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Abstract: Background: Tuberculosis (TB) is one of the leading causes of death worldwide and a major
cause of ill health. Without treatment, the mortality rate of TB is approximately 50%; with treatment,
most patients with TB can be cured. However, anti-TB drug treatments may result in many adverse
effects. Therefore, it is important to detect and predict these adverse effects early. Our study aimed to
build models using an artificial intelligence/machine learning approach to predict acute hepatitis,
acute respiratory failure, and mortality after TB treatment. Materials and Methods: Adult patients
(age ≥ 20 years) who had a TB diagnosis and received treatment from January 2004 to December 2021
were enrolled in the present study. Thirty-six feature variables were used to develop the predictive
models with AI. The data were randomly stratified into a training dataset for model building (70%)
and a testing dataset for model validation (30%). These algorithms included XGBoost, random forest,
MLP, light GBM, logistic regression, and SVM. Results: A total of 2248 TB patients in Chi Mei Medical
Center were included in the study; 71.7% were males, and the other 28.3% were females. The mean
age was 67.7 ± 16.4 years. The results showed that our models using the six AI algorithms all had
a high area under the receiver operating characteristic curve (AUC) in predicting acute hepatitis,
respiratory failure, and mortality, and the AUCs ranged from 0.920 to 0.766, 0.884 to 0.797, and 0.834
to 0.737, respectively. Conclusions: Our AI models were good predictors and can provide clinicians
with a valuable tool to detect the adverse prognosis in TB patients early.

Keywords: tuberculosis; acute hepatitis; respiratory failure; mortality; artificial intelligence; machine
learning

1. Introduction

Tuberculosis (TB) is an infectious disease that spreads directly from one person to
another and is a major cause of morbidity and mortality worldwide. It is also one of the
leading causes of death from a single infectious disease and is more prevalent than hu-
man immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS) world-
wide [1].

Patients infected with TB can be effectively treated with anti-TB medication, and the
drug regimen, dosage, and length of treatment period depend on whether it is a drug-
resistant strain, what comorbidities are present (diabetes, HIV, liver disease, renal disease,
etc.), and where is the infection located in the body [2]. Most tuberculosis medications
can be toxic to the liver and have the adverse effect of hepatitis. Therefore, when patients
take these anti-TB medications, physicians need to monitor the patient’s liver enzymes
and be aware of the risk of hepatitis. For example, Ramappa and Aithal [3] found that the
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TB medication that can cause hepatitis included isoniazid, rifampicin, and pyrazinamide.
Patients with TB who develop hepatitis during the treatment may need to change TB
medications if the hepatitis is severe. On the other hand, Elhidsi et al. [4] found that most
patients with TB with acute respiratory failure were newly diagnosed patients, and had
advanced lesions and hypoxemic type respiratory failure. The independent risk factors of
in-hospital mortality were severe hypoxemia and kidney injury. Another study [5] showed
that advanced age and presence of shock unrelated to sepsis were independently associated
with mortality after multivariate analysis.

Artificial intelligence (AI)-based computer programs can assist hospitals in reading
chest radiographs in a timely fashion, these programs perform similarly to expert physicians
and radiologists with high sensitivity in detecting TB disease to determine which patients
need further examination [6].

Recently, most studies have used AI and machine learning (ML) models to diagnose TB
and explore the data characteristics and features used for algorithm accuracy [7]. Limited
studies have focused on predicting adverse outcomes such as mortality and treatment
failure [8–10]. Our study aimed to use the AI/ML model to detect hepatitis, respiratory
failure, and mortality early in patients with TB after receiving anti-TB medications.

2. Methods
2.1. Study Design, Setting, and Samples

We retrospectively collected the data of first-visit patients with TB, and did not include
therapy-refractory TB with second-line anti-TB drugs, from the three hospitals of Chi Mei
Medical Group in Taiwan (1 medical center, 1 regional hospital, and 1 district hospital) from
1 January 2004 to 31 December 2021, and the patients had the diagnosis codes of TB (ICD-9:
010, 011, 012, 505, 647.3, 013, 014, 015, 016, 017, 018, 771.2 or ICD-10: J A15, J65, O98.0, A17,
A18, A19, P37.0). Data from patients under 20 years old at the time of diagnosis, those
with nontuberculous mycobacteria (NTM), and missing values were excluded. Overall,
4018 raw cases were included in the study (Figure 1).
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2.2. Feature and Outcome Variables

We chose three outcome variables for the prediction models: (1) acute hepatitis,
(2) acute respiratory failure, and (3) all-cause mortality during treatment.

