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Abstract: The brain–computer interface (BCI), which provides a new way for humans to directly
communicate with robots without the involvement of the peripheral nervous system, has recently
attracted much attention. Among all the BCI paradigms, BCIs based on steady-state visual evoked
potentials (SSVEPs) have the highest information transfer rate (ITR) and the shortest training time.
Meanwhile, deep learning has provided an effective and feasible solution for solving complex
classification problems in many fields, and many researchers have started to apply deep learning to
classify SSVEP signals. However, the designs of deep learning models vary drastically. There are
many hyper-parameters that influence the performance of the model in an unpredictable way. This
study surveyed 31 deep learning models (2011–2023) that were used to classify SSVEP signals and
analyzed their design aspects including model input, model structure, performance measure, etc.
Most of the studies that were surveyed in this paper were published in 2021 and 2022. This survey
is an up-to-date design guide for researchers who are interested in using deep learning models to
classify SSVEP signals.

Keywords: brain–computer interface; steady-state visual evoked potential; deep learning; convolu-
tional neural networks

1. Introduction

The brain–computer interface (BCI) provides a direct communication channel between
the human brain and computers without using peripheral nerves or muscles [1]. BCIs allow
users to harness their brain states for controlling devices such as spelling interfaces [2,3],
wheelchairs [4,5], computer games [6,7], or other assistive devices [8,9]. Among all BCIs,
electroencephalography (EEG)-based BCIs are the most widely used. EEG is a non-invasive
way of acquiring brain signals from the surface of the human scalp and is widely adopted
in brain–computer interface applications because of its safety, convenience, and high
temporal resolution [10–12]. There are multiple commonly used paradigms to evoke brain
signals to generate the control commands for EEG-based BCIs, including P300 [13], motor
imagery [14], and steady-state visual evoked potential (SSVEP) [15].

Among them, SSVEP has the advantages of less training, high classification accuracy,
and a high information transfer rate (ITR) [16] and is considered to be the most suitable
paradigm for effective high-throughput BCI [17]. SSVEP represents oscillatory electrical
potential that is elicited in the brain when the subject is visually watching a stimulus that is
flickering at a frequency of 6 Hz or above. A reorganization of spontaneous intrinsic brain
oscillations in response to a stimulus will likely take place [18]. These SSVEP signals are
most evident in the occipital region (visual cortex) with the fundamental frequency being
the same as the stimulus and its harmonics [19].
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SSVEP-based BCIs generally consist of five main processing stages: the data collection
stage that records neural data; the signal preprocessing stage that preprocesses and cleans
the recorded data; the feature extraction stage that extracts meaningful information from
the neural data; the classification stage that determines the output of the BCI from the
processed neural data mostly using machine learning methods; and the feedback stage that
presents the output of the BCI to the user [20].

Compared with other classification methods based on SSVEP, deep learning has
many advantages. It integrates feature extraction and classification as a single process;
therefore, deep learning is more likely to acquire subtle patterns that are not observable by
humans but are informative for the classification of EEG signals. Deep learning utilizes
a neural network consisting of several stacked layers of neurons, with each layer trained
on a distinct set of features depending on the output of previous layers. As the data flow
through the network, more complex features are obtained. The network can take raw SSVEP
signals as the input, without the requirement for hand-crafted feature extraction as well as
common signal preprocessing steps [21,22]. This property provides a critical advantage,
as it precludes implicit EEG signals or features from being lost during preprocessing or
feature extraction [23].

However, the design of deep learning models varies significantly, and it is hard to
predict the performance of the model by its structure. The preprocessing of data, the
number of neurons, the number of layers, the choice of activation functions, the choice of
training methods, and the adoption of pooling layers or the dropout technique to prevent
overfitting all impact the performance of the model, and thus surveying successful deep
learning models and learning from their structures is of great significance for the designing
of future deep learning models.

1.1. Related Surveys

The reviews and surveys on using deep learning models to classify SSVEP from 2019
to 2023 are summarized in Table 1. As shown in Table 1, most of the surveys did not cover
the detailed deep structures or hyperparameters of the deep learning models, which are
critical references for designing future deep learning models. Only Craik’s work covered
these two areas in 2019; however, with the fast advancement of deep learning techniques,
it is necessary to gather recent research results to offer up-to-date information for current
researchers. This survey provides detailed deep learning model analysis which includes
details of structures and hyperparameters for 31 deep learning models, most of which were
published in 2021 and 2022. This survey is an up-to-date survey aimed at providing design
details and design analysis for future deep learning models in SSVEP classification.

Table 1. Reviews and surveys on using deep learning models to classify steady-state visual evoked
potentials (SSVEPs). Here, EEG represents electroencephalography, fNIRS represents functional near-
infrared spectroscopy, MEG represents magnetoencephalography, FE represents feature extraction,
ML represents machine learning, and DL represents deep learning.

References Year Signal Methods DL
Technique

DL Model
Structures

DL Model Hy-
perparameters

DL Perfor-
mance

Craik et al. [24] 2019 EEG DL Yes Yes Yes Yes
Roy et al. [25] 2019 EEG DL Yes No No Yes
Xu et al. [26] 2021 EEG FE, ML, DL Yes No No Yes

Saeidi et al. [27] 2021 EEG FE, ML, DL Yes No No Yes
Zhang et al. [28] 2021 EEG, fNIRS, MEG, DL Yes No No Yes
Essa et al. [29] 2021 EEG, MEG, CT FE, ML, DL Yes No No Yes

Zhang et al. [30] 2021 SSVEP FE, ML, DL Yes No No No
Aggarwal et al. [31] 2022 EEG FE, ML, DL No No No Yes

Pan et al. [32] 2023 SSVEP DL Yes No No Yes
Hossian et al. [33] 2023 EEG FE, ML, DL Yes No No Yes
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1.2. Literature Search and Inclusion Criteria

To conduct this survey, the following databases were used: PubMed, Engineering
Village, ScienceDirect, IEEE Xplore, and Google Scholar. Papers were selected for survey if
the following keywords appeared in their title: (1) SSVEP and (2) deep learning or an RNN
or CNN or DNN or LSTM.

After further reading, papers that satisfied the following criteria remained in this
survey: (1) written in English; (2) had innovations in the structural design of deep learning
models; (3) had detailed information regarding model input, structure, and performance
(or at least 70% of the details revealed); and (4) the deep learning model was designed to
classify SSVEP signals. After selection, 31 articles remained in this survey, and the 31 deep
learning models were dissected and analyzed in detail in the following content.

