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Abstract: The aim of the present study was to provide a comprehensive characterization of whole
genome DNA methylation patterns in replicative and ionizing irradiation- or doxorubicin-induced
premature senescence, exhaustively exploring epigenetic modifications in three different human
cell types: in somatic diploid skin fibroblasts and in bone marrow- and adipose-derived mesenchy-
mal stem cells. With CpG-wise differential analysis, three epigenetic signatures were identified:
(a) cell type- and treatment-specific signature; (b) cell type-specific senescence-related signature;
and (c) cell type-transversal replicative senescence-related signature. Cluster analysis revealed that
only replicative senescent cells created a distinct group reflecting notable alterations in the DNA
methylation patterns accompanying this cellular state. Replicative senescence-associated epigenetic
changes seemed to be of such an extent that they surpassed interpersonal dissimilarities. Enrichment
in pathways linked to the nervous system and involved in the neurological functions was shown
after pathway analysis of genes involved in the cell type-transversal replicative senescence-related
signature. Although DNA methylation clock analysis provided no statistically significant evidence
on epigenetic age acceleration related to senescence, a persistent trend of increased biological age in
replicative senescent cultures of all three cell types was observed. Overall, this work indicates the
heterogeneity of senescent cells depending on the tissue of origin and the type of senescence inducer
that could be putatively translated to a distinct impact on tissue homeostasis.

Keywords: replicative senescence; stress-induced premature senescence; methylation; epigenetics;
human fibroblasts; mesenchymal stem cells

1. Introduction

Aging is characterized by an inevitable general deterioration of diverse tissues and
organs and an increased risk for the occurrence of several morbidities, including cancer,
cardiovascular diseases and musculoskeletal and neurodegenerative disorders. Thus,
shedding light on the molecular mechanisms underlying the induction and manifestation
of the aging process at all levels—from the cellular to the organismal one—has become
a main research focus, aiming at unraveling or developing ways to ameliorate the aged
phenotype and promote a healthy longevity.
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Among the hallmarks of aging, cellular senescence has been considered to be a ma-
jor contributor to age-related pathologies [1–5]. Cellular senescence was first described
in human embryonic lung fibroblasts as a state of irreversible cessation of proliferation
after serial subculturing in vitro [6]. Besides this type of senescence—known as replica-
tive senescence, being the result of telomere shortening [7]—cells may also be driven to
another type of senescence after their exposure to sub-cytotoxic genotoxic stresses—the
stress-induced premature senescence (SIPS) [8–10]. Apart from their inability to proliferate,
senescent cells remain metabolically active and share common phenotypic and molecular
traits irrespective of their origin, i.e., their enlarged and flattened morphology, increased
cytoplasmic and lysosomal content, lipofuscin accumulation, resistance to apoptosis, dis-
turbance of nuclear structure, formation of senescence-associated heterochromatin foci
(SAHF) and up-regulation of cyclin-dependent kinase inhibitors, such as p16INK4A [11,12].
The most critical phenotypic characteristic of senescent cells that defines their role in the
tissue as either positive or negative, depending on the context, is their secretome—the
so-called senescence-associated secretory phenotype (SASP), consisting of proinflammatory
cytokines, extracellular matrix (ECM)-degrading enzymes and ECM components [13–15].
Through their SASP, senescent cells may accelerate wound healing and tissue repair under
normal conditions [16], but on the other hand, when accumulating in particular tissues,
they may support degenerative disorders or even cancer progression via the formation
of a permissive microenvironment [14,15]. Association of senescent cells’ accumulation
with tissue/organ pathology has been established for differentiated cells, while the effect of
senescent stem cells on the capacity of tissues for regeneration has also been reported [17].