The death certificate data were obtained through a formal application to Taiwan’s
Health and Welfare Data Science Center.

The diagnosis of acute hepatitis must meet at least one of the following criteria:
Condition 1: The initial alanine aminotransferase (ALT, GPT) or aspartate aminotrans-

ferase (AST, GOT) is three times (or higher) the upper limit of the normal range during the
treatment period.

Condition 2: The initial ALT (GPT) or AST (GOT) is more than twice the original value
during the treatment period.

Condition 3: The total bilirubin (T-Bil) is >3 mg/dL during treatment.
Condition 4: The T-Bil baseline (the latest one before treatment) is abnormal (>1.2 mg/dL).
The diagnosis of acute respiratory failure must meet any of the following disease

codes: ICD-9: 518.81, 518.84; ICD-10: J96.00, J96.01, J96.02, J96.20, J96.21, J96.22, J96.9, J96.90,
J96.91, J96.92.

The treatment period is from the date of starting the TB medication to the date of the
completion of the TB treatment. The normal value of ALT (GPT) is 41 U/L; the normal
value of AST (GOT) is 31 U/L; and the normal value of T-Bil is 1.2 mg/dL in our laboratory.

Furthermore, we chose 36 feature variables, based on literature evidence and clinical
experience, for these models. The features included sex, age, TB type (extra-pulmonary TB,
any clinically diagnosed or bacteriologically confirmed case of TB affecting organs other
than the lungs; intra-pulmonary TB, clinically diagnosed or bacteriologically confirmed
case of TB involving lungs; both (intra-pulmonary TB and extra-pulmonary TB)), and
disease history (diabetes mellitus (DM), hypertension, dyslipidemia, end-stage renal disease
(ESRD), cerebrovascular accident (CVA), dementia, congestive heart failure (CHF), chronic
obstructive pulmonary disease (COPD), asthma, malignancy, autoimmune disease, liver
cirrhosis, old TB, hepatitis, pleural effusion). We also recorded all TB medication, including
rifater, rifinah (150/101 mg), mycobutin (151 mg), rifinah (300/151 mg) isoniazid (101 mg),
E-butol (401 mg), pyrazinamide (501 mg), rifampicin (151 mg). Finally, laboratory data
included hepatitis B surface antigen (HBsAg), anti-hepatitis C virus (anti-HCV), white
blood cell (WBC) count, hemoglobulin (Hb), platelet count, blood urea nitrogen (BUN),
creatinine, AST (GOT), ALT (GPT), and T-Bil.

2.3. Model Building and Evaluation

We used all the variables to build the prediction models to maximize model perfor-
mance without performing any feature selection preprocessing. The data were randomly
stratified into a training dataset (70%) and a testing dataset (30%). The SMOTE method
(synthetic minority oversampling technique) [11] was used to fix the data imbalance due
to the fewer related positive classes (outcomes to be predicted, such as mortality) in the
training dataset. The model of each outcome was built with 6 machine learning algorithms,
including (1) multilayer perceptron (MLP), (2) LightGBM, (3) random forest, (4) XGBoost,
(5) logistic regression, and (6) support vector machine (SVM).

We used a grid search with 10-fold cross-validation to build the best models based
on the training dataset. We then used the testing dataset to evaluate the models with
the performance indicators of accuracy, sensitivity, specificity, and AUC (area under the
receiver operating characteristic curve).

