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A B S T R A C T

The world is slowly recovering from the Coronavirus disease 2019 (COVID-19) pandemic; however, humanity
has experienced one of its According to work by Mishra et al. (2020), the study’s first phase included a
cohort of 5,262 subjects, with 3,325 Fitbit users constituting the majority. However, among this large cohort
of 5,262 subjects, most significant trials in modern times only to learn about its lack of preparedness in
the face of a highly contagious pathogen. To better prepare the world for any new mutation of the same
pathogen or the newer ones, technological development in the healthcare system is a must. Hence, in this
work, PCovNet+, a deep learning framework, was proposed for smartwatches and fitness trackers to monitor
the user’s Resting Heart Rate (RHR) for the infection-induced anomaly. A convolutional neural network
(CNN)-based variational autoencoder (VAE) architecture was used as the primary model along with a long
short-term memory (LSTM) network to create latent space embeddings for the VAE. Moreover, the framework
employed pre-training using normal data from healthy subjects to circumvent the data shortage problem in the
personalized models. This framework was validated on a dataset of 68 COVID-19-infected subjects, resulting
in anomalous RHR detection with precision, recall, F-beta, and F-1 score of 0.993, 0.534, 0.9849, and 0.6932,
respectively, which is a significant improvement compared to the literature. Furthermore, the PCovNet+
framework successfully detected COVID-19 infection for 74% of the subjects (47% presymptomatic and 27%
post-symptomatic detection). The results prove the usability of such a system as a secondary diagnostic tool
enabling continuous health monitoring and contact tracing.
. Introduction

COVID-19 posed one of the most severe threats to modern health-
are systems in decades. According to the World Health Organization
WHO), over 614 million confirmed cases of COVID-19, along with 6.5
illion casualties, were reported until October 2022 (WHO, 2022). Al-

hough effective vaccines have been available and the global pandemic
ituation has improved, the overall scenario pointed out the lack of pre-
aredness in the healthcare systems around the world (Haldane et al.,
021; Mazumder et al., 2020). During the pandemic, researchers from
ifferent disciplines contributed their expertise to tackle the disease.
s a result, a plethora of publications in different domains introduced

he use of new tools and redefined the existing ones to tackle the
ealthcare crisis better (Gianola et al., 2020). Likewise, this work
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focuses on the use of smartwatches and fitness trackers to combat
COVID-19 infection. After repeated mutations and waves of infections
for two years, according to the WHO, the end of the pandemic is in sight
now but yet to be fully achieved (UN News, 2022). The consequences
of this work have significance that goes beyond just managing the
existing COVID-19 outbreak, and can also be useful for fighting against
other comparable pandemics that may arise in the future. Moreover,
the technique and the model developed here will be highly beneficial
in many other healthcare applications as well.

Among the family of coronaviruses, Severe Acute Respiratory Syn-
drome Coronavirus-2, or in short, SARS-CoV-2, is the pathogen respon-
sible for the latest global coronavirus pandemic. Being part of the same
family, it has similar characteristics, namely incubation period and
reproduction number, as its predecessors — Middle East Respiratory
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Syndrome Coronavirus (MARS) and SARS-CoV. However, unlike its
predecessors, SARS-CoV-2 caused a global pandemic due to its duration
of viral shedding, asymptomatic infection rate, and rapid mutations in
different global regions (Wu et al., 2021; Abdelrahman et al., 2020;
Gandhi et al., 2020). One of the most effective methods to combat the
asymptomatic COVID-19 infection can be to frequently test individuals
in high-risk zones with active detection tools; ideally, the reverse
transcription polymerase chain reaction (RT-PCR). However, due to the
required resources and the cost to perform RT-PCRs, the widespread
use of RT-PCR in active and frequent monitoring of such pathogens on a
global scale is still in question (Augustine et al., 2020a,b). On the other
hand, a more feasible approach can be to deploy continuous monitoring
passively via devices such as smartwatches and fitness trackers (Alyafei
et al., 2022).

In the domain of passive COVID-19 monitoring systems, several
studies showed promising results. Alyafei et al. surveyed different
COVID-19 detection systems, from laboratory-based to wearable ones
(Alyafei et al., 2022). Several studies have shown that wearable sensor-
based systems, as a part of the digital infrastructure, can be an effective
mode for remote patient monitoring and virtual assessment (Seshadri
et al., 2020; Dunn et al., 2018; Roblyer, 2020; Channa et al., 2021;
Amft et al., 2020; Quer et al., 2021). In this regard, Buchhorn et al.
showed a correlation between heart rate (HR) and heart rate variability
(HRV) in an experiment on a 58-year-old male subject during the whole
period of COVID-19 infection (Buchhorn et al., 2020). In another study,
Ponomarev et al. showed a significant correlation between COVID-
19 infection symptoms and HRV (Ponomarev et al., 2021). While
clinical wearable devices have been used in numerous experimen-
tal settings, non-clinical commercial off-the-shelf (COTS) devices like
smartwatches and fitness trackers have also been used in some studies
for COVID-19 detection. The COTS devices contain sensors to effec-
tively monitor HR, HRV, activity (step count), burned calories, sleep
stages, and durations (Piwek et al., 2016; Mahajan et al., 2020). Mishra
et al. demonstrated a correlation between resting heart rate (RHR) and
COVID-19 infection using wearable smartwatch data (Mishra et al.,
2020). Moreover, Mitratza et al. presented a systematic review on the
use of wearable sensors for detecting SARS-CoV-2 symptoms (Mitratza
et al., 2022). Their findings reiterated the results of Mishra et al. for
using HR as a potential indicator for Covid-19 infection. Additionally,
Radin et al. experimented on the correlation between sleep duration
and RHR pattern with COVID-19 infection (Radin et al., 2020). Since
the number of smartwatches and fitness tracker users has increased
drastically over the past few years, this mode of passive COVID-19
detection system can have a crucial effect on the overall healthcare
system (Vogels, 2022).

