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Abstract: The assessment and treatment of vertebral primary bone lesions continue to pose a unique
yet significant challenge. Indeed, there exists little in the literature in the way of compiling and
overviewing the various types of vertebral lesions, which can often have complicated intervention
strategies. Given the severe consequences of mismanaged vertebral bone tumors—including the
extreme loss of motor function—it is clear that such an overview of spinal lesion care is needed.
Thus, in the following paper, we aim to address the assessment of various vertebral primary bone
lesions, outlining the relevant nonsurgical and surgical interventional methods. We describe examples
of primary benign and malignant tumors, comparing and contrasting their differences. We also
highlight emerging treatments and approaches for these tumors, like cryoablation and stereotactic
body radiation therapy. Ultimately, we aim to emphasize the need for further guidelines in regard to
correlating lesion type with proper therapy, underscoring the innate diversity of vertebral primary
bone lesions in the literature.
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1. Introduction

Vertebral primary bone lesions have long presented a challenge to spinal care spe-
cialists. Not only is there a wide variety of spinal lesions described in the literature, the
treatment of these tumors, benign or otherwise, is often complex and complicated by factors
such as neural compression [1]. Vertebral lesions are also frequently found incidentally
when the patient presents with back pain, weakness, or myelopathy, and if management is
delayed, vertebral lesions can lead to a complete loss of sensory and motor function [2]. A
thorough, comprehensive understanding of the assessment and treatment of these lesions
is needed.

There are several classifications for vertebral bone lesions. By itself, vertebral bone le-
sions are a form of spinal lesion that only affects the osseous portion; thus, they are referred
to as spinal osseous lesions, spinal neoplasms, vertebral lesions, or vertebral tumors [3]. A
vertebral primary bone lesion is a general term describing any abnormal change to the bone
originating from disease or injury to healthy bone. In this context, primary is an oncological
term that indicates the lesion originates from the bone, whereas secondary lesions are
when the lesion metastasizes to the bone from another region of the body [4]. When cells
in the bone undergo uncontrolled growth, these lesions are referred to as bone tumors,
and when the abnormal tissue closely resembles the healthy bone structure, the lesion is
considered benign [5]. Examples of benign lesions include hemangiomas, lipomas, sclerosis,
aneurysmal bone cysts, osteoid osteomas, and osteoblastomas [6]. Malignant lesions are
similar to bone tumors but demonstrate a growth capable of metastasis [7]. Malignant
vertebral lesions include chondrosarcoma, chordoma, Ewing’s sarcoma, neuroblastoma,
and osteosarcoma [8]. Classification of a lesion depends on the spinal level, location of the
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lesion on the vertebra, layer of bone affected, number of lesions, and morphology. Typically,
since lesion type determines treatment, correct identification of the lesion can have a major
role in clinical outcomes [9].

Interventions for vertebral lesions are divided into surgical excision and non-surgical
medical management. In recent years, low-grade tumors have even been approached
with more innovative techniques, like phenol, cryosurgery, or argon lasering [10]. Such
targeted therapies can be less invasive and speed the recovery process. A plethora of
interventions exists in the context of vertebral tumors. Yet, while much of the literature
describes spinal lesions and corrective measures for specific tumors, there is a paucity of
studies available that discuss these different lesion types and explain general guidelines
for their treatment [1,11,12]. Most reviews on vertebral lesions are based on a series of
case reports, and indeed there is little literature generally overviewing these tumors. Thus,
this paper attempts to take a more holistic approach, and we describe the assessment, non-
surgical treatment, and surgical treatment of various vertebral bone lesions, categorized as
either primary benign, malignant, or metastatic.