3. Results

Finally, after removing data with missing values, 2248 patients were enrolled for model
building. The data distribution and significance are summarized in Table 1, showing that
the mean age of the patients was 67.7 years old, 71.7% were males, and 28.3% were females.
According to the Spearman correlation analysis (Figure 2), the most relevant features to



Diagnostics 2023, 13, 1075 4 of 15

acute hepatitis were S-GOT, S-GPT, and T-Bil before hepatitis; those to acute respiratory
failure were WBC, BUN, and age; and those to mortality were BUN, WBC, and age.
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Figure 2. Spearman correlation.

We used six machine learning algorithms to build the three outcome-predictive models
of acute hepatitis, acute respiratory failure, and mortality. The results showed that the MLP
algorithm obtained the highest AUC value (0.834) for the mortality prediction model (see
Table 2 and Figure 3), the random forest algorithm had the highest AUC value (0.884) for
acute respiratory failure (see Table 3 and Figure 4), and the XGBoost algorithm had the
highest AUC value (0.920) for acute hepatitis (see Table 4 and Figure 5).
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Table 1. Demographics.

Variable Overall
Acute Hepatitis Acute Respiratory Failure Mortality

NO Yes p Value NO Yes p Value NO Yes p Value

Cases, n (%) 2248 (100.0) 1377 (61.3) 871 (38.7) 2141 (95.2) 107 (4.8) 2128 (94.7) 120 (5.3)

sex, n (%)

Female 637 (28.3) 420 (30.5) 217 (24.9) 0.005 611 (28.5) 26 (24.3) 0.401 608 (28.6) 29 (24.2) 0.348

Male 1611 (71.7) 957 (69.5) 654 (75.1) 1530 (71.5) 81 (75.7) 1520 (71.4) 91 (75.8)

age, mean (SD) 67.7 (16.4) 67.2 (16.5) 68.5 (16.3) 0.071 67.1 (16.5) 79.9 (8.7) <0.001 66.9 (16.4) 80.9 (9.9) <0.001

TB_type, n (%)

Extra-pulmonary 140 (6.2) 77 (5.6) 63 (7.2) 0.292 138 (6.4) 2 (1.9) 0.145 139 (6.5) 1 (0.8) 0.022

Intra-pulmonary 2025 (90.1) 1249 (90.7) 776 (89.1) 1925 (89.9) 100 (93.5) 1913 (89.9) 112 (93.3)

Both (Intra + Extra) 83 (3.7) 51 (3.7) 32 (3.7) 78 (3.6) 5 (4.7) 76 (3.6) 7 (5.8)

History_DM, n (%) 612 (27.2) 376 (27.3) 236 (27.1) 0.952 579 (27.0) 33 (30.8) 0.454 581 (27.3) 31 (25.8) 0.805

History_Hypertension, n (%) 780 (34.7) 485 (35.2) 295 (33.9) 0.541 733 (34.2) 47 (43.9) 0.051 713 (33.5) 67 (55.8) <0.001

History_Dyslipidemia, n (%) 233 (10.4) 159 (11.5) 74 (8.5) 0.025 219 (10.2) 14 (13.1) 0.434 220 (10.3) 13 (10.8) 0.985

History_ESRD, n (%) 125 (5.6) 80 (5.8) 45 (5.2) 0.580 118 (5.5) 7 (6.5) 0.812 119 (5.6) 6 (5.0) 0.944

History_CVA, n (%) 278 (12.4) 170 (12.3) 108 (12.4) 0.978 256 (12.0) 22 (20.6) 0.013 237 (11.1) 41 (34.2) <0.001

History_Dementia, n (%) 135 (6.0) 86 (6.2) 49 (5.6) 0.609 116 (5.4) 19 (17.8) <0.001 117 (5.5) 18 (15.0) <0.001

History_CHF, n (%) 161 (7.2) 98 (7.1) 63 (7.2) 0.984 142 (6.6) 19 (17.8) <0.001 144 (6.8) 17 (14.2) 0.004

History_COPD, n (%) 693 (30.8) 440 (32.0) 253 (29.0) 0.159 638 (29.8) 55 (51.4) <0.001 641 (30.1) 52 (43.3) 0.003

History_Asthma, n (%) 122 (5.4) 83 (6.0) 39 (4.5) 0.138 115 (5.4) 7 (6.5) 0.762 112 (5.3) 10 (8.3) 0.216