Given that chromatin structure plays a key role in cell regulation and organism lifes-
pan [18,19], epigenetic alterations (i.e., DNA methylation, histone modification and chro-
matin remodeling) play a crucial role in the induction and maintenance of senescence
and have been considered an additional hallmark of aging [1,12]. Especially DNA methy-
lation profiles have been shown to be tissue- and cell-type specific, while overall, DNA
methylation has been reported to decrease in replicative senescence, a pattern that has
not been shown to be followed in prematurely senescent cells [20,21]. The association
between DNA methylation and chronological age has been successfully used to create a
series of epigenetic clocks estimating the acceleration of biological age in health and in
pathological conditions, e.g., the primary DNAmAge predictor by Horvath et al. [22] or
DNAmAgeHannum by Hannum et al. [21]. These clocks are based on methylation levels
in specific CpG sites and not only reflect the advancement of biological processes, but also
predict accompanying death risk [23].

With this study, we aim to provide a comprehensive characterization of DNA methy-
lation patterns in replicative and premature senescence induced by two genotoxic stresses
(i.e., exposure to ionizing irradiation and doxorubicin), exhaustively exploring the epige-
netic modifications in three different human cell types, namely in somatic diploid skin
fibroblasts and in bone marrow- and adipose-derived mesenchymal stem cells.

2. Materials and Methods
2.1. Experimental Design

The design of this study foreseen assessment of DNA methylation in five different
conditions: in early-passage cells, in cells after a middle number of passages (MidPass),
in replicative senescence (RS) and in stress-induced premature senescence (SIPS) after
exposure to ionizing irradiation (IRR-SIPS) and doxorubicin (Dox-SIPS). In order to explore
whether the epigenetic response is tissue-specific, all five treatments were applied to three
different cell types: human diploid skin fibroblasts (DSF), human bone marrow-derived
mesenchymal stem cells (hBM-MSC) and human adipose-derived mesenchymal stem cells
(hAd-MSC). Samples were collected from six healthy individuals (two donors for each cell
type), each donating only a single type of cell. Treatments of replicative senescence and
SIPS were performed in duplicate for each donor.
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2.2. Cells and Cell Culture Conditions

Primary human DSF, hBM-MSC and hAd-MSC deriving from consenting normal
donors have been previously isolated in our laboratory and were retrieved to be used in the
current study from our established cell bank. Primary human DSF have been isolated from
dermal tissue explants, as described before [24]; primary hBM-MSC have been established
after the immunomagnetic isolation of BM-CD105+ cells using Milteny microbeads accord-
ing to the manufacturer’s instructions (Miltenyi Biotech, Bergisch Gladbach, Germany) [25];
primary hAd-MSC have been established after incubation of adipose tissue with 1.0 mg/mL
of collagenase for 1 h. hBM-MSC and hAd-MSC have been characterized based on their
ability for osteogenic, chondrogenic and adipogenic differentiation. Cells were routinely
cultured in Dulbecco’s modified Eagle’s medium (DMEM) of 4.5 mg/mL and 1.0 mg/mL
glucose for human DSF and hBM-MSC/hAd-MSC, respectively (PAN-Biotech, Aidenbach,
Germany), supplemented with penicillin (100 U/mL), streptomycin (100 mg/mL) (obtained
from Biosera, Nuaille, France) and 10% (v/v) fetal bovine serum (FBS) (from Gibco BRL,
Invitrogen, Paisley, UK) in a humidified atmosphere of 5% CO2 and 37 ◦C. Cells were
subcultured either when confluent (human DSF) or at 80% confluency (hBM-MSC and
hAd-MSC) using a trypsin/citrate (0.25%/0.30% w/v) solution.

2.3. Induction of RS and SIPS

Replicative senescence of human DSF, hBM-MSC and hAd-MSC was achieved after
serial subculturing of early-passage cells up to the exhaustion of their proliferative potential
(approx. 65, 35 and 45 population doublings for human DSF, hBM-MSC and hAd-MSC, re-
spectively). In order to induce SIPS, early-passage cells were either exposed to γ-irradiation
in a 60Co gamma source (Gamma Chamber 4000A, Isotope Group, Bhadha Atomic Research
Company, Trombay, Bombay, India) at a rate of 2.5 Gy/min, as previously described [26]
or exposed to two non-cytotoxic doses of doxorubicin (0.1 µM/dose). Cells were then
subcultured (usually twice) until their proliferative ability was exhausted. Establishment of
RS and SIPS was confirmed by the inability of the cells to incorporate bromodeoxyuridine
(BrdU) into their nuclei. Cells up to passage 5 were considered early-passage cells, while
cells reaching half the total number of cell doublings (as that was estimated for each cell
type) were considered middle-passage cells (MidPass).