Like all other fields of technology, artificial intelligence (AI) has
made notable contributions in the field of healthcare and wearables
at the same time. During the COVID-19 pandemic, AI-based research
has increased exponentially from wearables-based early COVID-19 de-
tection (Liu et al., 2021; Bogu and Snyder, 2021; Abir et al., 2022) to
chest X-ray (Wang et al., 2021; Arias-Londoño et al., 2020; Tahir et al.,
2021; Yamaç et al., 2021) or computed tomography (CT)-based (Chen
et al., 2020; Qiblawey et al., 2021) COVID-19 diagnosis. Among the
wearables paradigm, Liu et al. introduced contrastive loss with a con-
volutional autoencoder to detect abnormality in heart rate. Moreover,
Mishra et al. led a study on a cohort of over 5000 subjects to collect
HR, steps, and sleep information using different smartwatches (Mishra
et al., 2020). Cho et al. improved upon that study by proposing a One
Class-Support Vector Machine (OC-SVM) for pre-symptomatic COVID-
19 detection (Cho et al., 2022). Their method improved the presymp-
tomatic detection performance over the statistical method proposed
by Mishra et al. In another work, Bogu et al. used a long short-term
memory (LSTM)-based autoencoder model to identify abnormal HR
in that data (Bogu and Snyder, 2021). Merrill and Althoff proposed
a self-supervised pretraining approach using healthy subject data and
employed attention layers (Merrill and Althoff, 2022).
 s

2

At the beginning of wearables-based COVID-19 detection research,
there was an acute shortage of reliable data and a state-of-the-art
method established for such studies. Hence, several concepts from
other domains were adopted. Due to the nature of the available data,
abnormal vital detection due to COVID-19 or similar respiratory dis-
eases is mainly designed as an anomaly detection problem where
abnormal data is rare compared to normal data. Autoencoders and vari-
ational autoencoders are often used in such scenarios across different
domains (Kiran et al., 2018).

In the earlier work, a Long Short-term Memory (LSTM)-based Vari-
ational Autoencoder (VAE) model, PCovNet, was proposed to detect
anomalous RHR from the smartwatch data (Abir et al., 2022). The
framework was validated on 25 COVID-19-infected users’ data and
showed promising results in early detection and precision score. More-
over, it was designed to make predictions based on a sequence of 8 RHR
data points (1 data point per hour). In short, there were two particular
shortcomings in the study which set the primary objectives of this work.

(i) An anomaly detection system that takes weeks to make a pre-
diction is not practical in a real-world setting; thus, a longer
sequence was not employed. On the other hand, incorporating
a longer RHR sequence could enhance the model’s robustness.
Hence, the first objective of this work was to establish a balance
between model robustness and real-world usability.

(ii) Although precision and F-beta scores were very promising in the
previous work, recall, and F-1 needed some improvements to
achieve model reliability. Therefore, the second objective of this
work was to achieve improvements in the performance metrics.

To achieve these objectives, PCovNet+, an improved hybrid
anomaly detection pipeline, was proposed that will work at the backend
of smartwatches to detect anomalous RHR considering 16 days of RHR
data. This work employed Convolutional Neural Network (CNN)-based
Variational Autoencoder (VAE) architecture as the primary anomaly
detector and a Long Short-term Memory (LSTM)-based network to
generate temporal-aware embeddings in the latent layer of the VAE
based on past RHR information. The architecture was motivated by the
work of Lin et al. (2020). Moreover, this work employed pretraining
using Healthy group data to solve the low availability of personalized
models. In a nutshell, the contributions of this work are as follows:

Firstly, a new CNN-VAE-based anomaly detection framework was
proposed including a separate LSTM network to generate temporal-
aware embeddings of the latent vector of the primary model.

Secondly, a pretrained model was generated using the data from
the Healthy group to create base models for the CNN-VAE and the
LSTM networks. These base models were finetuned with each subject’s
baseline data to achieve a personalized version of the base model.

Thirdly, the model was validated on 68 COVID-19-infected individ-
als’ data.

. Material and methods

.1. Dataset

As a part of a multi-phase study to determine the correlation of
OVID-19 infection with human vitals, namely heart rate, sleep, and
ctivity profile, a research group from the Department of Genetics of
tanford University published two datasets (COVID-19, 2020, 2021).
hey used Research Electronic Data Capture (REDCap) survey web
latform to track the symptom onset date, symptom severity, and
iagnosis, along with other demographic and clinical data (Mishra
t al., 2020; Alavi et al., 2022). The vitals data were primarily collected
sing smartwatches, such as Fitbit (Fitbit, 2022), Apple Watch (Apple
nc., 2022), and Garmin (Garmin, 2022), in both retrospective and
rospective studies. They developed a cross-platform smartphone ap-
lication named MyPHD to collect smartwatch data and synchronize it
ith the survey information (Mishra et al., 2020; Alavi et al., 2022).

In this work, publicly available data from their study’s first and

econd phases was used. Fig. 1 illustrates the dataset distribution.
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Fig. 1. Dataset distribution. The left donut chart denotes the phase-1 dataset and the left one represents the phase-2 dataset.
.1.1. First phase data
According to work by Mishra et al. (2020), the study’s first phase

ncluded a cohort of 5262 subjects, with 3325 Fitbit users constituting
he majority. However, among this large cohort of 5262 subjects, only
2 had smartwatch data, namely heart rate, steps, and sleep duration
uring the COVID-19 infection. Hence, the given dataset included these
2 COVID-19 infected subjects, with 73 healthy and 15 patients with
ther respiratory diseases, whereas sleep data were only provided for
he COVID-19 group

.1.2. Second phase data
In the second phase study, Alavi et al. (2022) enrolled 3318 subjects

etween November 2020 and July 2021. Of these subjects, 278 were
ositively diagnosed with COVID-19; however, only 84 (49 Fitbit and
5 Apple Watch users) had recorded wearable data, namely heart rate,
nd step count during their infection. Moreover, 34 of them were diag-
osed after enrollment, and 50 were diagnosed before that. Although
he second phase dataset provided over 2000 users’ vital data, they
nly added the symptom information for those 84 subjects (COVID-19,
021).

.1.3. Combined dataset
To formulate the anomaly detection problem, the baseline data were

eeded which was not explicitly annotated in the provided dataset.
ence, this work relied on the literature to determine the number of
ays after infection till symptom onset (incubation period) and the
umber of days after the infection when the host releases live particles
viral shedding) of SARS-CoV-2. According to several research groups,
his pathogen’s median incubation period ranges from 3 days to 5
ays (COVID-19, 2021; Alavi et al., 2022). Although the evidence
f viral shedding for up to 83 days was reported in a study (Cevik
t al., 2021), after 21 days of the symptom onset, the amount of viral
athogen in the host fluid is reduced to the detection limit (He et al.,
020). Based on these findings, two criteria were set for qualifying a
ubject’s data for this study.

A. The wearables data must contain heart rate and steps during the

ame timestamps.