History_malignancy, n (%) 483 (21.5) 292 (21.2) 191 (21.9) 0.723 466 (21.8) 17 (15.9) 0.185 463 (21.8) 20 (16.7) 0.227

History_Autoimmune disease, n (%) 97 (4.3) 50 (3.6) 47 (5.4) 0.057 92 (4.3) 5 (4.7) 0.806 94 (4.4) 3 (2.5) 0.438

History_Liver cirrhosis, n (%) 68 (3.0) 25 (1.8) 43 (4.9) <0.001 67 (3.1) 1 (0.9) 0.376 64 (3.0) 4 (3.3) 0.782

History_old TB, n (%) 172 (7.7) 108 (7.8) 64 (7.3) 0.727 167 (7.8) 5 (4.7) 0.317 168 (7.9) 4 (3.3) 0.098

History_Hepatitis, n (%) 100 (4.4) 44 (3.2) 56 (6.4) <0.001 94 (4.4) 6 (5.6) 0.474 98 (4.6) 2 (1.7) 0.196

Pleural effusion, n (%) 20 (0.9) 10 (0.7) 10 (1.1) 0.420 16 (0.7) 4 (3.7) 0.013 17 (0.8) 3 (2.5) 0.087
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Table 1. Cont.

Variable Overall
Acute Hepatitis Acute Respiratory Failure Mortality

NO Yes p Value NO Yes p Value NO Yes p Value

Isoniazid 101 mg, n (%) 360 (16.0) 137 (9.9) 223 (25.6) <0.001 333 (15.6) 27 (25.2) 0.011 333 (15.6) 27 (22.5) 0.062

E-butol 401 mg, n (%) 2236 (99.5) 1372 (99.6) 864 (99.2) 0.233 2130 (99.5) 106 (99.1) 0.444 2117 (99.5) 119 (99.2) 0.483

Pyrazinamide 501 mg, n (%) 699 (31.1) 378 (27.5) 321 (36.9) <0.001 665 (31.1) 34 (31.8) 0.961 654 (30.7) 45 (37.5) 0.145

Rifampicin 151 mg, n (%) 416 (18.5) 190 (13.8) 226 (25.9) <0.001 384 (17.9) 32 (29.9) 0.003 389 (18.3) 27 (22.5) 0.300

Rifater, n (%) 1877 (83.5) 1145 (83.2) 732 (84.0) 0.620 1788 (83.5) 89 (83.2) 0.966 1781 (83.7) 96 (80.0) 0.350

Rifinah 150/101 mg, n (%) 785 (34.9) 526 (38.2) 259 (29.7) <0.001 742 (34.7) 43 (40.2) 0.286 758 (35.6) 27 (22.5) 0.005

Mycobutin 151 mg, n (%) 61 (2.7) 7 (0.5) 54 (6.2) <0.001 56 (2.6) 5 (4.7) 0.211 56 (2.6) 5 (4.2) 0.376

Rifinah 300/151 mg, n (%) 1096 (48.8) 680 (49.4) 416 (47.8) 0.480 1067 (49.8) 29 (27.1) <0.001 1055 (49.6) 41 (34.2) 0.001

HbsAg, n (%)

Negative 2191 (97.5) 1347 (97.8) 844 (96.9) 0.224 2086 (97.4) 105 (98.1) 1.000 2072 (97.4) 119 (99.2) 0.366

Positive 57 (2.5) 30 (2.2) 27 (3.1) 55 (2.6) 2 (1.9) 56 (2.6) 1 (0.8)

Anti-HCV, n (%)

Negative 2166 (96.4) 1344 (97.6) 822 (94.4) <0.001 2066 (96.5) 100 (93.5) 0.109 2053 (96.5) 113 (94.2) 0.203

Positive 82 (3.6) 33 (2.4) 49 (5.6) 75 (3.5) 7 (6.5) 75 (3.5) 7 (5.8)

W.B.C., mean (SD) 10.5 (7.1) 9.6 (5.4) 12.0 (9.0) <0.001 10.2 (6.9) 17.9 (8.3) <0.001 10.3 (6.9) 15.1 (9.9) <0.001