1.3. Quality Assessment

The Cochrane collaboration tool was used to assess the quality of the selected arti-
cles [34]. For the 31 articles included in this survey, they were classified into having (a) a
low risk of bias, (b) a high risk of bias, or (c) an unclear risk of bias in six domains. The
quality of the articles was categorized into weak (fewer than three low-risk domains), fair
(three to five low-risk domains), or good (six low-risk domains). Of the 31 articles included
in this survey, 4 of them were categorized as weak, 19 were categorized as fair, and 8 were
categorized as good. The results are shown in Figure 1.
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1.4. Contribution of This Survey

Other than hand-crafted approaches such as feature extraction methods or machine
learning methods, where mathematical calculation can help in predicting the performance
of models, the performance of deep learning models is rather unpredictable, and the design



Brain Sci. 2023, 13, 483 4 of 23

process often includes a trial-and-error approach to validate the design choice of structure
or hyperparameters. Thus, when using deep learning models as the classification method
for SSVEP classification, the overview of detailed structures and hyperparameters of other
successful deep learning models can significantly facilitate the design process, which is one
of this survey’s key advantages.

To the best of our knowledge, this survey is the first one aimed at dissecting the deep
learning models used for SSVEP signal classification in different aspects and providing
a thorough design guide for future deep learning models targeting the classification of
SSVEP signals since 2019. To this end, 31 deep learning models for SSVEP classification are
dissected and analyzed in detail, most of which were published in 2021 and 2022. Three
key contributions are made in this survey:

• Key elements of deep learning models are introduced to help readers gain a compre-
hensive understanding of deep learning models;

• Design details of 31 deep learning models are listed to provide information and handy
references for the design of future deep learning models;

• Design considerations of deep learning models are analyzed and discussed, which
can benefit: (1) researchers with a computer background who are interested in SSVEP-
based BCI; (2) neuroscience experts who intend to construct deep learning models to
classify SSVEP signals.

In sum, this survey provides a thorough and convenient guide for the future design of
deep learning models for SSVEP classification.

1.5. Organization of This Survey

The rest of this survey is structured as follows: Section 2 introduces the model input
and three frequently used open datasets of SSVEP signals, as well as the data preprocessing
methods; Section 3 overviews model structure designs, including DNN models, long
short-term memory (LSTM) models, CNN models and their components such as pooling
layers, dropout, training methods, and activation functions; Section 4 discusses the design
considerations and performance measures of models; Section 5 points out the current
challenges and future directions; and Section 6 provides the concluding remarks.

2. Model Input

The quantity of training data has a crucial impact on the performance of deep learning
models. The more complex a deep learning model, the more data it requires in training,
otherwise its performance will not surpass a simpler deep learning model or traditional
machine learning approaches [21]. In BCI research, the quantity of data can be measured
by the SSVEP signal length per channel. The data lengths of the 31 deep learning studies
are analyzed as references for researchers who want to collect their own data, and three
frequently used public datasets are presented for researchers who are not capable of
collecting SSVEP data. The preprocessing methods of input data are also introduced, as
preprocessing of input data can make the features of data easier to extract, thus increasing
the models’ performances.

2.1. Data Length

Deep learning models require the training of the models’ parameters. This usually
requires a large amount of data. By using more data, the performance of the model will
be enhanced. Additionally, the more complex a deep learning model is, and the more
parameters there are in the model, the more data it requires to train it, otherwise its
performance will not surpass simpler deep learning models or other feature extraction
methods such as canonical correlation analysis (CCA), or machine learning methods such
as support vector machine (SVM) [21]. However, recording EEG data from participants
takes effort; thus, the size of the experimental dataset is limited. Here, the time length of
the SSVEP signal in each channel in 31 deep learning studies is overviewed in Figure 2A to
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provide a guide for SSVEP signal length for researchers who want to prepare their own
data for training deep learning models.
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The more complex a deep learning model is, the more data it needs for training. If
insufficient data are used for training the deep learning model, the model will learn slight
variations and noise in the training data, which are exclusive to that database and do not
reflect the features of the target signal. This is known as overfitting and will harm the
model’s performance in testing while using data other than the training dataset [21]. As
Figure 2A shows, for comparatively complex deep learning models, an SSVEP signal length
between 40,000 s and 50,000 s may provide enough data to train the model if researchers
want to collect their own data and use a model of a similar size to those covered in this
survey. For relatively simple deep learning models, an SSVEP signal length below 10,000 s
may be enough for training. Detailed data length and data point calculations are given in
Table 2.

2.2. Three Frequently Used Open Datasets

Recording SSVEP signals takes effort, and many researchers choose to use open
datasets to save time in obtaining EEG data and to train and validate their model. By using
open datasets, it is easier to compare their methods with other methods because many other
researchers have published their results based on the same dataset. Here, three frequently
used open datasets by SSVEP deep learning research are summarized.

2.2.1. Nakanishi Open Dataset

Nakanishi published their open dataset in 2015, making it the earliest and most
frequently used SSVEP open dataset in deep learning research targeting SSVEP analysis [35].
In Nakanishi’s study, ten healthy subjects participated in the experiment. For each subject,
the experiment consisted of 15 blocks, and in each block subjects were asked to gaze at one
stimulus for 4 s and then complete 12 trials corresponding to all 12 targets. The stimuli
flickered for 4 s on the monitor after a 1 s break for subjects to shift their gaze. The EEG
data epochs were sampled at a sampling rate of 2048 Hz with eight electrodes, and later
down-sampled to 256 Hz. All data were bandpass filtered from 6 Hz to 80 Hz with an
infinite impulse response (IIR) filter. Considering a latency delay in the visual system, all
data epochs were extracted with a 0.135 s delay after the stimulus onset. The Nakanishi 2015
open dataset can be obtained from https://github.com/NeuroTechX/moabb (accessed on
10 March 2023).

https://github.com/NeuroTechX/moabb
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Table 2. A detailed analysis of structures of 31 deep learning models used for SSVEP analysis. NM stands for not mentioned. C is the channel number of the dataset.
T is the length of the segment data. GD stands for gradient descent. SGD stands for stochastic gradient descent. ReLU stands for rectified exponential linear unit.
Other abbreviations are unique representations in the original paper, so please refer to the reference.