2. Assessment of Patients with Vertebral Lesions
2.1. Incidence Rates

Primary osseous lesions of the spine encompass a divergent series of malignant and
benign tumors. The majority, which are non-cancerous, can be primarily found in the
anterior portion of the vertebral body (Figure 1) [13]. Examples of benign tumors of the
vertebrae include aneurysmal bone cysts, eosinophilic granulomas, and hemangiomas.
Others, notably osteoid osteomas and osteochondromas, are more commonly witnessed
in the posterior elements of the vertebral body (Figure 1). While the growths in question
are considerably less prevalent than the occurrence of metastases, primary bone tumors
of the vertebrae constitute the most prevalent category of primary osseous lesions [14].
Nevertheless, the true incidence of primary tumors of the spine is unclear due to their
infrequency and the fact that the majority of these growths present asymptomatically [15].
Primary vertebral tumors are seen to comprise approximately 0.2% of all cancers that are
newly identified each year, further accounting for 5% of the overarching bone tumors
category [16]. A thorough inspection of these incidence rates has led to the identification
of an emergent trend: more than 90% of lesions can be found to be benign when a person
is in their first decade of life, around 50% when they are in the fourth decade, and fewer
than 10% when they are in the seventh decade [17]. Of those found cancerous, the rates of
recurrence and mortality are elevated up to 48% and 58%, respectively [14]. In spite of the
fact that these spinal growths are largely heterogeneous, it is still possible to arrive at an
appropriate differential diagnosis and treatment through the methodical consideration of a
patient’s full history of the present illness and radiological pattern.

2.2. Clinical Considerations

When examining individuals with spine tumors, the history of present and prospec-
tive lesions, as well as carcinogen exposure, must be assessed. Previously, accounts of
oncological patients that harbored spinal metastases years after effective treatment have
been reported [15]. As such, it is crucial to consider that benign skeletal lesions in any
region of the body may culminate in spine metastasis following malignant or sarcomatous
transformation [18]. In individuals with vertebral growths, pain is perhaps the most preva-
lent and predominant symptom [19,20]. As seen with the vast majority of skeletal system
tumors, patients may attribute their pain to a factual or hypothesized traumatic event
that occurred in the recent past [15]. Occasionally, this situation implies a pathological
fracture resulting from the collapse of a vertebral body due to physical trauma [21]. In the
same realm, the most consistent characteristic of primary osseous lesions is discomfort
that develops gradually, intensifies with time, and persists at night, ultimately impacting
sleeping behavior [20]. Acute pain that develops in the absence of trauma in a patient with
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no preceding symptoms should also be regarded as a pathological fracture in such a clinical
context [15].
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Figure 1. Illustrative depiction of the anatomical location of common primary osseous lesions of the
vertebrae. Aneurysmal bone cysts and eosinophilic granulomas depict prevalent primary vertebral
tumors of the anterior portion of the spine, while osteoid osteomas and osteochondromas represent
lesions that represent those witnessed on the posterior portion of the vertebrae.

2.3. Imaging Considerations

Despite the fact that the majority of presentations of low back pain heal with conser-
vative therapy, radiographs are frequently employed as an initial preventive screening.
The quick availability and inexpensive cost of radiographs prove useful when assessing
for fractures, vertebral degeneration, and bone density [22,23]. For patients presenting
with more severe symptoms, suspected underlying infection, or implications of the cauda
equina, CT and MRI are the superior imaging modalities employed [24]. CT allows for
better visualization of the tumor microenvironment, even to a greater extent than MRI [19].
Furthermore, it enhances the visibility of pathological degenerative developments and
fractures, especially in the posterior components [22]. On the other hand, MRIs are more
frequently utilized in the presence of secondary neurological symptoms, providing in-
creased soft tissue contrast to CT to characterize intervertebral disks, spinal bone marrow,
and contents of the vertebral foramen [19,23]. Together, however, CT and MRI are utilized
in unison to depict a full picture of the issue.