Hb, mean (SD) 12.9 (1.8) 12.9 (1.8) 13.0 (1.8) 0.409 12.9 (1.8) 12.8 (1.7) 0.426 13.0 (1.8) 12.1 (1.7) <0.001

Platelet count, mean (SD) 201.0 (100.3) 213.8 (96.3) 180.8 (103.3) <0.001 203.3 (99.5) 155.3 (106.0) <0.001 203.0 (100.4) 167.1 (93.4) <0.001

BUN, mean (SD) 28.5 (24.5) 25.8 (21.0) 32.7 (28.7) <0.001 27.5 (23.2) 47.9 (37.8) <0.001 27.6 (23.5) 44.8 (34.8) <0.001

Creatinine, mean (SD) 1.7 (1.9) 1.6 (1.9) 1.9 (2.0) 0.007 1.7 (1.9) 2.2 (2.1) 0.030 1.7 (1.9) 2.1 (1.8) 0.018

AST (GOT), mean (SD) 116.9 (656.2) 41.1 (46.6) 236.6 (1041.8) <0.001 112.0 (656.7) 215.3 (642.3) 0.107 113.6 (657.9) 175.5 (626.1) 0.295

ALT (GPT), mean (SD) 93.2 (242.2) 35.7 (50.1) 184.0 (366.1) <0.001 90.9 (230.0) 138.4 (415.4) 0.243 91.7 (231.0) 118.6 (390.9) 0.457

Bili Total, mean (SD) 1.4 (2.7) 0.7 (0.4) 2.5 (4.1) <0.001 1.4 (2.6) 1.8 (3.5) 0.226 1.4 (2.7) 1.8 (3.1) 0.128

SD: standard deviation, DM: diabetes mellitus, ESRD: end stage renal disease, CVA: cerebrovascular accident, CHF: congestive heart failure, COPD: chronic obstructive pulmonary
disease, HBsAg: hepatitis B surface antigen, anti-HCV: anti-hepatitis C virus, WBC: white blood cell count, HB: hemoglobulin, BUN: blood urea nitrogen, AST (GOT): aspartate
aminotransferase, ALT (GPT): alanine aminotransferase.



Diagnostics 2023, 13, 1075 7 of 15

Table 2. Model results: mortality.

Algorithms Accuracy Sensitivity Specificity AUC

MLP 0.735 0.722 0.736 0.834
Random Forest 0.713 0.722 0.712 0.815

LightGBM 0.705 0.694 0.706 0.807
XGBoost 0.705 0.694 0.706 0.806

SVM 0.686 0.778 0.681 0.806
Logistic Regression 0.656 0.667 0.656 0.737
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Algorithms Accuracy Sensitivity Specificity AUC

Random Forest 0.819 0.812 0.820 0.884
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XGBoost 0.812 0.812 0.812 0.862
LightGBM 0.812 0.750 0.815 0.862
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Table 4. Model results: acute hepatitis.

Algorithms Accuracy Sensitivity Specificity AUC

XGBoost 0.868 0.779 0.925 0.920
Random forest 0.856 0.794 0.896 0.918

MLP 0.853 0.752 0.918 0.909
LightGBM 0.847 0.771 0.896 0.907

Logistic regression 0.776 0.779 0.775 0.863
SVM 0.717 0.721 0.714 0.766
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4. Discussion

To our knowledge, this is the first study to use AI and ML models to early detect
acute hepatitis, respiratory failure, and mortality simultaneously in patients with TB after
receiving anti-TB medications.

Our study included common clinical information and demographic data, such as age,
sex, WBC, Hb, platelet count, BUN, creatinine, AST (GOT), ALT (GPT), bilirubin, comor-
bidities, and TB medication, to predict acute hepatitis, respiratory failure, and mortality
in patients with TB after receiving TB medication. We also comprehensively included
comorbidities, such as diabetes, hypertension, dyslipidemia, ESRD, CVA, dementia, CHF,
COPD, asthma, malignancy, autoimmune disease, HIV, history of liver cirrhosis, hepatitis,
old TB, and presence of pleural effusion in the models. With soft computing techniques,
electrical medical systems can retrieve this information, and a clinician is not required to
survey and rearrange the examination data. Moreover, our study evaluated laboratory data
and systemic diseases in predicting TB patients’ prognosis.