3

B. The provided data must range from at least 20 days before the
symptom onset to 21 days afterward.

In this work, the PCovNet+ framework was developed and validated
on the combined data from both phases that satisfied the above-
mentioned criteria. Afterward, the combined dataset consisted of 68
subjects from the COVID-19 group, 10 from the Other Illness group,
and 67 from the Healthy group.

2.2. Data preprocessing

The combined dataset primarily comprised the heart rate and steps
information. However, the targeted data channel for this work was the
resting heart rate (RHR) that could be derived from the two given data
channels. Moreover, before feeding the data into the anomaly detection
model, the train and test sets needed to be determined appropriately,
which entailed some extra layer of preprocessing for this study.

2.2.1. Resting heart rate calculation
In this work, the RHR calculation algorithm by Mishra et al. (2020)

and Bogu and Snyder (2021) was adopted where the authors considered
the heart rate as RHR when the step count was zero for 12 consecutive
minutes. The process is illustrated in the left flow diagram of Fig. 2.

As the timestamps were not the same for the given heart rate and
steps channels, at first, the channels were downsampled to 1 min.
Afterward, the two channels were merged and the heart rates were
taken where the step count value was zero. Lastly, the heart rates were
further filtered based on the timestamps where the step counts were
not zero for at least 12 min. The resultant heart rate was considered
the raw RHR for the experiment.

2.2.2. Filtering and resampling
The raw RHR, albeit not including the effects of any physical

activity, is not devoid of any stress or mental activity that might not
represent a complete resting state. As a result, the raw RHR value
contains significant fluctuations in the data, which was filtered with
a moving average window of 1600 data points.



F.F. Abir, M.E.H. Chowdhury, M.I. Tapotee et al. Engineering Applications of Artificial Intelligence 122 (2023) 106130

i

s
s
m
t

t
a
d
f

2

e
i
e
i
r

Fig. 2. Data preparation. At the left, raw HR and step counts are used to extract the raw resting heart rate. At the right, the raw resting heart rate undergoes several steps of
filtering and resampling, resulting in the final resting heart rate.
Fig. 3. COVID-19 infection stages — baseline period, non-infectious period, infectious period, and recovery period. In general, the baseline period contains normal data and the
nfectious period contains anomalous data. The other two may or may not have any anomaly.
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As RHR does not change every minute, the filtered RHR was down-
ampled to 1 h as the next step of preprocessing. However, the re-
ampled RHR contained missing values for some subjects due to the
erging operation of RHR calculation in Section 2.2.1. To circumvent

his issue, linear interpolation was used to impute the missing values.
After the missing value imputation, however, there were spikes in

he imputed data due to linear interpolation. Hence, another moving
verage filter was used with only 10 data points and null values were
ropped to produce the final RHR data channel for the experiment. The
low of these steps is shown on the right side of Fig. 2.

.2.3. Dataset split
As discussed in Section 2.1, this work used prior literature (Cevik

t al., 2021; Guan et al., 2020; Li et al., 2020) to determine the
ncubation period and viral shedding of SARS-CoV-2. Moreover, Mishra
t al. (2020) and Bogu and Snyder (2021) divided the user dataset
nto four distinct regions, which were also adopted in this work. Fig. 3
epresents these four regions.
4

1. Baseline Period: This is considered the ‘normal’ region of the
ata. This region includes all the RHR data 20 days before the symptom
nset.

2. Non-infectious Period: It starts right after the baseline period
nd ends 10 days before the symptom onset. This region is equivalent to
he baseline period for most of the subjects. However, according to He
t al. (2020), a few with a prolonged incubation period might show
ome viral shedding during this time.

3. Infectious Period: This ranges from 7 days before the symptom
nset to 21 days after that. Most viral shedding occurs during this
eriod; hence, the anomalous RHR is most likely to occur during these
ays.

4. Recovery Period: Generally, after the infectious period, an in-
ected individual’s vitals gradually return to the baseline. Hence, the
eriod after 21 days of the symptom onset is regarded as the recovery
eriod. However, the retainment of the baseline RHR varies in time
or different individuals. For some individuals, the prolonged effect of
OVID-19 infection can span months.
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Fig. 4. Data segmentation process for CNN-VAE and LSTM networks. Data segmentation for the VAE is illustrated in the left-hand sequence where the entire sequence is converted
into a three-dimensional matrix (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑣𝑎𝑒, 𝑙𝑒𝑛𝑤𝑖𝑛, 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠). On the other hand, data segmentation for the LSTM network is shown. At first, the data sequence is segmented into

similar three-dimensional matrix with an increased window length (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑠𝑡𝑚, 𝑛𝑤𝑖𝑛× 𝑙𝑒𝑛𝑤𝑖𝑛, 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) and later segmented into a four-dimensional matrix (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑠𝑡𝑚, 𝑛𝑤𝑖𝑛, 𝑙𝑒𝑛𝑤𝑖𝑛,
𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠).
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Train, validation, and test set were assigned based on the properties
f these four periods.

rain Set: As this task was approached as an anomaly detection prob-
em, the model was trained with normal data. Hence, only the baseline
eriod was used in the train set.

alidation Set: 5% of the train set was used for validation during the
odel training. Hence, it also included only the normal data from the

aseline period.

est Set: To test the performance, both anomalous and normal data
ere needed in the test set. Although the anomalous RHR regions were
pproximated based on literature in different populations, the actual
nfection region is much harder to determine. Therefore, data from only
ay 0 to Day 7 of infection was annotated as the anomalous test set.

.2.4. Standardization
Standardization is a common preprocessing step to prepare the

ataset for training the models efficiently. Moreover, the RHR values
ad different ranges for different subjects in the dataset. Hence, we used
tandardScaler from the Scikit-Learn (Pedregosa et al., 2011) Python
ackage.
 m

5

At first, the mean (𝜇𝑡𝑟𝑎𝑖𝑛) and standard deviation (𝜎𝑡𝑟𝑎𝑖𝑛) of the train
et were calculated and the mean was converted to zero and scaled by
ividing the standard deviation value. For the test set, the same process
as followed with the mean and standard deviation of the train set. It

s given in Equation 1.

′
𝑡𝑒𝑠𝑡 =

(

𝑋𝑡𝑒𝑠𝑡 − 𝜇𝑡𝑟𝑎𝑖𝑛
𝜎𝑡𝑟𝑎𝑖𝑛

)

(1)

2.2.5. Segmentation
In this framework, two separate models were used — a CNN-VAE

model and an LSTM network which needed two separate segmentation
methods for training. Fig. 4 illustrates these segmentation methods.