On radiographs, lesions are often classified utilizing the Enneking classification sys-
tem, which aids in the assignment of tumors into two categories: benign and malignant
(Figure 2) [24,25]. In accordance with the Enneking classification system, non-cancerous
tumors are further divided into the following categories: S1 indicates that the growth is
inactive, asymptomatic, developing slowly or not at all, and has a true capsule [26]. S2
indicates that the lesion is mildly symptomatic, developing with an outline, and displays
a minimal risk of recurrence [25]. Finally, S3 indicates that the tumor is expanding fast,
the capsule has been broken or is completely missing, there is an invasion of surrounding
tissues, and the recurrence rate is significant [26]. The localization of the tumors is delin-
eated through the use of T1 and T2 designations, defining intraosseous or extraosseous
growth accordingly. It should not go without consideration that the presence of metastasis
is noted as well. Similarly, lesions may be categorized additionally according to their grade:
1 and 2 are indicative of a low and high grade, respectively [27]. Ultimately, however,
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descriptive words help radiologists and neurosurgeons distinguish growths. For instance,
hemangiomas can be described as having a “salt and pepper” look, with a high signal
intensity, and exhibiting considerable contrast [28,29]. Osteoid osteomas, in comparison,
may reveal a radiolucent tumor with surrounding sclerosis, bearing a resemblance to a
“sunny-side-up egg” [30–32]. A full list of the salient radiographic findings for common
benign and malignant bony tumors is provided in Table 1.
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Figure 2. Illustrative depiction of a simplified Enneking classification system, which categorizes
tumors into stage, grade, site, and presence of metastasis. The abbreviations are as follows: S = Stage
(1, 2, or 3), G = Grade (1 or 2), T = Site (1 or 2), and M = Metastasis (0 or 1). S1 indicates that
the growth is inactive, asymptomatic, developing slowly or not at all, and has a true capsule. S2
indicates that the lesion is mildly symptomatic, developing with an outline, and displays a minimal
risk of recurrence. S3 indicates that the tumor is expanding fast, the capsule has been broken or is
completely missing, there is invasion of surrounding tissues, and the recurrence rate is significant.
G1 and G2 are indicative of low and high grades, accordingly. The T1 and T2 indicate intraosseous
and extraosseous growth, respectively. Finally, M0 indicates the absence of metastasis and M1 the
presence of metastasis.

Table 1. Common primary benign and malignant vertebral lesions and their associated radiographic
findings on Magnetic Resonance Imaging (MRI) [29,32].

Primary Vertebral Lesion Benign or Malignant Radiographic Findings (MRI)

Spinal Meningioma Benign Well-circumscribed; Dural tail sign; broad-based
Dural attachment

Osteoid Osteomas Benign Intracortical nidus; reactive sclerosis
Spinal Ependymomas Malignant Well-circumscribed; widened spinal cord; cystic change
Spinal Hemangioma Benign Variable enhancement; “salt and pepper” appearance

Chordomas Malignant Irregular calcification; honeycomb appearance

Ewing Sarcoma Malignant Bright with T2; not well-demarcated; non-homogenous
enhancement of contrast

Nerve Sheath Tumors Benign Very well-circumscribed and difficult to identify on
radiograph; hyperintense T2

Osteosarcoma Malignant Edema around tumor; cortical destruction; considerable
contrast enhancement with T1

3. Treatment of Patients with Vertebral Lesions
3.1. Primary Benign Tumors

Primary benign vertebral lesions are often asymptomatic and undetected [33], but
when they progress and do become noticed, they require surgical excision. Treatments
vary between types of benign vertebral lesions, but approaches generally depend on the
risk of recurrence, surgical complications, complex reconstruction, functional deficits, and
worsening of the patient’s health condition. In most cases, intralesional curettage, bone
grafting, and synthetic bone substitutes are used to maintain the structural integrity and
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stability of the vertebra and spine [34]. To prevent the recurrence of the vertebral lesion,
adjuvant measures like phenol instillation or cryotherapy may be used post-surgically.
Small or slow-developing lesions may only require corticoid injections or percutaneous
vertebroplasty to eradicate the tumor. Novel therapies for fibrous dysplasia and giant cell
tumors are using less invasive [35] and more systemic therapies with bisphosphonates and
denosumab, respectively [36].

Recently, some benign tumors have been treated by the administration of intravenous
bisphosphonate, which inhibits the bone resorption mediated by osteoclasts. More specifi-
cally, Pamidronate and Zoledronic acid are used for their anti-tumor features and ability to
reduce the bone tumor burden, prevent metastasis, and inhibit the progression of a bone
lesion [37]. Moreover, excision or curettage aimed toward removing the benign tumor is
the most common surgical treatment. Complete tumor removal attempts to preserve as
much bone as possible and must be performed through an acceptable cortical window that
ensures proper visualization of the entire lesion [38]. Aggressive local tumor removal along
with mechanical, thermal, and/or chemical adjuvant therapy depicts extended intralesional
curettage. This is administered as a method of extending the tumor kill zone far beyond the
limit of mechanical curettage [39]. A cortical window is obtained to allow for visualization
of the bone lesion, followed by a mechanical adjuvant of a high-speed burr to increase the
borders of the lesion area.