2.4. Estimation of Bromodeoxyuridine (BrdU) Incorporation

The proliferative potential of the cells was estimated after labeling with 5-bromo-2’-
deoxyuridine (BrdU), as previously described [27]. Briefly, cells were plated sparsely on
sterile glass coverslips in DMEM containing 10% (v/v) FBS. BrdU (50 µM) was added to the
cell culture medium for a period of 48 h. Cells were fixed with freshly prepared 4% (v/v)
formaldehyde in phosphate-buffered saline (PBS) for 10 min, permeabilized with 0.2% (v/v)
Triton X-100 in PBS for 10 min, treated with 2 N HCl for 30 min and incubated with an anti-
BrdU-FITC antibody from BioLegend (SanDiego, CA, USA) overnight at 4 ◦C. Cells were
then counter-stained with 2.0 µg/mL 4’,6-diamino-2-phenylindole (DAPI) dihydrochloride
in PBS for 10 min. Labeled nuclei were observed under a Zeiss Axioplan 2 fluorescent
microscope (Zeiss, Jena, Germany).

2.5. Cell Lysis and DNA Extraction

Cells were detached by trypsinization using a trypsin/citrate (0.25%/0.30% w/v)
solution and were recovered by centrifugation at 500× g for 5 min. Cell pellets were
washed once with PBS to remove any culture medium and FBS residuals and pellets were
stored at −80 ◦C until genomic DNA extraction.

DNA extraction was performed using the NucleoSpin Tissue kit (Macherey-Nagel,
Düren, Germany) according to the manufacturer’s instructions. In brief, cell pellets were
lysed in the presence of Proteinase K at 70 ◦C for 10 min, and samples were applied
to the NucleoSpin Tissue columns after the addition of 96–100% (v/v) ethanol. Silica
membranes of the columns were washed twice and dried before elution of the bound DNA.
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DNA content was estimated using a Nanodrop ND-1000 spectrophotometer (Nanodrop
Technologies, Wilmington, DE, USA).

2.6. DNA Methylation Assay

Genomic DNA was bisulfite-converted using the EZ DNA Methylation Kit (Zymo
Research) and analyzed using the Infinium Human MethylationEPIC BeadChip (Illumina)
according to the respective manufacturer’s instructions.

2.7. Data Exploration

Principal component analysis (PCA) was used as an exploration tool to discover
the patterns present in DNA methylation data and to aid data interpretation [28] since it
captures the major sources of variation in the data and helps combine the traits and identify
the main attributes with high likelihood of comprising the differences in methylation
patterns necessary to distinguish groups of samples. The normalized dataset’s dimensions
were reduced with PCA using prcomp() function provided by stats R package, and the
obtained components were further used to perform heat map and cluster analysis to
visualize the grouping patterns present in the data.

Heat maps were created with the support of the heatmap() function of stats R package
to identify the distribution of associations between individual samples (represented on
the vertical axis of the graph) and a number of components retrieved from PCA (on the
horizontal axis). Very low and very high values of principal components (PCs) were repre-
sented by extreme colors ranging from light yellow to dark red, respectively. Heat maps
were complemented with dendrograms on the chart sides, visualizing the arrangement of
sample clusters and helping to identify the objects with the highest and lowest similarity.
The depth of sample clustering—expressing, at the same time, the level of considered
similarity/dissimilarity—was marked by a purple vertical line. Sample clustering was
highlighted by colored boxes grouping the samples with a similar methylation profile.