We compared previous related studies on predicting adverse outcomes of TB pa-
tients [8–10,12,13], and found that our predictive model was based on the literature and
practical availability, and had excellent quality (AUCs: 0.834~0.920), which is quite worthy
of being developed as a predictive tool to assist in clinical decision-making. We summarized
the comparison of these works in Table 5.
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Table 5. A comparison with past related studies.

Study Our Study [8] [9] [10] [12] [13]

Countries Taiwan
Patients originated from India,
Azerbaijan, Moldova, Georgia,
Belarus, and Romania

Moldova Azerbaijan, Belarus, Moldova,
Georgia, Romania Myanmar Pakistan

Patient number 2248 1443 17,958 587 393 4213

Outcome
Acute hepatitis, acute
respiratory failure, and
mortality after TB treatment

Treatment failure, which is
defined as failed in therapy or
death

Cured, not cured,
and died after 24 months
following treatment initiation

Treatment failure, which we
defined as failure of therapy
or death

TB drug resistance Patient will complete his
treatment or not

Machine learning
method

XGBoost,
random forest, MLP, light
GBM, logistic regression,
and SVM.

Artificial Neural Network
(ANN), Support Vector
Machine (SVM), k-Nearest
Neighbors (k-NN), and
random forest (RF).

Random forest algorithm,
support vector machine,
penalized multinomial
logistic regression models.

Stepwise forward selection,
stepwise backward
elimination, backward
elimination and forward
selection, Least Absolute
Shrinkage and Selection
Operator (LASSO) regression,
random forest, and support
vector machine (SVM) with
linear kernel and
polynomial kernel.

Genetic
algorithm (GA) and support
vector machine (SVM) model.

Artificial neural
networks (ANNs),
support vector machines
(SVMs), random forest
(RF).

Attribute data

Used 36 attributes including
sex, age, TB type
(intra-pulmonary TB or
extra-pulmonary TB), disease
history (diabetes mellitus,
hypertension, dyslipidemia,
end stage renal disease,
cerebrovascular accident,
dementia, congestive heart
failure, chronic obstructive
pulmonary disease, asthma,
malignancy, autoimmune
disease, liver cirrhosis,
previous TB, hepatitis, pleural
effusion, TB medication,
and laboratory data.

Used 22 attributes including
country, education level,
sex, employment status, type
of resistance, number of daily
contacts,
Body Mass Index (BMI),
localization in the lung,
number of X-rays,
number of CT scans,
dissemination, pleural
effusion, pneumothorax,
pleuritis, process extension,
decrease in lung capacity,
lung cavern,
culture results, microscopy
results, social risk factors
(including smoking,
alcoholism, ex-prisoner, Multi
Drug-resistant patients etc.),
and
drug regimen.

Used 112 attributes including
baseline covariates: gender,
microbiological data, age of
onset, TB group, direct smear
test profile for second-line
drugs;
time-dependent covariates:
smear, culture, direct smear
test profile for first-line drugs

Used 28 attributes including
country, age of onset, sex,
education level, employment
status, number of daily
contacts, type of resistance,
body mass index, localization
in the lung, number of X-rays,
number of CT scans,
dissemination, size of the lung
cavity, pleural involvement,
imaging pattern,
pneumothorax, pleuritis,
nodal calcinosis, process
extension, decrease in lung
capacity, lung cavities, culture
results, microscopy results,
social risk factors, and drug
regimen.

Used 35 attributes including
sex, residence, occupation,
marital, dwelling, drink,
smoking, HIV, diabetes,
alcohol,
trips to traditional healer after
TB positive, preferred health
care provider to visit when
sick, missing treatment in last
4 days, how often patient
missed taking TB drugs
private treatment type,
whether patient takes
traditional medicine, private
doctor treatments in the past
24 months, traditional healer
treatments in the past
24 months, medicine taken
before TB diagnosis, and
household income.