For CNN-VAE, the length of the window is denoted as 𝑙𝑒𝑛𝑤𝑖𝑛. Both
he training and testing datasets were segmented into 𝑙𝑒𝑛𝑤𝑖𝑛 data points

per window by moving 1 data point per sample. The total number of
samples for CNN-VAE can be represented by Eq. (2) ,

𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑣𝑎𝑒 = 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − 𝑙𝑒𝑛𝑤𝑖𝑛 + 1 (2)

where 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑣𝑎𝑒 denotes the total number of samples after segmenta-
ion for the CNN-VAE model. 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑣𝑎𝑒 and 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 respectively denote
he number of data points in the segmented dataset and the unseg-

ented one. After segmentation, the dataset shape was (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑣𝑎𝑒,
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𝑙𝑒𝑛𝑤𝑖𝑛, 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) where 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 is the number of data channels which is
1 as only RHR was used in this experiment.

On the other hand, the LSTM model took multiple numbers of
windows, denoted as 𝑛𝑤𝑖𝑛, from the CNN-VAE. Hence, for each training
sample of the LSTM, the dataset had 𝑙𝑒𝑛𝑠𝑒𝑞 windows which constitutes

total number of (𝑛𝑤𝑖𝑛 × 𝑙𝑒𝑛𝑤𝑖𝑛) data points in total. The segmentation
or this case was done in two steps. At first, the original data were
egmented in the same way as the CNN-VAE one but with a longer
indow of

(

𝑛𝑤𝑖𝑛 × 𝑙𝑒𝑛𝑤𝑖𝑛
)

which was only 𝑙𝑒𝑛𝑤𝑖𝑛 for the CNN-VAE.
fterward, these segmented windows are sliced into 𝑙𝑒𝑛𝑠𝑒𝑞 smaller
indows in a separate dimension. The total number of samples for the
STM model can be calculated with Eq. (3),

𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑠𝑡𝑚 = 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠 − (𝑛𝑤𝑖𝑛 × 𝑙𝑒𝑛𝑤𝑖𝑛) + 1 (3)

here 𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑠𝑡𝑚 represents the total number of samples in the seg-
ented dataset for the LSTM model. 𝑛𝑤𝑖𝑛 and 𝑙𝑒𝑛𝑤𝑖𝑛 denote the same
roperties as in Eq. (2). The segmented dataset shape for the LSTM
odel was (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑠𝑡𝑚, 𝑛𝑤𝑖𝑛, 𝑙𝑒𝑛𝑤𝑖𝑛, 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) where 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠 is 1 since
HR was only used in this work.

.2.6. Augmentation
Data augmentation includes the techniques that are often used in

he preprocessing stage of a deep learning experiment to artificially
enerate new data points from the existing ones to increase the volume
f the overall dataset. Although this process is more common for image
omain problems, the benefits can be exploited for time series prob-
ems (Iwana and Uchida, 2021). Um et al. showed that using such data
ugmentation methods on smartwatch sensors improved the overall
eep learning model prediction (Um et al., 2017) and Bogu et al. used
he same methods in their work on the same dataset as this study (Bogu
nd Snyder, 2021). Moreover, the previous study showed evidence
f carefully chosen augmentation techniques to improve results (Abir
t al., 2022). Hence, the same seven augmentation techniques were
dopted here.

1. Scaling: The signal’s amplitude was multiplied with a random
alue of a Gaussian distribution of mean 1 and standard deviation 0.1.

2. Rotation: Horizontal mirroring was applied by randomly rotating
he signal.

3. Permutation: The signal was sliced into 1 to 4 segments and
ermutated randomly to create perturbation.

4. Magnitude Warping: The signal was multiplied with a cubic
pline having four knots that are determined randomly from a Gaussian
istribution of mean 1 and standard deviation 0.2.

5. Time Warping: The temporal locations of the data points were
perturbed based on a cubic spline.

6. Window Warping: A portion of the signal window was chosen
randomly, and the frequency was altered by a factor of 0.5 or 2.

7. Window Slicing: The signal window was sliced randomly by
90%.

2.3. Anomaly detection model

In general, for both autoencoder and variational autoencoder archi-
tectures, the models learn crucial features of the normal input data and
output a reconstructed version of the input. When test data with the
anomaly is passed to the model, it also tries to reconstruct it. However,
since it was only trained with normal data, the reconstruction loss
for anomalous data was much higher. As a result, simple thresholding
was able to differentiate the normal and anomalous data based on the
model’s reconstruction loss.

After the first phase study, Bogu et al. from the Stanford Group
proposed a Long Short-Term Memory Networks (LSTM)-based autoen-
coder for anomaly detection (LAAD) framework for anomalous RHR
detection (Bogu and Snyder, 2021), which established the possibility of

using a deep learning-based anomaly detection system with smartwatch l

6

data. The PCovNet framework used LSTM-based variational autoen-
coders and achieved better presymptomatic detection and F-beta score
compared to the LAAD framework (Abir et al., 2022).

Both architectures adopted LSTM layers; however, the most dis-
tinctive features of these architectures are the bottleneck layer in
the middle, which is often called the latent layer. For autoencoder
architecture, the latent layer represents the fundamental features that
are required to reconstruct the original signal. However, such a latent
layer generally represents a discrete latent space of the original data,
which cannot reconstruct data effectively for all possible values of the
latent vectors. On the other hand, VAE resorts to variational inference
for generating the latent layer, which is achieved by sampling the
latent vector into a Gaussian-like distribution. This technique results in
a continuous latent space that ensures effective reconstruction in the
decoder.

The RHR change takes place over several days; however, making a
single prediction taking several days to weeks of data is not feasible
for a real-world scenario. Hence, this study used CNN-VAE at first
to learn the local patterns of RHR and a separate LSTM network to
create embeddings considering a more extended sequence (weeks) of
past RHR for the final prediction. To clarify, the trained LSTM network
works on the latent space and converts it based on a more extended
sequence of past data. The method of using a separate LSTM network
for transforming the latent space was motivated by the work of Lin et al.
(2020) where the authors validated this process on several anomaly
detection problems.

In this case, the continuous nature of the latent space is essential
since the LSTM embeddings convert the encoder-generated latent space.
This is the primary reason for choosing VAE architecture over the
autoencoder one.

2.3.1. CNN-VAE architecture
As per the VAE architecture, CNN-VAE is divided into two blocks —

encoder and decoder. In both blocks, convolutional layers were used,
since time series data is regarded as 1-dimensional data. Fig. 5 shows
the detailed CNN-VAE architecture.

Given an input 𝒙, the reconstructed data 𝒙̂, and latent vector 𝒛, the
verall CNN-VAE process can be expressed by Eqs. (4) and (5).