References Year Dataset Preprocessing Architecture CNN Kernel
Size

Pooling or
Dropout

Training
Method

Activation
Function

Data Size Per
Channel

Model
Accuracy

Best Baseline
Method and

Accuracy

Cecotti
[36] 2011 Author

prepared No
[128 × 6] × [6 ×

128] × [6 × 112] ×
[6 × 12] × 100 × 5

1 × 6, 16 × 1 No NM Sigmoid 128 Hz × 6000 s
= 768,000 0.9561 MEC (0.9035)

Bevilacqua
et al. [37] 2014 Author

prepared No [512 × 4] × [4 ×
512] × [4 × 3] × 3 1 × 4 No GD Sigmoid 256 Hz × 576 s =

147,456 0.875 ± 0.076 SNR
(0.695 ± 0.14)

Thomas
et al. [38] 2017 Oikonomou

et al. [39]
Welch

method [40] NM 1 × 4 Dropout NM ReLU NM 0.6903 SVMG SFS
(0.6609)

Kwak
et al. [17]

2017 Author
prepared

Filter, FFT

[120 × 8] × [8 ×
120] × [8 × 110] × 5 1 × 8, 11 × 1

No GD Sigmoid
1000 Hz × 2500 s

= 2,500,000
(static)

99.28 ± 0.45

CCA-KNN
(0.9770 ± 0.0285)

[120 × 8] × [8@120]
× [8 × 110] × 3 × 5 1 × 8, 11 × 1 97.83 ± 1.31

[960] × [500] ×
[100] × 5 No 98.44 ± 0.92

Aznan
et al. [41] 2018 Author

prepared Filter [9] × [16 × (CNN)]
× [600] × 4 NM Max pooling

and dropout
Adam

[42] ReLU 500 Hz × 480 s =
240,000 0.78 ± 0.1 SVM (0.51 ± 0.06)

Lawhern
et al. [23] 2018 Gordon et al.

[43] No

[C × T] × [F1 × C ×
T] × [D × F1 × 1 ×

T] × [F2 × 1 ×
T] × N

1 × 64,
C × 1, 1 × 16

Average
pooling and

dropout

Adam
[42] ELU Not applied Not applied Not applied

Waytowich
et al. [44] 2018 Nakanishi

et al. [35] No
[C × T] × [F1 × C ×
T] × [F2 × T//4] ×
[F2 × T//32] × N

1 × 256,
1 × 16

Average
pooling and

dropout

Adam
[42] ELU 256 Hz × 7200 s

= 1,843,200 0.8 CCA(NM)

Nguyen
[45] 2018 Author

prepared FFT
1D CNN layer × 1D
CNN layer × 128 ×

3 × 5
NM Max pooling Adam

[42]
ReLU,
Tanh

128 Hz × 1680 s
= 215,040 0.9737 ± 2.86 CCA (0.91)

Kobayashi
et al. [46] 2019 Author

prepared NM 1 × 50 (LSTM) × 70
(LSTM) × 5 No Dropout Adam

[42] NM 256 Hz × 400 s =
10,2400 0.968 k-NN (0.836)
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Table 2. Cont.

References Year Dataset Preprocessing Architecture CNN Kernel
Size

Pooling or
Dropout

Training
Method

Activation
Function

Data Size Per
Channel

Model
Accuracy

Best Baseline
Method and

Accuracy

Podmore
[47] 2019 Wang et al.

[48] Normalization

[10 × 1500] × [736
× 100] × [354 ×

100] × [163 × 100]
× [34 × 100] × [2 ×

100] × 40

10 × 30,
1 × 30 Max pooling Adam

[42] ReLU 250 Hz × 9000 s
= 2,250,000 0.8675 1DSCU (0.7473)

Ravi et al.
[49]

2019

Author
prepared

FFT
[C × 220] × [2C × 1
× 220] × [2C × 1 ×

211] × N

1 × 10,
1 × 10 Dropout

SGD
with Mo-
mentum

ReLU

1200 Hz × 4704
s = 5,644,800 0.7942 M-CNN (0.696)

Nakanishi
et al. [35]

256 Hz × 7200 s
= 1,843,200 0.816 M-CNN (0.706)

Li et al.
[50] 2020 Wang et al.

[48] Filter

{{[T × C] × [16 × T
× C] × [T × C] × [T
× 1]}||{[C × T ×

F1] × [40 × T × F1]
× [T × F1]}} × N ×

N

9 × C, 1 × C,
1 × C, 9 × 1,

9 × 1
No Adam

[42] No 250 Hz × 42,000
s = 10,500,000 0.9388(1 s) TRCA (0.9299)

Ravi et al.
[51]

2020

Author
prepared

Filter, FFT
[C × F] × [2C × 1 ×

F] × [2C × 1 ×
(F-9)] × N

C × 1, 1 × 10 Dropout
SGD

with Mo-
mentum

ReLU

1200 Hz × 7056
s = 8,467,200 0.816 ± 0.123 M-CNN

(0.735 ± 0.161)

Nakanishi
et al. [35]

256 Hz × 7200 s
= 1,843,200 0.816 ± 0.18 M-CNN

(0.705 ± 0.22)

Dang et al.
[52] 2021 Author

prepared FFT

[p × l1] × [1 × l1 ×
N1] × [1 ×

(l1 −m1 + 1)× N2]
× N3 × N

p × 1, 1 × m1
Max pooling,

Dropout
Adam

[42] ReLU 1000 Hz × 4800
s = 4,800,000 0.9723 CCA (0.9343)

Bassi et al.
[53] 2021 Wang et al.

[48] FFT

[X × 64] × [X × 128]
× [X × 256] × [X ×
256] × [X × 512] ×
[X × 512] × 512 × 2

NM Max pooling,
Dropout

SGD
with mo-
mentum

ReLU 250 Hz × 42,000
s = 10,500,000 0.822 DCNN (0.803)

Zhu et al.
[54] 2021 Kwak et al.

[55] No 5 × EEGNet [21]
Average

pooling and
dropout

Adam
[42] ELU 250 Hz × 21,780

s = 5,445,000 0.8112(1 s) CCA (0.5029)
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Table 2. Cont.