Used 52 attributes
including demographics,
screening, medical tests,
Diagnosis, baseline
treatment, and other
variables related to TB
treatment
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Table 5. Cont.

Study Our Study [8] [9] [10] [12] [13]

Testing results

Area under the receiver
operating characteristic curve
in predicting
acute hepatitis, respiratory
failure, and mortality was
0.928, 0.884, and 0.834,
respectively

Accuracy: 70–78%.

Sensitivity and positive
predictive value increased to
0.84 and 0.88, respectively, for
the not cured class.

Area under the receiver
operating characteristic
curve: 0.74.

SVM with GA is capable of
achieving 67% of accuracy. Accuracy: 76.01–76.32%.

Year 2022 2020 2022 2018 2021 2019
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4.1. Acute Hepatitis

Luo et al. [14] enrolled patients with active TB and latent TB infection in China based
on multiple laboratory data and used different models established by ML for distinguishing
the patient’s TB infection status. Nijiati et al. [15]. used a three-dimensional model to detect
lung field regions in CT images and ML methods for classification and differentiating
active/nonactive pulmonary TB. With AI assistance, radiologists working in this field can
truly help potential patients. Another study [16] used AI for training models to interpret
chest X-ray images and achieved high accuracy. These recent studies used AI and ML to
detect TB early and did not mention how to detect hepatitis in patients with TB.

Risk factors for hepatitis after TB treatment have been assayed in an observational
study [17]. Among the various risk factors assessed, extensive disease, old age, excessive
alcohol use, and slow acetylator phenotype were risk factors for hepatitis in patients who
received anti-TB drugs. A study enrolled 765 patients who received anti-TB treatment and
found that the risk factors for hepatotoxicity included advanced age, female sex, extensive
tuberculosis, and no alcohol consumption [18]. In our population, there was no significant
difference in age between TB patients with and without acute hepatitis. Wang et al. showed
that age and hepatitis B infection were important risk factors for hepatitis in patients with
TB via a multiple logistic regression analysis [19]. Extra-pulmonary TB, advanced age, and
comorbidities were found to be significant predictors of the development of hepatitis in
studies using multivariable logistic regression analyses [20]. However, our study showed
no significant difference between extra-pulmonary and intra-pulmonary TB among patients
with acute hepatitis. Approximately 12% of the patients died after the development of anti-
TB drug-induced hepatitis [21]. In our study, most of these factors and patient laboratory
data that were taken before acute hepatitis had developed were included in the models.
However, alcohol intake was not included in our study because alcohol intake was not
recorded in our electrical medical record and because this was a retrospective study. From
our data, we found that patients with TB and acute hepatitis had a high proportion history
of hepatitis and liver cirrhosis. Furthermore, with the aid of these variables and ML, the
XGBoost model still had a high accuracy of 0.868, a sensitivity of 77.9%, a specificity of
92.5%, and an AUC of 0.920. In addition to higher accuracy in detecting hepatitis during
the TB treatment course, we can detect hepatitis early in patients with TB. With the aid of
AI, physicians can be aware of the risk of hepatitis and more frequently and intensively
monitor liver function before this adverse effect occurs.

