Skip to main content
. 2023 Mar 13;13(6):1081. doi: 10.3390/diagnostics13061081

Table 3.

GLCM features.

Feature Name Formula Feature Name Formula
Auto correlation i=1Nj=1Ni.jp(i,j) Information measure of correlation 1 HXYHXY1max(HX,HY)
Cluster prominence i=1Nj=1Ni+j2u3p(i,j) Information measure of correlation 2 1exp[2HXY2HXY]
Cluster shade i=1Nj=1Ni+j2u4p(i,j) Inverse difference moment i=1Nj=1Np(i,j)1+ij
Contrast i=1Nj=1Nij2p(i,j) Maximum probability maxi,jp(i,j)
Correlation i=1Nj=1Niµxσxjµyσyp(i,j) Sum average k=22Nkpx+y(k)
Difference entropy k=0N1pxyklog pxy(k) Sum entropy k=22Npx+yklogpx+y(k)
Difference variance k=0N1(kµxy)2pxy(k) Sum of squares i=1Nj=1Npiµ2p(i,j)
Dissimilarity i=1Nj=1Nij.p(i,j) Sum variance k=22Nkµx+y2px+y(k)
Energy i=1Nj=1Np(i,j)2 Maximal correlation coefficient λ2(Qi,j)
Entropy i=1Nj=1Np(i,j)log p(i,j) Inverse difference normalized i=0N1j=0N111+ij2p(i,j)
Homogeneity i=1Nj=1Np(i,j)1+(ij)2 Inverse difference moment normalized i=0N1j=0N1p(i,j)1+ijN2