The use of curettage with adjuvants is reported to be associated with low local recur-
rence rates ranging from 12–34% [40]. Other types of adjuvant therapies, such as argon
bean, hydrogen peroxide, liquid nitrogen, and alcohol, are being evaluated but have yet to
demonstrate a significant impact [41]. Hydrogen peroxide has been examined when used as
a local adjuvant to potentially kill the remaining tumor cells that are left in the tumor cavity
after curettage [42]. The use of hydrogen peroxide as a local adjuvant should be explored as
a more permanent treatment procedure due to its demonstrated ability to induce apoptosis
and reduce recurrence rates [43]. When categorized as a benign aggressive or low-grade
malignant bone tumor, cryotherapy with liquid nitrogen is as effective as wide excision [44].
More effectively than phenol and cement, cryosurgery produces cell necrosis of up to 2 cm
from the bone surface [45]. The surgical procedure entails exposure, curettage, margin
expansion, cryosurgery, bone cement reconstruction, and subchondral bone graft to protect
from future impact potentially leading to fracture [44]. Deventer et al. report the overall
recurrence rate of chondroblastoma with intralesional curettage as surgical treatment to be
39.5% [46]. In this retrospective study, 7% only showed intraoperative complications from
the remaining fragment of bone cement with a distribution of types of adjuvants used: 44%
hydrogen peroxide, 46% bone substitute, 7% autogenous bone graft, and 5% bone cement.

The gold standard of treatment for primary benign tumors is autogenous bone grafts
(Figure 3). The components of osteogenic stem cells, growth factors and matrix ensure
proper integration and healing of the graft [47]. Studies report vascularized fibular grafts to
be more quickly incorporated into the lesion, which can reduce surgical complications [48].
In addition, when comparing vascularized fibular grafts to non-vascularized grafts, vas-
cularized grafts prove to be superior in the treatment of aggressive benign bone tumors.
The disadvantages of bone grafts are surgical morbidity at the donor site, the risk of
immune rejection, disease transmission, and infection [49]. For the treatment of benign
bone tumors and tumor-like bone lesions that are characterized by a large bone defect,
allogeneic cortical support as a reconstructive technique provides high resistance, easy
fixation, fracture healing and prevention of deformity [50]. Even though this reconstructive
technique provides remodeling of the site, it may occur slowly or even remain incomplete.
If necessary, allogenic cancellous bone grafts can be implemented with adjuvants such as
alcohol and phenol.



Curr. Oncol. 2023, 30 3069

Curr. Oncol. 2023, 30, FOR PEER REVIEW  6 
 

 

aggressive or low-grade malignant bone tumor, cryotherapy with liquid nitrogen is as 

effective as wide excision [44]. More effectively than phenol and cement, cryosurgery pro-

duces cell necrosis of up to 2 cm from the bone surface [45]. The surgical procedure entails 

exposure, curettage, margin expansion, cryosurgery, bone cement reconstruction, and 

subchondral bone graft to protect from future impact potentially leading to fracture [44]. 

Deventer et al. report the overall recurrence rate of chondroblastoma with intralesional 

curettage as surgical treatment to be 39.5% [46]. In this retrospective study, 7% only 

showed intraoperative complications from the remaining fragment of bone cement with 

a distribution of types of adjuvants used: 44% hydrogen peroxide, 46% bone substitute, 

7% autogenous bone graft, and 5% bone cement. 