References Year Dataset Preprocessing Architecture CNN Kernel
Size

Pooling or
Dropout

Training
Method

Activation
Function

Data Size Per
Channel

Model
Accuracy

Best Baseline
Method and

Accuracy

Guney
et al. [56] 2021

Wang
et al.
[48] filter

[9 × 50 × 3] × [9 ×
50 × 1] × [1 × 50 ×

120] × [1 × 25 ×
120] × [1 × 25 ×

120] × 40

1 × 1,9 × 1,1
× 2,1 × 10

Dropout Adam
[42]

ReLU

250 Hz × 42,000
s = 10,500,000 0.84 NM

Liu et al. [57] 250 Hz × 31,200
s = 7,800,000 0.7 NM

Ding et al.
[58] 2021

Author
prepared

Filter bank

[9 × 50] × [16 × 1 ×
50] × [16 × 1 × 10]
× [16 × 1 × 6] ×3

2 × 4

9 × 1, 1 ×
50,1 × 5, 1 ×

6
Dropout Adam

[42]
ELU

250 Hz × 3360 s
= 840,000

0.8836 ±
0.0489

Compact-CNN
(0.8298 ± 0.0622)

Lee et al. [59] 250 Hz × 21,600
s = 5,400,000

0.7778 ±
0.0216

Compact-CNN
(0.6779 ± 0.0234)

Pan et al.
[60]

2022

Nakanishi
et al. [35]

Filter bank

[C × T] × [2C × 1 ×
T] × [LSTM] × [8 ×

C × ((T-10)/2 +
1)/10] × [D1/5] ×N

1 × 10
Dropout Adam

[42]
PReLU

256 Hz × 7200 s
= 1,843,200

0.8445 ±
0.1801

EEGNet
(0.8078 ± 0.1838)

Wang et al.
[61]

250 Hz × 3200 s
= 800,000

0.8422 ±
0.1586

C-CNN
(0.8188 ± 0.137)

Li et al.
[62] 2022 Author

prepared
Wavelet

Transform

[70 × 100 × 3] × ×
[100 × 70 × 30] ×
[100 × 70 × 50] ×

[50 × 35 × 20] × [50
× 35 × 50] × 5

15 × 10, 3 ×
3, 3 × 3

Average
pooling,
Dropout

NM ReLU 1000 Hz × 4800
s = 4,800,000 0.9675 Compact-CNN

(0.95)

Li et al.
[63] 2022 Author

prepared Filter, FFT

[3×78] × [16 × 3 ×
78] × [32 × 1 × 78]
× [32 × 1 × 78] ×
[64 × 1 × 76] × 4

3 × 1, 3 × 1,
1 × 3, 1 × 3 Dropout Adam

[42] ReLU NM 0.906 NM

Chen et al.
[64]

2022

Nakanishi
et al. [35]

Filter bank
[C × T] × 2 × {[2 ×
C × F] × [2 × C ×

F]} × [2FC] × N
2 × C, 2 × C Dropout

SGD
with mo-
mentum

GELU

256 Hz × 7200 s
= 1,843,200 0.8837 CCNN (0.83)

Wang et al.
[48]

250 Hz × 42,000
s = 10,500,000 0.8319 CCNN (0.75)
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Table 2. Cont.

References Year Dataset Preprocessing Architecture CNN Kernel
Size

Pooling or
Dropout

Training
Method

Activation
Function

Data Size Per
Channel

Model
Accuracy

Best Baseline
Method and

Accuracy

Zhao et al.
[65] 2022 Author

prepared No

[C × T] × [256 × 1
× h1] × [128 × 1 ×
h2] × [64 × 1 × h3]
× [8 × 1 ×h4] × [8
× h4] × 9

1 × 16, 1 ×
32, 1 × 16, 1
× 2

Pooling
and dropout GD ReLU

1000 Hz ×
60,750 s =
60,750,000

0.8145 FBCCA (0.5867)

Avci et al.
[66] 2022 Vilic [67] Spectrogram GoogLeNet NM NM NM NM 512 Hz×1440 s =

737,280
0.9128(in

pairs) NM

Bhuvane-
shwari

et al. [68]
2022 Author

prepared Filter

300 × [3 × 34] × [2
× 78] × [2 × 175] ×

[3 × 300] × [3 ×
370] × 6

2 × 2, 3 × 3,
4 × 4, 5 × 5

Pooling,
Dropout

Adam
[42] NM NM 0.8891 NM

Israsena
et al.[69] 2022 Wang et al.

[48] FFT NM 5 × 5, 3 × 3 Max pooling,
Dropout

Adam
[42] ReLU 250 Hz × 42,000

s = 10,500,000 0.7903 NM

Macias
et al. [70] 2022 Author

prepared Filter, FFT
[30 × 3 0] × [10 × 21
× 21] × [80 × 7 × 7]

× 490 × 4
9 × 9, 9 × 9 No Adam

[42] ReLU 3,000 × 456 s =
1,368,000 0.9606 NM

Zhang
et al. [71] 2022

Wang
et al.
[48] Filter

{{LSTM ×
LSTM}||{LSTM ×

LSTM}} ×
correlation analysis
× convolution × N

5 × 1 No Adam
[42]

Sigmoid,
Tanh

250 Hz × 42,000
s = 10,500,000

0.9407 ±
0.1205

Conv-CA
(0.9336 ± 0.1052)

Zhu et al.
[72]

250 hz × 24,480
s = 6,120,000

0.8796 ±
0.1082

eTRCA
(0.8642 ± 0.1834)

Yao et al.
[73]

2022

Nakanishi
et al. [35]

Filter bank 3 × EEGNet [21]

1 × 256,
8 × 1

Average
pooling and

dropout

Adam
[42] Sigmoid 256 Hz × 7200 s

= 1,843,200 0.82 EEGNet (0.8)

Author
prepared

1 × 256,
16 × 1

Average
pooling and

dropout

Adam
[42] Sigmoid 250 Hz × 40,500

s = 10,125,000 0.91 EEGNet
(0.9)
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Table 2. Cont.

