±0.0149 0.7589±0.0180 0.6497±0.0124
SVM 0.6592±0.0085 0.5366±0.0128 0.7639±0.0111 0.6602±0.0122 0.5917±0.0110
LDA 0.7276±0.0072 0.6129±0.0126 0.8256±0.0082 0.7502±0.0094 0.6743±0.0097
DT 0.6725±0.0237 0.6471±0.0321 0.6941±0.0345 0.6464±0.0288 0.6450±0.0252
InceptionV3 NB 0.6495±0.0150 0.5280±0.0207 0.7532±0.0205 0.6475±0.0214 0.5808±0.0182
SVM 0.6907±0.0100 0.6094±0.0169 0.7600±0.0121 0.6846±0.0122 0.6444±0.0129
LDA 0.7083±0.0068 0.6554±0.0086 0.7534±0.0109 0.6945±0.0096 0.6742±0.0070
DT 0.6589±0.0260 0.6583±0.0383 0.6595±0.0327 0.6238±0.0270 0.6391±0.0287
ResNet50 NB 0.6688±0.0085 0.8689±0.0138 0.4980±0.0125 0.5965±0.0066 0.7072±0.0079
SVM 0.6197±0.0157 0.5600±0.0251 0.6707±0.0232 0.5930±0.0186 0.5750±0.0189
LDA 0.6895±0.0094 0.7903±0.0306 0.6034±0.0169 0.6298±0.0069 0.7000±0.0144
DT 0.6161±0.0207 0.5891±0.0298 0.6390±0.0313 0.5838±0.0239 0.5851±0.0229
XceptionNet NB 0.6849±0.0087 0.7726±0.0142 0.6100±0.0094 0.6284±0.0075 0.6929±0.0094
SVM 0.6868±0.0105 0.7931±0.0170 0.5961±0.0102 0.6263±0.0085 0.6998±0.0112
LDA 0.7496±0.0119 0.8051±0.0193 0.7022±0.0133 0.6978±0.0113 0.7473±0.0131
DT 0.6253±0.0219 0.5806±0.0320 0.6634±0.0298 0.5967±0.0251 0.5872±0.0254