𝒛 = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝒙) (4)

𝒙̂ = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟(𝒛) (5)

Encoder. The encoder consists of three convolutional layers, each with
kernel size 3, stride 2, rectified linear unit (ReLU) activation function,
and decreasing number of filters: 128, 64, and 32. These three 1D
convolutional layers extract the features from each layer and pass them
to the next. Afterward, the output of the third convolutional layer is
flattened and fed into a dense layer with the size of the latent layer and
the same ReLU activation function. According to the VAE architecture,
the last dense layer outputs two separate layers, which describe the
mean and variance of the latent space distribution and are sampled
using the sampling function in Eq. (6).

𝒛 = 𝝁𝒙 + 𝝈2
𝒙 ∗ 𝜺 (6)

Here, 𝒛 is the sampled latent layer which represents the latent space
distribution. 𝝁𝒙, 𝝈2

𝒙, and 𝜺 denote the latent distribution mean, vari-
ance, and a randomly sampled unit Gaussian (𝜺 ∼ N(0, 1)). The 𝜺
s scaled by the variance and shifted by the mean to constitute the
atent space distribution. This process of introducing 𝜺 is often called
he reparameterization trick, which allows the error to backpropagate
hrough the network during the training process (Kingma and Welling,
022).

ecoder. The decoder takes the latent layer as input and outputs the
econstructed signal of the original input. This block consists of a dense

ayer and four convolutional layers. At first, the latent vector is fed to a
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Fig. 5. Detailed CNN-VAE architecture. 𝑁𝑠 denotes the number of samples. Here, three CNN layers are used in the encoder and the decoder blocks.
Fig. 6. Detailed LSTM architecture. 𝑁𝑠 denotes the number of samples. In total four LSTM layers are used in the LSTM network.
(

𝐿

ense layer of 192 nodes, which is reshaped to 6 × 32 array. Afterward,
he reshaped array is passed through four convolutional layers of 32,
4, 128, and 1 filter. The first three convolutional layers use the ReLU
ctivation function, and the last one employs the sigmoid activation
unction. The last layer’s output is the same as the input data.

oss calculation. Due to the variational inference method used in
he VAE architecture, the latent layer distribution is converted to a
aussian-like one as the training progresses. Hence, apart from the

econstruction loss, the Kullback–Leibler (KL) Divergence of the latent
ayer distribution and a Gaussian was also calculated.

For input vector, 𝒙 = [𝑥1, 𝑥2,… , 𝑥𝑁 ], the model outputs a corre-
ponding prediction vector, 𝒙̂ = [𝑥̂1, 𝑥̂2,… , 𝑥̂𝑁 ] and N

(

𝝁𝒙,𝝈2
𝒙
)

is a
ormal distribution N with the mean vector 𝝁𝒙 and variance vector
2 . The overall loss calculation for CNN-VAE can be expressed by Eqs.
𝒙

7

7), (8), and (9).

𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡. = 𝑀𝑆𝐸(𝒙, 𝒙̂) = 1
𝑁

𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝑥̂𝑖
)2 (7)

𝐿𝑜𝑠𝑠𝐾𝐿𝐷 = 𝐾𝐿𝐷(N
(

𝝁𝒙,𝝈2
𝒙
)

−N (0, 1)) = −1
2
(1 − 𝝁2

𝒙 + log𝝈2
𝒙 + 𝝈2

𝒙) (8)

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡 + 𝐿𝑜𝑠𝑠𝐾𝐿𝐷

𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 =
1
𝑁

𝑁
∑

𝑖=1

(

𝑥𝑖 − 𝑥̂𝑖
)2 − 1

2
(1 − 𝝁2

𝒙 + log𝝈2
𝒙 + 𝝈2

𝒙)
(9)

Here, 𝐿𝑜𝑠𝑠𝑟𝑒𝑐𝑜𝑛𝑠𝑡., 𝐿𝑜𝑠𝑠𝐾𝐿𝐷 and 𝐿𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 denote the reconstruction
loss, KL divergence loss, and total loss, respectively.

2.3.2. LSTM architecture
This framework adopted a simple LSTM autoencoder architecture

for the embedding generation, which is depicted in Fig. 6. As mentioned
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before, after the separate training process, the LSTM layer works amidst
the encoder and decoder of CNN-VAE. It takes the CNN-VAE latent
layer as input and creates embeddings of the same shape that are more
aware of the long-term RHR traits. The input and output of this network
are of the same shape as the latent layer.

The LSTM network, in total, consists of four LSTM layers. The first
two layers have 128 and 64 LSTM units, respectively; however, the
second one does not return a sequence. The condensed output is passed
through two more LSTM layers with 64 and 128 units, respectively. At
last, a time-distributed dense layer was used to retain the same shape
as the input. Additionally, mean-squared error (MSE) was used as a loss
function for the LSTM network.

2.3.3. Training
The combined dataset consists of both healthy and COVID-19-

infected subject data. Like most other anomaly detection frameworks,
the CNN-VAE and LSTM networks are trained using normal data. Since
COVID-19-infected subjects do not often have a very long baseline
(normal) data sequence, both models were pretrained using the healthy
subjects’ data. Afterward, the baseline data of the COVID-19-infected
subjects was used to fine-tune the pretrained model and make them
personalized for each subject. Fig. 7 depicts the training sequence of
the CNN-VAE and LSTM, along with the threshold calculation.

CNN_VAE. The network was trained in the traditional way where
the three-dimensional (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑣𝑎𝑒, 𝑙𝑒𝑛𝑤𝑖𝑛, 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) segmented dataset
was passed through the network as input and used the same dataset
to compare with the reconstructed version. Reconstruction and KL
divergence losses are calculated and minimized in each training step
over the training sequence.

LSTM_VAE. The LSTM network training was done differently than
the CNN-VAE. For this task, the dataset was segmented into a four-
dimensional array (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑠𝑡𝑚, 𝑛𝑤𝑖𝑛, 𝑙𝑒𝑛𝑤𝑖𝑛, 𝑛𝑐ℎ𝑎𝑛𝑛𝑒𝑙𝑠) according to Sec-
ion 2.2.5.