References Year Dataset Preprocessing Architecture CNN Kernel
Size

Pooling or
Dropout

Training
Method

Activation
Function

Data Size Per
Channel

Model
Accuracy

Best Baseline
Method and

Accuracy

Xiao et al.
[74] 2022

Nakanishi
et al.
[35]

filter

{{[C × T] × [3 × C ×
T] × [3 × 1 × T] ×

[3 × T1] × [3 ×
T1]}||{[2Nh × T] ×
[3 × 2Nh × T] × [3
× 1 × T] × [3 × 1 ×

T]}} × 9 × 3

1 × 9, C × 1,
1 × 2,

1 × 1 × 9,
1 × 9,

2Nh × 1,
1 × 2,
1 × 9

Dropout
Adam

[42] Tanh

256 Hz × 7200 s
= 1,843,200 0.87(0.5 s) FBeTRCA (0.928)

Wang et al.
[48]

250 Hz × 42,000
s = 10,500,000 0.81(0.5 s) FBTDCA (0.841)

Liu et al. [57] 250 Hz × 31,200
s = 7,800,000 0.694(0.5 s) FBTDCA (0.671)

Paula et al.
[75] 2023 Author

prepared

CCA,
recurrence

plot
Dense161 NM NM

SGD
with mo-
mentum

NM 256 Hz × 4686 s
= 1,199,616 0.97 Resnet101(0.95)
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2.2.2. Wang Open Dataset

Wang presented an open dataset which included a large number of subjects (8 expe-
rienced and 27 naïve, 35 in total) in 2017 [48]. For each subject, the experiment included
6 blocks, each containing 40 trails corresponding to 40 stimuli. The visual stimuli flickered
for 5 s after a 0.5 s target cue, and there was a 0.5 s rest time before the next trial began.
The EEG data epochs were recorded at a sampling rate of 1000 Hz with 64 electrodes
and later down-sampled to 250 Hz. The Wang 2017 open dataset can be obtained from
http://bci.med.tsinghua.edu.cn/download.html (accessed on 10 March 2023).

2.2.3. BETA Open Dataset

Liu presented the BETA open dataset including 70 subjects performing a 40-target
cued-spelling task in 2020 [57]. The 70 subjects all participated in the second round of
the Brain–Computer Interface 2018 Olympics in China, and none of them were naive to
the SSVEP-BCI. The experiment included 4 blocks each containing 40 trials corresponding
to 40 stimuli. The visual stimuli flickered for 2 s for the first 15 participants and 3 s for
the remaining 55 participants. There was a 0.5 s cue time before the flickering and a 0.5 s
rest time after the flickering. The EEG data epochs were recorded at a sampling rate of
1000 Hz and later down-sampled to 250 Hz. A bandpass filtering between 3 and 100 Hz
was conducted to remove the environmental noise. The BETA 2020 open dataset can be
obtained from http://bci.med.tsinghua.edu.cn/download.html.

2.3. Data Preprocessing

Data preprocessing can enhance the performance of the model by making the fea-
tures easier to extract. Common techniques including frequency filters, time-frequency
transforms, and filter banks are often implemented in SSVEP analysis using deep learning.

2.3.1. Frequency Filters

By applying frequency filters, noise can be removed from the data. Many open datasets
consist of already filtered data using frequency filters including bandpass filters and notch
filters. In Nakanishi’s open dataset, a bandpass filter from 6 Hz to 80 Hz was applied to
remove low-frequency noise and high-frequency noise, as the stimulus frequencies between
9.25 Hz and 15.25 Hz together with their harmonics were included. In Wang’s open dataset,
a notch filter at 50 Hz was applied to remove the power-line noise in the recording. In the
BETA open dataset, a bandpass filter from 0.15 Hz to 200 Hz and a notch filter at 50 Hz
were applied. Many researchers apply frequency filters in their own datasets as well, as
shown in Table 2.

2.3.2. Time-Frequency Transform

The implementation of a time-frequency transform can make the frequency features
easier to extract by the deep learning models. When time domain signals are used as
the input, a more complex model is usually required to extract features, while the neu-
ral networks with frequency domain input data have a relatively simpler structure. In
SSVEP deep learning research, Fast Fourier Transform (FFT) is the most widely used time-
frequency transform. Kwak implemented FFT to the input data and transformed input
time domain data into 120 frequency samples through 8 channels [17]. Nguyen applied FFT
to single-channel data to reduce the computation time of the system and use it as the only
input into a 1D CNN model for SSVEP classification [45]. Ravi applied FFT to transform
1200 time-domain samples into 110 frequency components per data segment [49]. In these
studies, FFT also caused the input to contain fewer data points, thus reducing the impact of
overfitting, as training data were limited.

In some studies, FFT data were processed before feeding into the model to enhance
model performance. In 2020, Ravi found that CNN models using complex spectrum
features that were concatenated by the real part and the imaginary part of the complex
FFT have higher accuracies than the same models using the magnitude spectrum of FFT as

http://bci.med.tsinghua.edu.cn/download.html
http://bci.med.tsinghua.edu.cn/download.html
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the input [51]. Dang took FFT as the input and intercepted the spectrum sequences of the
fundamental waves and two harmonics and used them as parallel inputs into the CNN
model to enhance the model’s performance [27].

2.3.3. Filter Bank

Filter bank analysis performs sub-band decompositions with multiple filters that
have different pass-bands. In 2015, Chen proposed a filter bank canonical correlation
analysis (FBCCA) that incorporates fundamental and harmonic frequency components
together to enhance the detection of SSVEP. By adding a filter bank to CCA analysis,
FBCCA significantly outperformed CCA [28], which proved the filter bank to be an efficient
data preprocessing method. Recently, researchers found that filter bank analysis can be
implemented to process the inputs of deep learning models as well.

Ding built and compared two CNN models in 2021, one with a filter bank and one
without a filter bank. Ding found that by adding a filter bank analysis to the input of
the CNN model, the classification accuracy displayed a 5.53% increase in his own dataset
on average, and a 5.95% increase in a public dataset [58]. In 2022, Pan leveraged four
filter banks ranging from 8×m to 80 Hz for the input data before inserting them into a
CNN-LSTM network, where m ∈ {1,2,3,4} [60]. Chen also implemented three filter banks to
enhance a transformer-based model’s performance, which was named FB-SSVEPformer.
Chen also found that, compared to using two or four filter banks, using three filter banks
provided the best performance [64]. Yao built three filter banks and then fed the input to
three EEGNets used as sub-networks separately before merging the features together [73].
These studies showed that a filter bank is an effective tool to process the SSVEP input and
make frequency features easier to extract by the deep learning models.

3. Model Structure

Frequently used deep learning models can be generally categorized into three cat-
egories: fully connected neural networks, convolutional neural networks (CNNs), and
recurrent neural networks (RNNs) [76]. CNNs have convolution layers in the network,
meaning they have fewer connections than fully connected neural networks and generally
need less computation power than fully connected neural networks [77]. CNNs are gener-
ally less prone to overfitting than fully connected neural networks when training data are
limited. RNNs are different from fully connected neural networks and CNNs, as RNNs
have memory of the input. RNNs perform the same function for every input data while
the output of the current input depends on the previous computation. Long short-term
memory (LSTM) is one kind of RNN and has been used in SSVEP signal classification.