2.8. Data Analysis

Output idat files from the Illumina platform were parsed, and raw signal intensities
in the green and red channels were extracted using minfi package within R Bioconductor
software. After calculation of CpG sites’ detection p-value per CpG site, quality control
was performed and poor-quality samples—specifically those with mean detection p-value
above 0.05—were removed. In order to remove undesired variations in the data, normal
exponential convolution using the out-of-band Infinium I probes (Noob) normalization
method was applied. Further filtering excluded probes that (i) failed in at least one of the
samples (detection p-value > 0.01), (ii) were located on X- or Y-chromosomes, (iii) mapped
to SNPs and iv) were multiple-aligning, cross-reactive or masked from mapping.

2.9. Differential Methylation Analysis
2.9.1. Global Methylation Levels

Changes in global methylation levels observed in four different conditions—MidPass,
RS, IRR-SIPS, Dox-SIPS—were assessed comparing β-values in “after treatment” and
reference early-passage cultures. Mean methylation difference was determined as an
average value of ∆β = βTreatment − βReference calculated for all the probes. A positive value
of mean methylation difference (Avrg(∆β) > 0) indicated hypermethylated state in treated
compared to reference cells, while a negative value indicated hypomethylated state. Paired
t-test and subsequent multiple testing correction with Benjamini and Hochberg’s (BH)
method were used to evaluate if detected alterations were statistically significant. α = 0.05
was defined as the level of statistical significance.

2.9.2. Differentially Methylated Positions

DBSCAN algorithm was used to exclude methylation probes that had a bi- or tri-modal
trend among control subjects of the same sex [29]. Probe-wise approach was applied to
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identify local alterations in the DNA methylation patterns; thus, multiple linear models
were created using ordinary least squares fitting (limma R package) for each CpG using
methylation M-values. In the models, Donor was included as a random effect. Results
of the fitting were used in hypothesis testing performed with the robust empirical Bayes
procedure. Test statistics were adjusted for possible bias and inflation using bacon [30].
p-values were adjusted for multiple testing with the BH approach. Differentially methylated
positions (DMPs) were defined as CpG sites that reached statistical significance level with
BH-corrected p-value < 0.05 and for which the absolute difference between mean β-values
(∆β) of two compared phenotypic groups was above 20%.

Cluster analysis was employed to separate samples with dissimilar DNA methylation
profiles and recognize highly similar groups based on the emerged DMPs. For this purpose,
PCA was performed on the reduced dataset comprising β-values exclusively of significant
CpGs, and the fviz_pca_ind() function provided within factoextra R package was used for
visualization. In the graphical representation, the first and second PCs explaining the
greatest percentage of the total variability of a studied phenotype were plotted, respectively,
on the vertical and horizontal axis. The colors of plotted individuals corresponded to their
quality of representation on the cluster map (cos2).

2.10. Senescence-Related External Resources

In order to support our findings, to comment on results obtained with differential
methylation analysis and to complete the interpretation, external online resources dedicated
to senescence were consulted. SeneQuest (available at http://Senequest.net; accessed on
28 April 2022) is a comprehensive resource tool gathering and summarizing the information
on gene-to-senescence associations emerging from up-to-date publications [31], while
Human Aging Genomic Resources, HAGR (available at https://www.genomics.senescence.
info/; accessed on 27 November 2020) is a rich repository of specialized databases and
tools supporting research on aging [32,33].

2.11. Pathway Enrichment Analysis

Emerged DMPs were annotated with genes and sets of unique genes involved in
DNA methylation alterations observed in treatments with respect to early-passage cultures.
Pathway enrichment analysis was performed employing Enrichr web-based tool [34,35]
that allowed annotation of revealed gene lists with frequently occurring pathways using the
KEGG database [36,37]. We focused on the pathways for which the p-value from Fisher’s
exact test reached a statistical significance level < 0.05.