4.2. Acute Respiratory Failure

Despite the availability of effective anti-TB medications, TB, as a cause of respiratory
failure requiring mechanical ventilation, is often associated with acute respiratory distress
syndrome, which leads to a high mortality rate [22]. A study enrolled 41 patients with TB
in Taiwan from January 1996 to April 2001; a total of 27 died (65.9%) in the hospital, and
14 survived, with a (mean ± sd) of 40.7 ± 35.4 admission days before death. The mortality
rate for the 180 day monitoring period was 79% [23]. The multivariate analysis found
that old age, multiple organ failure, and shock unrelated to sepsis were related to poor
outcomes [5]. Therefore, detecting patients with TB at risk of acute respiratory failure from
complex diseases and patients with multiple comorbidities earlier is important for clinical
care. We found that our patients with TB and respiratory failure requiring mechanical
ventilation had a higher proportion of CVA, dementia, CHF, COPD, and TB present with
pleural effusion. These baseline comorbidities may reflect the fragility in patients with TB,
and the elderly with these comorbidities are more vulnerable to respiratory failure. TB
effusion was a common condition, and treatment of TB with pleural effusion was the same
as for pulmonary TB. Most TB patients with pleural effusion had a benign course after
treatment with mild-to-no residual effects. There was scarce literature regarding TB with
pleural-effusion-related acute respiratory failure. Further studies were required to answer
if pleural effusion is meaningful to TB patients with acute respiratory failure.
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The early signs of acute respiratory failure may be uncertain in some laboratory test
results. Predictive models using AI that integrate and leverage multiple variable factors
could help identify areas of uncertainty, and this identification would likely occur before
any noticeable physical symptoms appear. By incorporating ML into laboratory data,
routine data results can be merged into other relevant patient characteristics, such as
age, sex, and comorbidities, for use within disease-specific AI models. By integrating
information, patient characteristics, and laboratory data, there is a potential to generate
acute respiratory failure patient probability scores to help alert clinicians. Our predictive
random forest models’ accuracy, sensitivity, specificity, and AUC were 0.819, 0.812, 0.820,
and 0.884, respectively. In collaboration with more patient information and healthcare
institutions, ML and computerized reasoning can be used to develop AI-driven clinical
decision support tools that can potentially aid clinicians in making prompt and correct
decisions before TB patients experience acute respiratory failure.

4.3. Mortality

TB hurts the patients’ long-term survival rate even after successful treatment and
decreases the survival rate in long-term follow-up, even after accounting for acute TB-
related mortality [24]. The survival rate at 11 years was 70% after successful TB treatment,
and the probability of survival was 46% in the age group of 55 years and older after 11 years
of follow-up [25]. Another study also showed that mortality in the TB cohort was 2.3 times
higher than in the general population after age matching. Most mortality occurred in
the first year after completing treatment [26]. During our 17 year follow-up, we enrolled
2128 patients with TB, and there were 120 deaths during this period. The predictive
model of MLP had an accuracy of 0.735, a sensitivity of 0.722, a specificity of 0.736, and
an AUC of 0.834. Our data found that extra-pulmonary TB had a low risk of mortality,
and comorbidities of hypertension, CVA, dementia, CHF, and COPD were associated
with mortality among patients with TB compared with those without these comorbidities.
A previous study showed advancing age and drug resistance were the features most
associated with risk of death. In contrast, male sex, European origin, pulmonary site of
TB infection, and previous history of anti-TB treatment were weaker predictors [27] but
our data are inconsistent with their results. The median age in their study was 43 years,
with 2% aged < 15 years and 24% aged ≥ 60 years, 5% of patients had multidrug resistance,
and most cases were European (68%). The inconsistencies may result from differences
between countries, presumably reflecting the differences in patient characteristics and drug
susceptibility to TB.

These outcomes are important for patients with TB and their medical teams. Focusing
on patient-centered care and the early prediction of adverse drug effects, respiratory failure,
and mortality in patients receiving TB treatment could contribute to the optimal use of
medical resources.

In addition to accurate and prompt diagnosis of TB, it is important to detect the
possible risk of hepatitis in patients who receive TB treatment as early as possible so that
the culprit medicine can be discontinued to improve the patient’s outcome.

Our study also has some limitations that need to be addressed and explored. First,
our patients were from southern Taiwan and may have differed from TB patients in other
countries. Our models were not representative of other countries. Further studies in
other areas with more hospitals may be needed for more representative results. Second,
alcohol use in TB patients was considered an important risk factor for hepatitis. The study
is retrospective, and data on smoking and drinking variables are missing. Our study
could not include this factor because we could not accurately obtain this information from
electronic medical records. Third, the model created in the current study lacks TB drug
susceptibility, and future studies should focus on drug susceptibility testing. Fourth, the
mortality of patients with TB failed to determine the direct cause. Thus, our results may
not be recommended for the general extrapolation population of patients with TB.
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5. Conclusions

In conclusion, we created a model based on laboratory data and patient characteristics
that has significant value in the early detection of hepatitis, respiratory failure, and mortality
in patients with TB who received anti-TB treatment.
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