The gold standard of treatment for primary benign tumors is autogenous bone grafts 

(Figure 3). The components of osteogenic stem cells, growth factors and matrix ensure 

proper integration and healing of the graft [47]. Studies report vascularized fibular grafts 

to be more quickly incorporated into the lesion, which can reduce surgical complications 

[48]. In addition, when comparing vascularized fibular grafts to non-vascularized grafts, 

vascularized grafts prove to be superior in the treatment of aggressive benign bone tu-

mors. The disadvantages of bone grafts are surgical morbidity at the donor site, the risk 

of immune rejection, disease transmission, and infection [49]. For the treatment of benign 

bone tumors and tumor-like bone lesions that are characterized by a large bone defect, 

allogeneic cortical support as a reconstructive technique provides high resistance, easy 

fixation, fracture healing and prevention of deformity [50]. Even though this reconstruc-

tive technique provides remodeling of the site, it may occur slowly or even remain incom-

plete. If necessary, allogenic cancellous bone grafts can be implemented with adjuvants 

such as alcohol and phenol. 

 

Figure 3. Autogenous bone graft from a primary benign tumor in the vertebrae. 

Seeking the creation of a structural framework environment that is favorable for cell 

function and the formation of new bone is the purpose of a synthetic bone substitute. 

Complete integration of the synthetic bone graft into the host is achieved through the sub-

stitute’s ability for osteoinductive growth with undifferentiated primitive mesenchymal 

cells [51]. Injections of autologous bone marrow with multipotent stem cells, bone mor-

phogenic proteins and growth factors ensure osteogenesis and an osteoconductive envi-

ronment. Some of the primary ceramic components of the graft are osteoconductive to 

reconstructive and include calcium phosphate, hydroxyapatite, tricalcium phosphate, and 

calcium sulfate [52]. 

Figure 3. Autogenous bone graft from a primary benign tumor in the vertebrae.

Seeking the creation of a structural framework environment that is favorable for cell
function and the formation of new bone is the purpose of a synthetic bone substitute.
Complete integration of the synthetic bone graft into the host is achieved through the
substitute’s ability for osteoinductive growth with undifferentiated primitive mesenchy-
mal cells [51]. Injections of autologous bone marrow with multipotent stem cells, bone
morphogenic proteins and growth factors ensure osteogenesis and an osteoconductive
environment. Some of the primary ceramic components of the graft are osteoconductive to
reconstructive and include calcium phosphate, hydroxyapatite, tricalcium phosphate, and
calcium sulfate [52].

3.2. Non-Surgical Treatment for Primary Malignant Tumors

Primary malignant tumors, unlike primary benign tumors, can be treated either
surgically or non-surgically. In the non-surgical context, radiotherapy (RT) of the malignant
tumor has long been considered the gold standard for care [53]. The goal of RT is to
destroy the tumor cells while simultaneously avoiding damage to the normal cells [54].
Importantly, although RT can act as an analgesic, it does not reverse secondary bone or
tissue destruction [55]. The use of RT also warrants other clinical considerations. One
study by Ghogawala et al. found, for example, that patients who had surgery after RT had
increased rates of post-surgical complications [56]. However, this study was conducted in
the context of metastatic spine disease, so more work is needed to establish whether these
results are translatable to primary tumors.

Despite its potential drawbacks, RT has shown to be as effective at mitigating re-
lapse and improving survival relative to surgical methods [57]. Long-term benefits of RT,
including a reduction in vertebral fracture incidence, have also been demonstrated [58].
Yet, while it has been validated in some of the most common primary benign tumors,
including Ewing’s sarcoma and hemangiomas, radiotherapy remains understudied in rarer
lesions [59,60].

Typically, chemotherapy is incorporated into most RT treatment regimens. One study
suggested that chemotherapy significantly increased the survival rate of patients by almost
70% and that relapse was avoided much more frequently in those receiving chemotherapy
than in those who were not [55]. In patients with Ewing’s sarcoma, Rosen et al. found that
patients who received chemotherapy in combination with RT had a cancer-free survival rate
of almost 76%, which was similar to the 82% survival rate of those receiving surgery [61].
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Aside from chemotherapy and radiotherapy, embolization occludes feeding arteries
supplying the aneurysmal and giant cell tumors to reduce tumor rise, reduce compression,
and restore neurological function [62]. Preoperative embolization de-vascularizing the
spinal tumor prior to resection is a minimally invasive procedure that helps reduce intraop-
erative bleeding and a number of necessary transfusions [63]. Preoperative embolization
also allows for more radical resection of the vertebral lesion [64]. However, there remains
a risk for postoperative paralysis from the permanent occlusion of a feeding artery to the
spinal cord after embolization [65].