3.1. Aritificial Neural Networks (ANNs)

ANNs are also known as feed forward neural networks, as they only have a forward
direction that information will flow through the network with no turning back. ANNs have
the advantage of generalized classification or predicting ability; with a properly designed
structure, ANNs’ performance enhances with subsequent training data. The disadvantage
of ANNs is that it takes copious amounts of data to train an ANN, and this may not be
viable in many data-insufficient areas such as BCIs. Additionally, there is no specific rule in
the structure design of ANNs, which makes the design process more like trial and error,
and also time consuming.

Of the 31 studies that used deep learning models to analyze SSVEP signals, only one
study used an ANN model. In 2016, Kwak built three models to classify SSVEP signals, a
CNN-1 with two convolutional hidden layers, a CNN-2 with two convolutional hidden
layers and one fully connected hidden layer, and a fully connected neural network with
two fully connected hidden layers. Kwak found that CNN-1 outperformed the other two,
and the DNN model’s performance was the worst of the three. Kwak deduced that the
reason that CNN-1 outperformed all other methods was because of its low complexity with
a simple structure, which was effective in his training-data-insufficient condition [17].
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3.2. Recurrent Neural Networks (RNN)

RNN is known for its capability of storing temporary memory in the network, it has
advantages in processing sequential information, especially in language translation, speech
recognition, etc. The disadvantage of RNN is it is generally hard to train, both in time and
in complexity.

LSTM is a type of RNN that has higher memory power and is thus able to learn
long-term dependencies. Kobayashi first applied LSTM in 2019 to decode SSVEP signals in
controlling drones and achieved an accuracy of 96.8%, which was significantly better than
using FFT combined with machine learning methods such as decision tree (DT), support
vector machine (SVM), linear discriminant analysis (LDA), and k-nearest neighbor non-
parametric regression (k-NN) [46]. In 2022, Pan merged LSTM and a CNN together in his
LSTM-CNN model and achieved the highest classification accuracies in two datasets. In
Pan’s LSTM-CNN model, a BiLSTM module was added after a one-dimensional convo-
lution module used for temporal filtering [60]. Zhang proposed a bidirectional Siamese
correlation analysis (bi-SiamCA) model that used two LSTM layers to extract features of
the EEG signal and reference signal and then analyzed their correlation before feeding to a
convolution layer [71].

3.3. Convolutional Neural Networks (CNNs)

CNNs are deep learning models that use convolutional layers and, in most cases, use
pooling layers as well. The convolutional layers can extract features through convolutional
kernels, and pooling layers can increase the observation field of the hidden layers. The
advantage of CNNs is that they have weight sharing mechanisms, and thus the computation
cost of CNNs is low compared to other deep learning models, and they can detect features
without human intervention. The disadvantage of CNNs is that they usually require large
amounts of data to train, and the complex structure of a CNN requires high computational
power to train.

Nearly all of the studies that are included in this survey used convolutional layers
in their model. This showed the effectiveness of convolutional layers in SSVEP analysis.
One possible explanation of convolutional layers’ popularity could be that convolutional
layers take advantage of the local spatial coherence of SSVEP signals in the time domain or
frequency domain, allowing the model to have lower weight and to be more easily trained
in an SSVEP dataset. The structural design of CNN models can be seen in Table 2.

3.3.1. Number of Convolutional Layers

Some studies suggest that CNN models with more convolutional layers have better
performance. Aznan found that although the shallow model with one convolutional layer
worked well for subject S01, with an accuracy of 96 ± 2%, when the model was applied
to subject S04, whose EEG data were absent from the training dataset, the classification
accuracy dropped to 59%. However, by changing the convolutional layer number from one
to five, the classification accuracy of subject S04 increased to 69%, which suggested that
perhaps a deeper model is required to perform the inter-subject SSVEP classification [41].
Podmore built a CNN model with five hidden layers and achieved 86% offline accuracy of
classification. In his experiment, his model was better than FBCCA when using only data
from three channels, but worse than FBCCA when more channels were used. Additionally,
Podmore demonstrated that his model had better performance than 1DSCU, which is a
CNN model with only one hidden layer [47]. Zhao applied a CNN model with five hidden
layers on the classification of AR-SSVEP and found it to be significantly more accurate than
ensemble-TRCA, CCA, and FBCCA [65].

Some studies suggest that CNN models with fewer convolutional layers have better
performance. Kwak implemented two kinds of CNN and one DNN neural network
on the decoding of SSVEP signals. Kwak found that CNN-1, a convolutional neural
network with two hidden layers, outperformed CNN-2, which had three hidden layers,
and DNN, suggesting that more CNN layers may not be good for the model [17]. Based
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on these studies, it is observed that the models’ performance is influenced by the number
of convolutional layers, but there is not a linear relationship between the number of
convolutional layers and the performance of the model.

3.3.2. Size of CNN Kernels

The kernels are used to convolve on the previous layer’s output. A smaller kernel
tends to collect more local information, while a larger kernel tends to collect more global
information. In SSVEP analysis, most of the models use one-dimensional convolution,
and thus the kernel size is 1×N. Here, the kernel sizes of CNN models are summarized
in Figure 2B, and the details of the kernel sizes are shown in Table 2. From Figure 2B, it
can be observed that small one-dimensional kernels of sizes below 1 × 25 are preferred in
these studies.

3.4. Pooling Layer and Dropout

Both a pooling layer and dropout can reduce the computation cost of the model
and overfitting. Max pooling layer or average pooling layer are often used after the
convolution layer, and they help to reduce the spatial size of the convolved features as well
as overfitting by providing an abstracted representation of the features. Dropout works
by randomly zeroing some of the connections in the network, thus overfitting and some
of the computation costs are reduced. Deep learning models often adopt pooling layers
and dropout, especially in CNN models and LSTM models. Here, the implementation
of pooling layers and dropout in deep learning models is summarized in Figure 3. From
Figure 3, it can be observed that since 2021 more studies have chosen to use both pooling
layers and the dropout technique to minimize overfitting in their models.
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3.5. Training Method

Gradient descent (GD) is the earliest method in deep learning to minimize the loss
function of the model and optimize the model’s weights. The disadvantage of GD is that it
can easily be trapped at local minimal weights or saddle points instead of global minimal
weights and can stop optimizing the model.

Stochastic gradient descent with momentum (SGD) implements the exponential mov-
ing average (EMA) to accumulate previous weight changes and have a better chance of
escaping local minimal and saddle points. SGD with momentum has the disadvantage of
not being able to adjust the step size to approach local minimal points in greater depth
instead of oscillating between slopes. To solve this problem, root mean square propagation
(RMSProp) adjusts the step size to avoid bouncing between ridges and move towards
the minima.