Since pathway enrichment analysis revealed an intriguingly high number of KEGG
terms related to nervous system (NS), we extended this analysis to verify if the number
of significant NS-related pathways is indeed statistically increased compared to other
returned entities. Thus, neuro-pathway enrichment analysis was performed. For this
purpose, a reference list of neuro-pathways was created, including pathways widely re-
lated to nerves, nervous system and neurological mechanisms. The list comprised all the
terms indicated in the following KEGG map classes: “signal transduction”, “signaling
molecules and interaction”, “nervous system”, “sensory system”, “development and re-
generation” and “neurodegenerative diseases”. The list was extended with the selective
addition of “endocrine system” maps. The final set of terms used for annotation is pro-
vided in Supplementary Information Table S1. Thus, lists generated in pathway analysis
were reviewed and annotated with their eventual involvement in the broadly understood
neurological context. Fisher’s exact test (right-sided) was employed in order to estimate
statistical significance of the enrichment in neuro-pathways.

2.12. DNA Methylation Clocks Analysis

Whole-genome DNA methylation data were used to evaluate the epigenetic age of
samples with Horvath’s new DNA Methylation Age Calculator available online (https://
dnamage.genetics.ucla.edu/; accessed on 30 July 2021 ). The DNA methylation-based

http://Senequest.net
https://www.genomics.senescence.info/
https://www.genomics.senescence.info/
https://dnamage.genetics.ucla.edu/
https://dnamage.genetics.ucla.edu/
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predictor of biological aging DNAmAge, a universal model for many tissues and organs
developed on 353 CpG sites, was calculated for human DSF, hBM-MSC and hAd-MSC
samples [22]. Two-way ANOVA and post-hoc Tukey’s HSD test were applied to detect
the presence of differences in epigenetic ages among distinct cell states using 0.05 as the
significance p-value threshold.

3. Results

Human DSF, hBM-MSC and hAd-MSC were collected from six healthy subjects ac-
cording to the experimental design. Each individual was a donor only of a single cell type.
Except for DSF2, all of the recruited subjects were females. Cells that exhibited less than 3%
of BrdU incorporation were considered senescent (data not shown).

To explore DNA methylation data and discover similarity–dissimilarity patterns
among samples and treatments, normalized β-values for the entire cohort were subjected
to PCA and the first 26 components explaining the highest percentage of variability in
the dataset were used for visualization. Samples tended to cluster within the cell type, as
highlighted by the colored blocks on the right side of Figure 1. In all human DSF, hBM-MSC
and hAd-MSC, RS seemed to cause major changes in the methylation pattern, leading
always to distinct epigenetic profiles.

3.1. Differential Methylation Analysis

In total, DNA methylation was assessed in 48 samples, specifically in 16 originating
from human DSF, 16 from hBM-MSC and 16 from hAd-MSC. For each cell type, five
conditions were available: Early-passage, Middle-passage, RS, IRR-SIPS and Dox-SIPS.
Early-passage cell cultures were considered as a reference state to identify epigenetic
alterations, and all four other conditions are referred here as the treatment states.