Severe pain during metastases, surgical recovery, and therapy significantly affects
the quality of life of malignant primary spine tumor patients, thus making multimodal
pain management a major aspect of their nonsurgical treatment [66,67]. In cases of mild
pain, cyclooxygenase-inhibiting NSAIDs are administered to reduce pain caused by in-
flammation. In contrast, cases of severe pain commonly involve systemic management by
oral, transcutaneous, or intravenous opioids. Systemic dexamethasone is sometimes used
to prevent neurological deficits from spinal cord compression by subduing inflammation
and swelling [68]. Local anesthetics, such as intrathecal or epidural morphine, can target
pain specific to the lesion site. Radiopharmaceuticals strontium-89 and samarium-153,
when conjugated to pyrophosphate, are specific to managing metastatic bone pain; they
advantageously maximize concentration in vertebral lesions while minimizing systemic
circulation and risks of toxicity [55]. Considerations for nonsurgical primary malignant
tumor therapy are depicted in Figure 4.
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3.3. Surgical Interventions for Primary Malignant Tumors
3.3.1. Surgical Determination

Overall, the primary objective of surgical intervention is to restore the quality of life to
patients via the mitigation of pain symptoms and neurologic functional deficits associated
with the tumor [68]. As such, surgeons must first determine if a patient is a suitable
candidate for a surgical route of intervention. Numerous factors play a significant role in the
potential outcome following surgery, including the current and expected quality of life post-
operation, tumor load, and life expectancy [27]. Additionally, as aforementioned, there have
been multiple attempts at devising a robust prognostic scoring system to help assist surgeon
decision-making for the treatment of malignant vertebral lesions [27,69]. The Tomita
prognostic score summarizes its score by weighing the presence and treatability of primary
tumors, visceral metastases, and bone metastases. An alternative, the Tokuhashi scoring
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system, includes additional metrics for its calculation, including the primary location
of cancer, Karnofsky performance status, paralysis, and extraspinal bone metastases, in
addition to the three components listed in the Tomita score [70]. These scores are often
considered concurrently and generally recommend similar treatment options based on the
determined prognostic category [69,71,72]. For patients with extremely poor prognoses,
generally conservative therapies are recommended, while patients with good or acceptable
prognoses are considered candidates for surgical excision and stabilization if needed. A
retrospective study on patients with spinal metastases demonstrated that these scores
are accurate in differentiating patients with poor prognoses—and thus not good surgical
candidates—from patients with generally acceptable prognoses who could potentially
benefit from surgery [71]. More work is needed to determine whether this could be applied
to primary tumors.