For each LSTM training sample, first (𝑛𝑤𝑖𝑛−1) windows were passed
o the trained CNN-VAE encoder to create the correspondent latent
ector. These latent vectors (𝑛𝑠𝑎𝑚𝑝𝑙𝑒𝑠_𝑙𝑠𝑡𝑚, 𝑛𝑤𝑖𝑛 − 1, 𝑙𝑒𝑛𝑙𝑎𝑡𝑒𝑛𝑡_𝑣𝑒𝑐𝑡𝑜𝑟) were
sed as the input of the LSTM network. On the other hand, for each
STM training sample, the last (𝑛𝑤𝑖𝑛 − 1) windows were passed to the
rained CNN_VAE encoder to create the correspondent latent vector to
ass as the target of the LSTM network.
8

Hence, during the training process, the network, over time, learned
o predict the immediate next window based on a more extended
equence of data compared to the CNN-VAE.

hreshold Calculation. After training, the combined network was used
o generate the training loss. Since the training samples only included
he normal data, the threshold was set at the maximum of the training
oss.

.3.4. Prediction
In this framework, the CNN-VAE was the primary anomaly detector

hat took a shorter data sequence into account compared to the LSTM
etwork. Although the CNN-VAE could reconstruct the given input
n its own, the LSTM network was added between the encoder and
ecoder to create embeddings of the latent vector.

After training the two networks, for predictions, the data only
eeded to be segmented for the CNN-VAE. The segmented data were
assed through the CNN-VAE encoder to generate the latent vector.
fterward, the latent vector is passed through the LSTM network to
enerate embeddings which are then passed through the CNN-VAE de-
oder to make the final output. Data were labeled normal or anomalous
y comparing the total loss with a threshold.

. Experiments

.1. Experimental setup

For all the experiments, the Adam optimizer (Kingma and Ba,
2014) was used along with batch size 64, learning rate 2 × 10−4,
and 1000 epochs with early stopping criteria (patience = 10). This
framework used Python programming language for this work along
with Pandas (The pandas development team, 2020; McKinney, 2010)
and Numpy (Harris et al., 2020) packages for data processing and
array handling. Also, MatplotLib (Hunter, 2007) and Seaborn (Waskom,
2021) packages were used for data visualization. For the deep learning
part, this work employed the Keras (Chollet et al., 2015) and Tensor-
Flow (Abadi et al., 2016) packages. For the experiments, the hardware
specification was — Intel Core i5 11th generation (2.4 GHz) processor,
16 GB RAM, and NVIDIA MX330 GPU. The shapes of the train and test
sets for CNN-VAE and the LSTM networks are shown in Supplementary
Appendix 1.
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3.2. Evaluation metrics

Similar to the previous work, two types of evaluation metrics were
considered for this study as well (Abir et al., 2022).

(𝑖) Statistical metrics: Precision, recall, F-1, and F-beta (𝛽 = 0.1)
scores were considered for this study. These metrics can be
expressed by Eqs. (10), (11), (12), and (13) (Jabir et al., 2021).

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
∑

𝑇𝑃
∑

(𝑇𝑃 + 𝐹𝑃 )
(10)

𝑅𝑒𝑐𝑎𝑙𝑙 =
∑

𝑇𝑃
∑

(𝑇𝑃 + 𝐹𝑁)
(11)

𝐹 − 1 = 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃 𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

(12)

𝐹 − 𝑏𝑒𝑡𝑎 =
(1 + 𝑏𝑒𝑡𝑎2) × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑏𝑒𝑡𝑎2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
(13)

(𝑖𝑖) Problem-specific metric: For this problem setting, early, late, and
failed detections are three metrics to gain insight of the model’s
performance across different subjects.

.3. LSTM embeddings

In this experiment, the effectiveness of adding LSTM networks to the
NN-VAE was tested, along with the performance difference in three
spects. Note that the augmented train data described in Section 2.2.6
ere used for this experiment.

At first, the experiment considered the numeric metrics of PCov-
et+ for Phase-1, Phase-2, and combined datasets with and without

he LSTM embeddings. The metrics give a quantitative evaluation of
he framework between the two settings. Here, the test data from Day
(Symptom Onset) to Day 14 of infection we considered.

The second aspect involved examining the training and testing loss
istributions. In this case, the test set from Day −20 to the last data in
he recovery period (> Day 21) was considered, which resulted in both
ormal and anomalous data in the test set.

Finally, the experiment analyzed anomaly plots before and after
sing LSTM embeddings for a subject in which the CNN-VAE failed.
he test data for this part was also taken from Day −20 to the end of
he recovery period (> Day 21).

.4. Test data regions

The datasets do not have labels for the HR data as normal or
nomalous. Instead, the label is deduced passively using the given

ymptom onset and the relevant literature as described in Section 2.2.3. b

9

he earlier research put forward the notion that the metrics may not
ccurately indicate the detection of anomalies because the abnormal
HR does not appear at the same time in the infection region for every

ndividual (Abir et al., 2022). Here, the issue was quantitively examined
urther by changing the data regions for the test set.

Here, only the infectious period was indicated as the anomalous
egion and the rest as normal. Moreover, the LSTM embeddings were
sed with CNN-VAE along with data augmentation on the train set.
or evaluation, the baseline period for training was considered and five
ifferent regions were set as test data –

(i) From Day −20 to Day −10 (non-infectious period) and from Day
−7 to the rest (both infectious period and recovery period)

(ii) From Day −20 to Day −10 (non-infectious period) and from Day
0 to Day 14 (partial infectious period)

(iii) From Day 0 to Day 14 (partial infectious period) and the recov-
ery period

(iv) From Day 0 to Day 14 (partial infectious period)
(v) From Day 0 to Day 7 (partial infectious period)

. Results

This section presents the findings from the experiments in Sec-
ions 3.1 and 3.2.

.1. Impact of LSTM network

Table 1 shows that the statistical metrics for each dataset im-
rove with the LSTM embeddings. In particular, the recall shows a
ignificant improvement which signifies that the model can recognize
ore anomalous RHR data points compared to the CNN-VAE alone.
oreover, with the increase of recall, along with the improvement

n already high precision, the F-1 improves by over 21% for Phase-1
nd over 11% for the Phase-2 dataset. Regarding the problem-specific
etrics, the failed cases are reduced for both datasets. On top of that,

he model recognizes more subjects’ infections before symptom onset,
esulting in better presymptomatic detection performance.

From Fig. 8(a), it can be observed that the train and test loss
istributions are both sharper and mostly overlapped. Based on the
hresholding method of separating the anomalous losses from the nor-
al ones, only a thin tail is separated from the test distribution.
owever, the separation is more distinct in Fig. 8(b), which represents

he losses after employing LSTM embeddings. Here, the test loss distri-
ution has two peaks at a significant distance from one another. The
eft peak signifies the normal data in the test set can be easily deduced

y the overlapping train loss distribution. On the other hand, the right
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Fig. 9. (a) RHR Plot and the difference between anomaly plots (b) before and (c) after LSTM embeddings for subject id AURCTAK from the Phase-1 dataset.
Table 1
VAE vs. VAE+LSTM model performance.