Adam, which is short for adaptive moment optimization, combines the heuristics of
both RMSProp and momentum. It is considered to be the optimum training method of
deep learning models. From Figure 3, it can be observed that Adam is the most frequently
used training method in deep learning research.

3.6. Activation Function

An activation function is used in the neuron of the deep learning model to add non-
linearity to the model and allows the model to abstract non-linear features from the input
data. There are various types of activation functions, and they all have their advantages
and disadvantages.

A sigmoid function mimics the probability value and gives a normalized output,
which is easy to understand and is often used in shallow networks. The disadvantage of a
sigmoid function is that it can cause the vanishing gradient problem, and its exponential
calculation is slow for computers. Tanh provides stronger gradients than rectified linear
unit (ReLU), and it has a zero-centered output, which facilitates back-propagation. The
disadvantage of Tanh is that it also has the vanishing gradient problem just like the sigmoid
function. ReLU makes the computation easier, and it can significantly improve the training
speed of the deep learning model. ReLU also does not have the vanishing gradient problem.
The disadvantage of ReLU is that when the input is negative, ReLU is inactive, thus it
can generate dead neurons. The Gaussian error linear unit (GELU) was invented in 2016
and is very similar to ReLU; however, it was validated to provide improvement across
computer vision, natural language processing, and speech tasks compared to ReLU [78].
The disadvantage of GeLU is that it has a complex computation. Parametric rectified linear
unit (PReLU) is an improved version of ReLU, it has a small slope for negative values, and
thus prevents the dying ReLU problem in which the ReLU neuron is stuck at the negative
side and keeps outputting zero. PReLU is one of the most advanced activation functions
in deep learning and appeared only once in our survey, in a paper published in 2022. The
softmax function is used in almost every multivariate classification deep learning model
as the output layer, as it turns the output vector into a vector that contains only positive
numbers between 0 and 1, and it has an output sum of 1. This means that the output can be
interpreted as probabilities.

The choice of activation function is arbitrary except for the output layer, and here the
implementation of activation functions except for the softmax function is summarized in
Figure 4. From Figure 4, it can be observed that ReLU is the most frequently implemented
activation function.
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4. Discussion

As Table 2 shows, deep learning models are increasingly being employed to classify
SSVEP signals with the progressive advancement of deep learning techniques. For a deep
learning method that can successfully classify an SSVEP signal, the process of design and
the performance measures are crucial.

4.1. Design of Model

The design of deep learning models in classifying SSVEP signals involves gaining
SSVEP datasets, designing models, and enhancing model performance. In Section 2, the
data length of 31 SSVEP deep learning studies is analyzed, and three commonly used open
datasets are provided. This provides information for the researchers who are unsure of the
data length that they should use to test their deep learning model.

Some researchers choose small datasets for their training and then use data augmen-
tation to expand the dataset. Kobayashi’s dataset contained only 400 s of SSVEP signal
data. To expand the training data, Kobayashi split the 20 s of data into 923 segments with
a 0.0195 s shift and a 2 s length. This expanded the 20 s of data into 1846 s of data for the
model and allowed the model to be well trained [46]. Other data augmentation techniques
such as SpecAugment have also been used to augment EEG data. SpecAugment was used
initially in speech recognition and turned out to be effective in expanding SSVEP data [53].

Choosing an open dataset rather than self-collected data may be a better choice
because many researchers have already published their models’ performance based on
open datasets, making it convenient to compare results. Additionally, this saves a lot of time
in collecting data. Many researchers choose to use self-collected data together with public
datasets or even multiple open datasets to validate their models’ performance objectively,
as shown in Table 2.
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For the structural design of the deep learning model, CNN models are currently
the most widely used models, and they will most likely perform well in future studies.
CNN models’ weight sharing feature and minimization of computation make them easier
to be trained and efficient at extracting spatial features of data, especially when FFT is
performed on the input data. However, the design of CNN models includes choosing
many hyperparameters, such as the number of convolutional layers, the size of kernels, the
activation function, the implementation of pooling layers or dropout, etc.

In this survey, detailed structures of 26 uniquely designed CNN models are shown in
Table 2, which provides information for researchers who want to design their own CNN
models. Additionally, a general structure of a CNN model can be observed: an input layer
consisting of channels × time points or FFT data points; two to three convolutional layers
with pooling layers or dropout; a fully connected layer between the last convolutional layer
and output layer; and an output layer which contains the same number of neurons as the
number of stimuli.

In the choice of an activation function, a popular choice would be to use the ReLU func-
tion as the activation function in hidden layers and the softmax function as the output func-
tion. However, with the advent of GeLU and PReLU which prove to be better substitutes
of ReLU the choice of GeLU and PReLU should be considered as a promising alternative.

When tuning hyperparameters for the model, optimizing algorithms can also be used.
Bhuvanesshwari proposed an automated hyperparameter optimization technique using
the Red Fox Optimization Algorithm (RFO) and compared its result with the results of four
other optimization algorithms and found that the hyperparameters of a five-layer CNN
optimized by RFO has the highest classification accuracy of 88.91% [68].

For the training of the deep learning models, Adam combines the advantages of
RMSprop and momentum and is generally the best choice. This can be observed in the
mass usage of Adam since 2018, as shown in Table 2.

Other than designing CNN models from scratch, some researchers choose to modify
existing CNN models used in computer vision to classify the SSVEP signal. Avci converted
an SSVEP signal into a spectrogram and routed it to GoogLeNet deep learning model
for binary classification [66]. Paula encoded EEG data to images using time-series imag-
ing techniques and then used four 2D-kernel-based CNNs in the computer vision field,
including ResNet, GoogLeNet, DenseNet and AlexNet, to classify the SSVEP signal [75].

EEGNet, a compact convolutional neural network initially designed for classifying
multiple BCI paradigms including P300 visual-evoked potential, error-related negativity
responses (ERN), movement-related cortical potential (MRCP), and sensor motor rhythms
(SMRs), has also been widely utilized as a basic module in CNN models. In Yao’s research,
three EEGNets were used as sub-networks in his CNN model [73]. Likewise, Li modified
EEGNet and applied transfer learning to initially train the model parameters [63]. Zhu
applied an ensemble learning strategy to combine multiple EEGNet models with different
kernel numbers together to enhance the classification accuracy of ear-EEG signals from
50.61% to 81.12% at a 1 s window length of the EEG signal. Zhu also demonstrated that the
classification accuracy of the average ensemble model surpasses the accuracy of a single
EEGNet model with different kernel numbers [54]. These studies show that EEGNet is an
effective building block in CNN model design.