Global Methylation Levels

We began the exploration of the collected data with the question of whether there are
cell type-specific or global epigenome alterations characterizing any of the treatments. The
results of our analysis are summarized in Table 1. In all cell types, samples after a middle
number of passages presented global hypomethylation when compared to early-passage
cells, with the mean difference in methylation levels being equal to −0.0044, −0.0004 and
−0.0103 for fibroblasts, hBM-MSC and hAd-MSC, respectively. Compared to early-passage
cells, replicative senescent cells were found to be hypermethylated in fibroblasts (with an
average ∆β equal to 0.0057) and hypomethylated in both types of mesenchymal stem cells
(with the average difference reaching −0.0053 and −0.0202 for hBM-MSC and hAd-MSC,
respectively). Prematurely senescent cells (IRR-SIPS and Dox-SIPS), on the other hand, were
found hypermethylated in comparison to early-passage cells in all cell types investigated
(mean ∆β reaching 0.0066 and 0.0056 in IRR-SIPS and Dox-SIPS, respectively, for fibroblasts;
0.0071 and 0.0035 in IRR-SIPS and Dox-SIPS, respectively, for hBM-MSC; and 0.0034 and
0.0038 in IRR-SIPS and Dox-SIPS, respectively, for hAd-MSC). All reported differences in
global methylation remained significant after BH-correction for multiple testing (adjusted
p-value < 0.05).
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Figure 1. Heat map of principal component analysis (PCA) of DNA methylation data for the entire
studied cohort. Vertical axis corresponds to analyzed samples: on the right, sample names are listed,
while on the left, the dendrogram of sample clustering is plotted. Horizontal axis corresponds to
principal components (PCs): on the bottom, the 26 components used are specified, while on the
top, the dendrogram of PC clustering is presented. Purple vertical line marks the depth of sample
clustering considered, and colored blocks highlight the obtained sample groups. On right, sample
names are listed (numbers from 51 to 106) with indication of cell origin (DSF, hBM-MSC, hAd-MSC)
and sample condition (EarlyPassage, early-passage cells; MiddlePassage, cells after a middle number
of passages; RS, cells in replicative senescence; IRR.SIPS, cells in stress-induced premature senescence
after exposure to ionizing irradiation; Dox.SIPS, cells in stress-induced premature senescence after
exposure to doxorubicin).
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Table 1. Global methylation levels found in particular cell types under different conditions. Respec-
tive early-passage cultures were used as the reference.

Cell Type Condition Average (∆β) p-Value BH-Adjusted
p-Value Methylation State

MidPass −0.0044 <2.2 × 10−16 0.000 Hypomethylation
RS 0.0057 <2.2 × 10−16 0.000 Hypermethylation

IRR-SIPS 0.0066 <2.2 × 10−16 0.000 HypermethylationDSF

Dox-SIPS 0.0056 <2.2 × 10−16 0.000 Hypermethylation
MidPass −0.0004 <2.2 × 10−16 0.000 Hypomethylation

RS −0.0053 <2.2 × 10−16 0.000 Hypomethylation
IRR-SIPS 0.0071 <2.2 × 10−16 0.000 HypermethylationhBM-MSC

Dox-SIPS 0.0035 <2.2 × 10−16 0.000 Hypermethylation
MidPass −0.0103 <2.2 × 10−16 0.000 Hypomethylation

RS −0.0202 <2.2 × 10−16 0.000 Hypomethylation
IRR-SIPS 0.0034 <2.2 × 10−16 0.000 Hypermethylation

hAd-MSC

Dox-SIPS 0.0038 <2.2 × 10−16 0.000 Hypermethylation

3.2. Cell Type-Specific & Treatment-Specific Epigenetic Signatures

The second question in our study–description of simultaneous cell type- and cell
condition-specific epigenetic signatures–was addressed, identifying exclusive sets of DMPs
summarized in Table 2. The full lists of differentially methylated sites are provided in
Supplementary Information Tables S2–S13. Emerged sites were mapped to genes and
allowed the creation of lists of unique genes for which at least one significant CpG site
(DMP) was found.

Table 2. Summarization of the sets of differentially methylated positions and genes.