Dataset Total subject Model Precision Recall F-beta F-1 Early detection Delayed detection Failed detection

Phase-1 25 VAE 0.9898 0.3887 0.9749 0.5582 36% 40% 24%
VAE + LSTM 0.9939 0.5848 0.9870 0.7363 65% 10% 25%

Phase-2 43 VAE 0.9916 0.2753 0.9667 0.4310 28% 40% 32%
VAE + LSTM 0.9930 0.4832 0.9827 0.6501 38% 36% 26%

Combined 68 VAE 0.9916 0.2753 0.9667 0.4310 31% 40% 29%
VAE + LSTM 0.9930 0.4832 0.9827 0.6501 47% 27% 26%
peak of the test loss distribution signifies the anomalous data points in
the test set. Moreover, the large separation ensures ease of separation
between the normal and anomalous data.

Fig. 9(a) shows RHR data of the subject id AURCTAK from the
Phase-1 dataset. Here, no prominent elevation in RHR was found near
10
the symptom onset compared to the baseline region. As both the base-
line and the infectious region have an elevation in RHR, the CNN-VAE
fails to make any prediction based on the elevation but rather makes
an anomaly prediction for the lowest RHR trough. On the contrary, in
Fig. 9(c), it is evident that after using the LSTM embeddings, the subtle
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Fig. 10. Different test sets from the infection periods, where the test set contains (a) all the data after the baseline region, (b) non-infectious period and Day 0 to Day 14, (c)
only Day 0 to Day 14 and the recovery period, (d) Day 0 to Day 14, and (d) only Day 0 to Day 7.
Table 2
CNN-VAE with LSTM embeddings results for different test set data regions.

Region Test set day range Precision Recall F-beta F-1

(a) Day −20 to Day −10 and Day −7 to Day 14 0.3180 0.4990 0.3189 0.3784
(b) Day −20 to Day −10 and Day 0 to Day 14 0.7013 0.5340 0.6987 0.5992
(c) Day 0 to Day 14 and >Day 21 0.3938 0.5340 0.3947 0.4494
(d) Day 0 to Day 14 0.9930 0.4832 0.9827 0.6501
(e) Day 0 to Day 7 0.9855 0.4606 0.9744 0.6276
trends in elevations and decreases of RHR are considered. As a result,
the anomaly predictions are well clustered around the symptom onset.

4.2. Performance on different test set regions

The results of PCovNet+ are shown here based on the experiment
settings described in Section 3.2. Fig. 10 illustrates the regions of the
test set for this experiment and Table 2 shows the statistical metrics for
the corresponding test set data region. The previous work Abir et al.
(2022) and also, Bogu and Snyder (2021) used region (a) for the test
set. However, as shown in Table 2, this region has the lowest precision,
F-beta, and F-1 than the others.

Region (b) leaves Day −7 to Day 0 and the recovery region in the
test set. A significant increase in precision (about 30%), recall (3.5%),
F-beta (about 38%), and F-1 (about 22%) can be noted. However, this
performance increase can be either for the removal of recovery period
data or Day −7 to Day 0 data. This is clarified in region (c), where only

ay −20 to Day 0 data is dropped but recovery period data are kept.
here is a performance increase in each metric compared to region (a);
owever, the metrics are far below region (b). So, it can be concluded
11
that the non-infectious period and the Day −7 to Day 0 data include
misclassifications.

To further assess the impact of the recovery region, it was removed
in region (d). This time, the performance surpassed that of region (b) in
precision, F-beta, and F-1 by about 28%. Therefore, it can be deduced
that the recovery period data led to significant misclassification. The
test data region was further analyzed by only including data from Day
0 to Day 7 in region (e). However, in this case, the metrics slightly
decreased compared to those of region (d).

Based on the results, it can be concluded that the non-infectious,
recovery, and infectious periods before symptom onset had significant
misclassification. However, as previously mentioned, these regions do
not have any reliable ground truth and were labeled based on literature.
Moreover, due to the nature of the problem, it is highly unlikely to
obtain reliable ground truth through laboratory testing. Each subject
would need to be tested for COVID-19 infection daily to obtain such
data; however, during the non-infectious period, patients are often
unaware of their infection.
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Table 3
Comparison of PCovNet+ with the previous work.

Framework Precision Recall F-beta F-1 Early detection Delayed detection Failed detection Number of subjects

LAAD (Bogu and Snyder, 2021) 0.894 0.331 0.895 0.483 56% 36% 8% 25
PCovNet (STE) (Abir et al., 2022) 0.904 0.274 0.883 0.421 80% 20% 0% 25
PCovNet (MTE) (Abir et al., 2022) 0.946 0.234 0.918 0.375 44% 44% 12% 25
PCovNet+ 0.993 0.534 0.985 0.693 47% 27% 26% 68
5. Discussion

The primary object of this work was to detect anomalous RHR using
smartwatch data. This framework first processed the HR and steps
data to generate RHR of the subjects. After the preprocessing steps,
the train data, containing only the normal RHR was used to train the
CNN-VAE network. The CNN-VAE network encoder block was used to
generate latent vectors to train the LSTM network. The LSTM worked
as an embedding generator for the CNN-VAE decoder that takes the
latent vector and generates temporal-aware embeddings of the same
shape as the latent vector. These embeddings were used to generate a
reconstructed signal by the CNN-VAE decoder.

5.1. Comparison with previous study

As mentioned earlier, the PCovNet+ framework was a continuation
of the previous work, PCovNet (Abir et al., 2022). However, compared
to the previous study, this work only used the min–max threshold
estimation (MTE) which decreased the model’s sensitivity but increased
the robustness (Abir et al., 2022). To clarify, the model resulted in
better statistical metrics but a lower detection rate than MTE. The
rationale behind choosing robustness over sensitivity is the false alarms
which might cause widespread panic among the users.

Moreover, in this study, the test set range was changed for evalua-
tion compared to the earlier works. As the infectious period varies for
each subject, a fixed range might result in some mislabeling, which is
explored in detail in Section 4.

In Table 3, the comparison of PCovNet+ performance against two
previous works on the same cohort data is presented. However, for
PCovNet+, the available dataset is larger than the other one, which
is shown in the ‘Number of Subjects’ column of Table 3. A notable
increase in performance can be identified from the statistical metrics. In
this work, the precision, recall, F-beta, and F-1 are ahead of the second-
best result by about 5%, 20%, 7%, and 21%, respectively. This output
shows that PCovNet+ surpassed its predecessors by a large margin in
terms of robustness.