3.3.2. Direct Surgical Decompression and Stabilization

Primarily, the most well-documented and understood surgical procedure indicated for
vertebral lesions that encroach upon the spinal canal is direct surgical decompression [73–76].
These procedures achieve a two-fold goal, firstly removing any source of tumor compres-
sion on the spinal cord and, secondly, excising tumoral tissue to reduce its total volume
in the spine [77]. The relative position of the tumor (anterior, lateral, or posterior) dictates
the respectively located approach taken for this procedure, aside from anterior tumors
in the thoracic and lumbar spine, which possibly could warrant a transversectomy or
anterior vertebrectomy [74,78]. A schematic of pre- and post-intervention anterior cervical
fusion is provided in Figure 5. For posteriorly located tumors, a standard decompressive
laminectomy procedure is determined to be sufficient.
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These techniques are generally applied for a variety of spinal tumors, including
multiple myeloma associated with neurological deficits or metastases derived from a
primary extraspinal tumor [77–83]. It should be noted that the majority of cases that do
necessitate surgical intervention are malignant cases, as opposed to benign cases, since
malignancies typically will encroach into the spinal canal and produce compression upon
spinal nerves. However, special considerations must be made depending on the tumor
type and derivation. For example, it is recommended that most decompressive surgeries
for vertebral body lesions are immediately followed with metal instrumentation to provide
additional spinal stability, as this has been highly associated with improved pain reduction
and functional outcomes in patients [84–86]. A depiction of laminectomy with the inclusion
of metal instrumentation for stability is provided in Figure 6. Furthermore, conditions
such as multiple myeloma may not necessarily need decompressive intervention if it is
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sufficiently determined that there is an absence of neurological deficits [82]. Instead, the
primary surgical goal is to correct damage caused to vertebral bodies and alleviate related
pain symptoms. This can be achieved via multiple approaches, depending on the location
and severity of damage [87]. For example, anterior damage to the vertebral body warrants a
ceramic or metal endoprosthesis for vertebral body replacement [82,88]. For more posterior,
uncomplicated vertebral damage, balloon kyphoplasty and vertebroplasty are used to
reinforce the remaining bone with cement [89,90].
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The application of recombinant human bone morphogenic proteins (BMP) in such
decompressive spinal surgeries has recently captured clinical interest. BMPs are growth
factors believed to induce both bone and cartilage formation [91]. Evidence indicates that
these factors can significantly enhance bone deposition at needed fusion sites following
lumbar decompression [92]. This is supported by similar studies that find their use both safe
and efficacious in the context of spinal surgery [93]. Though the available data is limited,
the inclusion of BMPs should be an important consideration in any decompressive surgery.

3.3.3. Minimally Invasive Surgical Alternatives

As an alternative approach to conventional surgical intervention, radiosurgery has
been gaining popularity in its use to treat spinal lesions [73,94]. Historically, when laminec-
tomy procedures were deemed to be ineffective in reducing pain and restoring the func-
tional status of patients, conventional external beam radiation therapy (cEBRT) was chosen
to be the standard of care. Recent advancements in radiation technology have led to the
development of spinal stereotactic radiosurgery, which allows for localized delivery of high
radiation doses to the target tissue while maintaining a steep drop-off of radiation to sur-
rounding tissues [94,95]. Various studies demonstrate that spinal stereotactic radiosurgery
is effective for treating solid metastatic tumors of the spine [96,97]. While less research has
been done in the field of primary malignant tumors, one study by Chang et al. successfully
adopted spinal stereotactic radiosurgery in that context, demonstrating that the results
of previous work could be translatable [98]. Additionally, laser technology such as the
argon surgical laser is used as a micro-neurosurgical alternative approach. This micro-laser
approach allows for the fine-tuned modulation of laser power through aqueous media,
which can be leveraged for the removal of small, deeply located intraspinal tumors [99,100].
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4. Emerging Interventions

As aforementioned, the standard treatment for complex benign and malignant verte-
bral primary bone lesions is the surgical intralesional excision/curettage, decompression,
and stabilization of the affected area with subsequent bone grafting, namely with auto-
genous cancellous bone grafts. Particularly, autogenous grafts provide the combination
of osteoconduction, osteoinduction, and osteogenic cells that are required for bone regen-
eration and, ultimately, the capacity to bolster the structural integrity and stability of the
surrounding bone and joint [34]. Although recent advancements in bone graft substitutes,
including allografts, ceramics, demineralized bone matrix, bone marrow and synthetic
composites, have presented similar outcomes to autogenous cancellous grafts, there are
numerous shortcomings for each [101]. Principally, none of these alternatives provide a
composite of the three requirements for bone regeneration needed for successful bone
grafting, and they present with bone quantity limitations and donor-site morbidity. Thus,
autogenous grafts remain the gold standard. Further, a wide excision approach, which
entails the removal of the tumor along with a capsule of healthy tissue around it, has been
reported consistently across the literature for its purported outcome of lower recurrence
and mortality rates [102,103]. In other words, surgical intervention necessitates signifi-
cant excision margins and, subsequently, the replacement with an equally weighty bone
graft—two aspects of current treatment that have yet to be circumvented by modern medicine.

As a result, the focus of emerging treatments in the context of vertebral primary
bone lesions has been primarily aimed at the employment of adjuvant therapies and
other non-invasive measures. Traditionally, adjuvant therapies such as bone cement,
phenol, and hydrogen peroxide have been used with the aim of eradicating microscopic
infiltrates by mechanical, thermal, or chemical means [49]. Particularly, adjuvant therapy
allows surgeons to salvage surrounding healthy bone and tissue while lowering rates of
recurrence [104].