Schirrmeister showed that convolutional neural network design choices substantially
affect decoding accuracies, especially that the implementation of batch normalization and
dropout significantly increase accuracies, which also shows that recent advances in deep
learning methods improve the performance of the model [22]. Thus, adding newly devel-
oped deep learning technology may be an effective way of enhancing model performance.
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4.2. Performance Measure of the Model

Most of the studies chose accuracy as the measure of their model’s performance. The
formula for calculating accuracy is shown below:

P =
N_correct
N_total

(1)

where P is the prediction accuracy, N_correct is the total number of correct predictions in
the experiment, and N_total is the total number of predictions in the experiment.

The comparison between the newly developed model’s accuracy with existing meth-
ods’ accuracies based on the same dataset is valid, but the comparison of accuracy values
across different studies based on different datasets is not valid. This is because the clas-
sification accuracy also depends on the number of stimuli, as more stimuli means lower
probability in choosing the right stimulus by chance.

The accuracy also depends on whether the detection is inter-subject or intra-subject.
Intra-subject detection is also known as user-dependent (UD) detection. In this case,
the model is trained using the data of one single participant and validated on the same
participant. Inter-subject detection is also known as user-independent (UI) detection, in
which the model is trained using the data of multiple participants and validated on the
novel unseen user’s data. Ravi demonstrated that UD-based training methods consistently
outperformed UI methods when all other conditions were the same [51].

Another commonly used metric is information transfer rate (ITR), which measures the
communication speed and quality of the BCI system. ITR is calculated by the following
formula with units of bits/min, i.e.,

ITR(P, T) = (log2M + Plog2P + (1− P)log2[
1− P
M− 1

])
60
T

= (log2M)
60
T

(when P = 1) (2)

where P is the prediction accuracy that lies between 0 and 1, M is the number of stimuli,
and T is the stimulation duration in seconds. For the same model, P can be improved by
using more sampled data points in each classification, thus making T longer, and causing
the transmitting efficiency to fall. Shorter T will limit the data in each classification, causing
P to fall. There is a trade-off in the optimization of ITR. In SSVEP deep learning research,
few studies adopt ITR as a performance indicator. This could be due to the fact that deep
learning models may need longer T for classification, and thus have low ITR compared to
other traditional methods. In 2022, Guney designed a deep convolutional neural network
that takes EEG from all the channels and achieved high ITRs of 265.23 bits/min and 196.59
bits/min with only 0.4 s of stimulation on two open datasets, which were the highest ITRs
achieved on these two open datasets [56].

4.3. Limitations of This Survey

This survey aims at analyzing deep learning models used in SSVEP classification, and
it does not cover deep learning models used for other brain signals such as P300, motor
imagery (MI), etc. Although these brain signals are different to SSVEP, the deep learning
models applied for these brain signals may be instructive to the designing of deep learning
models for SSVEP classification. Additionally, recent advancements in other fields such
as computer vision and language processing can aid the deep learning models used for
SSVEP classification, which are not included in this survey.

5. Opening Challenges and Future Directions

Most of the studies on SSVEP signal classification are based on multi-channel data, as
more data often means more potential features for the deep learning model. However, in
real applications, wearing multi-channels EEG amplifiers is inconvenient and expensive.
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EEG devices using a lower number of electrodes ultimately translate to lower: (1) hardware
costs, (2) hygiene risks, and (3) user discomfort [79]. Research on using one or a few
channels of SSVEP data is meaningful. In 2022, Macias modified capsule neural networks
(CapsNet) to classify SSVEP signals and achieved a classification accuracy of 98.02% on his
own dataset using a single active channel [70].

Ear channels are also a good substitute for SSVEP signal detection rather than scalp
channels in terms of convenience, unobtrusiveness, and mobility. In 2022, Israsena proposed
a CNN structure with two convolutional layers to classify SSVEP signals from one scalp
channel and two ear channels, T7 and T8. Israsena achieved 79.03% accuracy with a 5 s
window from Oz and around 40% accuracy from T7 or T8 [69]. The accuracies were not
high, and there is still room for improvement in detecting SSVEP signals from ear channels.

Most of the deep learning models use one-dimensional CNN kernels to extract spatial
features of SSVEP signals in the time domain or in the frequency domain, which regards
SSVEP signals as one-dimensional data recorded in multiple channels. This prevents the
implementation of deep learning models in the computer vision area. However, in 2022,
Avci demonstrated that by converting SSVEP signals into spectrograms, deep learning
models in computer vision can be applied to SSVEP signal classification [66]. Avci’s work is
inspirational and hopefully, in the future, by changing SSVEP signals into two-dimensional
graph data, more models in the computer vision area can be implemented in SSVEP
classification and demonstrated to be effective.

In 2015, the filter bank was proposed and used with CCA to improve the performance
of CCA in classifying SSVEP. Multiple studies in this survey implemented filter banks to
improve their deep learning models’ performance. There are other data preprocessing
techniques that can be applied to deep learning models to enhance their performance as
well. Future research can be conducted to study these techniques.

In summary, here are three future directions that researchers should pay attention to:

1. Using deep learning models to enhance the performance of SSVEP classification based
on data from fewer or single channels, or ear channels to improve the SSVEP-based
BCI’s practicality;

2. Implementing the latest deep learning models or techniques for the classification of
SSVEP signals;

3. Trying different data preprocessing techniques to enhance deep learning models’
performance.

6. Conclusions

In this survey, 31 deep learning models in SSVEP-based BCI were examined in detail
and analyzed. There are three key aspects to consider in the design of deep learning models,
including the model input, model structure, and model performance measures. In the
model input section, the data length is analyzed to provide a reference for the amount of
data needed to train deep learning models in SSVEP classification. Then, three frequently
used open datasets are presented. Frequently used data preprocessing methods using deep
learning models including filters, FFT, and filter banks are also introduced. In the model
structure section, different structures of deep learning models are analyzed as well as their
basic components, such as activation function, kernel size, layer number, and training
method. This provides information for the structural design of deep learning models. In
the discussion section, the design and performance measures of deep learning models are
discussed. In Section 5, current challenges and future directions are pointed out. More
importantly, the design details of 31 deep learning models are summarized in Table 2 to
offer a convenient and comprehensive reference for designing future deep learning models.
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