However, the detection metric is lower than the other ones due to
two factors. Firstly, prioritizing robustness over sensitivity by choosing
the MTE method to calculate the threshold can be responsible for the
decrease in detection rate which was shown in the previous study (Abir
et al., 2022). Secondly, the increase in the dataset might contribute to
the decrease in the detection rate as well.

5.2. Real-world usability of PCovNet+

PCovNet+ used healthy subjects’ data to pre-train both the CNN-
VAE and the LSTM networks. The loss curves of the pretraining are
illustrated in Supplementary Appendix 2. Afterward, the model was
fine-tuned on each infected subject’s baseline data to make the model
personalized for that subject. The real-world implementation of the
PCovNet+ is shown in Fig. 11.

Let 𝑛𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 denote the number of available RHR data points for
a particular subject. 𝑙𝑒𝑛𝑤𝑖𝑛 and 𝑛𝑤𝑖𝑛 respectively denote the number
f data points per window and the number of windows for LSTM
mbedding generation.
Firstly , while 𝑛𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠 < 𝑙𝑒𝑛𝑤𝑖𝑛, which is the case at the beginning

or any subject, There are not enough RHR data points yet to make any
rediction. Since each hour generates an RHR datapoint, for 𝑙𝑒𝑛𝑤𝑖𝑛 =
8, the model does not give any prediction for the first 2 days.
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Secondly , when 𝑙𝑒𝑛𝑤𝑖𝑛 ≤ 𝑛𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠, there is enough data to make
a prediction and at the same time, fine-tune the CNN-VAE network.
After each RHR datapoint, a new window is generated at this stage.
The threshold will be updated if the user marks his health situation as
normal.

Thirdly , the LSTM network is fine-tuned while
(

𝑙𝑒𝑛𝑤𝑖𝑛 × 𝑛𝑤𝑖𝑛
)

≤
𝑛𝑑𝑎𝑡𝑎𝑝𝑜𝑖𝑛𝑡𝑠. At first, the trained CNN-VAE encoder is used to generate
LSTM embeddings from all the previous data. Then the embeddings
are used to fine-tune the LSTM network. Lastly, the updated VAE-LSTM
network is used to generate a loss. Like before, if the subject labels his
current health condition as normal, the threshold will be updated.

This anomaly detection framework was trained and fine-tuned only
with the normal (baseline) data from the users. If a user feels unwell for
a certain range of time during the online learning, RHR during that time
must not be used for the finetuning. Hence, user feedback is necessary
in this regard.

5.3. Caveats

This study was performed on a cohort size of a few thousand, and
only a few had available smartwatch data during their COVID-19 and
other respiratory infections. Hence, to obtain a reliable ground truth
of their actual infection date, the group would have needed to predict
the infected individuals successfully beforehand and perform RT-PCR
on each one of them every day. It was an improbable task from a
prospective study with resource-constraint settings. On the other hand,
only the symptoms and symptom onset date for a retrospective study
can be known, but not the actual infection date, at least not without
laboratory testing.

To circumvent the ground truth issue, like previous works (Mishra
et al., 2020; Bogu and Snyder, 2021; Abir et al., 2022), this work relied
on the literature to approximate different regions of infection lifetime.
One fatal flaw with this approach is that each infected subject has a
different incubation period, viral shedding, and infection type (for some
subjects, the anomalous RHR persists long after recovery). Hence, this
approximation cannot be regarded as a ground truth.

Another caveat of this work is the dataset diversity. As the study in
this field is comparatively new, the volume of the dataset with diversity
is still an issue. Hence, the framework developed in this work is not
guaranteed to show similar performance on subjects from different
regions of the world.

5.4. Implications and future directions

Although the model performance was improved significantly com-
pared to the previous work, there is still room for improvement.

Dataset volume and diversity. In this work, the datasets are generated
using some of the most advanced smartwatches and fitness trackers,
namely Fitbit, Apple Watch, and Garmin, which incorporate industry-
leading wearable sensors. More datasets with diverse wearable devices
should be built and explored to achieve a generalized model. Also,
having multiple big datasets with diverse populations and devices
would create scopes for effective cross-validation of the models as well.
Another aspect of achieving generalization is to work on larger datasets.
In this regard, this study employs a larger dataset than the previous
study; however, it is still not enough in deep learning. The future work
includes the creation of a dataset with subjects of diverse nationalities.

Real-world implementation. Since the start of COVID-19, smartwatch-
based COVID-19 detection has received special attention from a number
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Fig. 11. Implementation steps of PCovNet+ framework for online learning. Different steps are shown in the diagram based on the availability of data during real-time
implementation.
of research groups worldwide. Although the COVID-19 infection rate
has decreased all over the world after vaccination, we are still prone
to respiratory diseases. As shown in the previous work, these anomaly
detection systems can work similarly for other respiratory illnesses
apart from COVID-19 (Abir et al., 2022). Moreover, any AI system’s
usability in the real world often varies from the theoretical results.
Hence, the next priority is to deploy the system in the real world and
verify the performance to have a complete picture of the framework.

Collaboration. The objective of this work is to help the COVID-19
diagnosis process. However, at the same time, these systems can work
as excellent tools for contact tracing for COVID-19 and other respi-
ratory diseases. However, more collaboration of the leading research
groups and industry to share data and research findings is needed to
approach the goal of making smartwatches and fitness trackers personal
healthcare companions.

6. Conclusion

In this work, PCovNet+, a framework for anomalous RHR detection
using smartwatch data, was presented which was an improvement of
the previous work on the same topic. This study involved a larger
dataset of 68 subjects and introduced a new anomaly detection model
introducing several new steps from other domains, e.g., LSTM em-
beddings and model pretraining using Healthy group data. From the

experiments and presented data, a significant improvement in the
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statistical metrics was seen — approximately 5%, 30%, 7%, and 32%
increase in precision, recall, F-beta, and F-1, respectively. Moreover,
this study further explored the lack of ground truth issue in this work
which might impact both the statistical metrics and detection rate
significantly. In this regard, the two core research objectives have been
addressed.

Overall, this work explores the COVID-19 prediction using smart-
watch data further and improves the robustness of the previous work.
Even though this system cannot replace laboratory-based active detec-
tion systems, it can be used as a secondary diagnostic tool. However,
this study shows its crucial usability in regular human life combating
respiratory diseases like COVID-19.
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