The most recent development of such adjuvant interventions can be found in the use
of radiotherapy in the treatment of both neoplastic and nonneoplastic processes, such as
metastatic multiple myeloma and hemangiomas, respectively [105]. Specifically, a novel
treatment modality known as stereotactic body radiation therapy (SBRT) involves the
delivery of ultra-high radiation to a small target volume with impressively tight mar-
gins [106]. This fact is significant as it confers SBRT an advantage over traditional open
surgical techniques by allowing the treatment of tumors close to the spinal cord or at sites
of retreatment while serving as a minimally invasive substitute [107]. Moreover, when com-
pared to other minimally invasive counterparts such as cEBRT, SBRT is better at delivering
ablative doses (ranging from 7.7 Gy to 45 Gy in 1–4 fractions) while sparing vulnerable
neurologic structures such as the spinal cord and nerve root [108]. Of note, SBRT also
provides prolonged symptomatic relief and local tumor control of up to 90–95%, even in
patients with radioresistant metastatic vertebral bone lesions, with or without prior irradia-
tion [106–109]. Further, according to the largest multi-institutional cohort study of clinical
practice and outcomes on spinal SBRT, this technique provides high clinical efficacy and can
be used to treat several tumor types due to the absence of relative contraindications [110].
Nonetheless, further investigation is warranted to determine optimal dosing, fractioning,
and the prospective long-term consequences of irradiation to neural structures.

Furthermore, a second and even more recent advancement in adjuvant therapies
has been the utilization of image-guided percutaneous cryoablation in the treatment
of neoplasms. Specifically, cryoablation, an already established and effective treatment
method for liver and lung cancer, has recently emerged as a superior method in the
treatment of metastatic bone cancer [111]. As mentioned above, this form of treatment
entails placing percutaneous cryoprobes into affected areas and the cycling of freezing and
thawing—which is achieved via the rapid expansion of argon gas, reaching temperatures
lower than −40 ◦C in a matter of seconds, and the subsequent thawing through the infusion
of helium gas [112]. Of note, this procedure is performed under image-guided assistance
using intermittent contrast CT or MRI imaging technology. The aforementioned aspect
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of this technique is a significant advantage over heat-based techniques, such as radiofre-
quency ablation (RFA), because it allows surgeons to precisely monitor the ablative zone
intraoperatively and thus confidently treat metacystic diseases more aggressively [113].
In conjunction with imagining, the introduction of catheter-guided balloons for tissue
displacement is possible in percutaneous cryoablation, which has proven to be a large
drawback of RFA due to thermal limitations [114]. Moreover, a final distinct advantage of
cryoablation over other adjuvants is the reduction in post-procedural pain, as well as the
ability to conduct the procedure with the patients under conscious sedation [115]. Regard-
ing its clinical performance, several multicenter clinical trials have cited cryoablation to
be safe and effective, with a majority of patients experiencing tumor reduction or arrest
at follow-up, as well as a significant reduction in postoperative pain [116,117]. Although
promising, this technology demands further investigation as its therapeutic effects have
been limited to too few studies, in addition to a relative lack of prospective randomized
studies comparing cryoablation to standard-of-care treatment options such as open surgery,
chemotherapy, or radiation therapy [118].

5. Conclusions

Spine care professionals continue to be challenged by the complex nature of vertebral
primary bone lesions. Indeed, given the abundance of lesion types, it is clear that further
work comparing and contrasting different assessment and treatment strategies is needed. A
more thorough analysis of different primary benign types, for example, could be warranted.
Ultimately, however, despite their diversity, the overarching goal of any intervention for
vertebral primary bone lesions is to restore patients’ quality of life and minimize post-
treatment complications through the employment of the least invasive approaches available.
Ideally, strategies should effectively treat both benign and malignant tumor types. Thus, it is
clear that we must continue to develop novel interventions that will decrease invasiveness,
increase clinical efficacy, and ultimately improve patient outcomes.
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