Cell Type Condition Number of
DMPs

Number of
Hypomethylated

DMPs

Percentage of
Hypomethylated

DMPs

Number of
Hypermethylated

DMPs

Percentage of
Hypermethylated

DMPs

Number of
Unique
Genes

DSF

MidPass 636 480 75 156 25 366

RS 25,097 11,880 47 13,217 53 9486

IRR-SIPS 33 16 48 17 52 25

Dox-SIPS 31 11 35 20 65 25

hBM-MSC

MidPass 64 14 22 50 78 45

RS 24,707 15,229 62 9478 38 7884

IRR-SIPS 21 13 62 8 38 16

Dox-SIPS 63 35 56 28 44 44

hAd-MSC

MidPass 1426 1203 84 223 16 829

RS 25,688 21,592 84 4096 16 7422

IRR-SIPS 27 11 41 16 59 19

Dox-SIPS 27 7 26 20 74 23

In human DSF, 636 differentially methylated CpGs were detected when comparing
samples from early-passage and MidPass conditions, which corresponded to 366 unique
genes. In RS, the number of DMPs was considerably higher than in other conditions, reaching
25,097 significant sites distributed across 9486 genes. Stress-induced senescence resulted
in similar alterations of epigenetic profiles for both irradiation and doxorubicin treatment,
reaching 33 and 31 significant CpGs, respectively (for both cases, 25 genes). This similarity
between stressors was manifested, however, not only in the number of DMPs and genes, but
also in the overlap between particular sets, reaching almost 60%: 18 and 14 common CpGs
(Figure 2a) and genes (Supplementary Information Figure S1a), respectively.
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Figure 2. Differentially methylated position overlaps among the three types of senescence (replicative
senescence RS, stress-induced premature senescence after exposure to ionizing irradiation IRR-SIPS
and doxorubicin Dox-SIPS) in (a) DSF, (b) hBM-MSC and (c) hAd-MSC.

Analysis of data from hBM-MSC cultures revealed 64 CpG sites and 45 unique genes
that had methylation levels significantly different between MidPass and early-passage
cells. RS-related epigenetic modifications included 24,707 DMPs mapping to 7884 genes.
Furthermore, 21 CpGs (16 genes) and 63 CpGs (44 genes) were identified as differentially
methylated after irradiation and treatment with doxorubicin, respectively, with 17 DMPs
(Figure 2b) and 12 genes (Supplementary Information Figure S1b) being common between
IRR- and Dox-SIPS.

In samples originating from hAd-MSC, the signal that was found significant in Mid-
Pass compared to early-passage cells reached 1426 sites spread over 829 genes. Epigenetic
modifications observed in RS included 25,688 DMPs and 7422 genes. Additionally, 27 dif-
ferentially methylated CpGs and 19 unique genes in IRR-SIPS treatment were identified.
Similarly, in Dox-SIPS, 27 DMPs corresponding to 23 genes were detected; however, the
overlap between signatures of both stress-induced senescent states was limited to four
significant CpG sites (Figure 2c) and three genes (Supplementary Information Figure S1c).

We performed cluster analysis separately for each cell type using the sets of unique
significant CpGs in each studied condition, and the results are presented in Figures 3–5.
Overall, there were 25,604, 24,785 and 26,335 unique DMPs in human DSF, hBM-MSC
and hAd-MSC, respectively, as summarized in Supplementary Information Table S17. For
all three cell types, samples of a single donor tended to cluster together and separate
from distinct donors, indicating that the interpersonal variability was higher than the
treatment-related intrapersonal variability. Only RS samples created an isolated cluster
reflecting notable alterations in the DNA methylation patterns accompanying RS. Addi-
tionally, RS cells seemed to lose their donor-specific epigenetic identity since they tended
to be approximal within the space of the clustering graph, surpassing interpersonal dis-
similarities. It is worth noting that MidPass cells seemed to represent an interstitial state
between early-passage and RS cells since, in the plot space, they presented a drift from
early-passage/IRR-SIPS/Dox-SIPS clusters in the direction of RS groups.
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Figure 3. Visualization of cluster analysis in human DSF samples. Principal component analysis
(PCA) was performed on normalized β-values of unique differentially methylated positions in
cells after a middle number of passages (MidPass), in replicative senescence (RS), in stress-induced
premature senescence after exposure to ionizing irradiation (IRR-SIPS) and doxorubicin (Dox-SIPS).
X-axis “Dim1” corresponds to the first principal component of PCA, and Y-axis “Dim2” to the second
principal component. The percentage of total variability explained by the component is indicated in
brackets. Colors reflect the quality of representation on the cluster map (cos2). Labels correspond to
samples (for detailed explanation of sample indicators, consult Figure 1).

3.2.1. Cell Type-Specific Senescence Epigenetic Signatures

Next, we inquired into epigenetic alterations common for any type of senescence found
simultaneously in RS, IRR-SIPS and Dox-SIPS conditions for each cell type. According to
the obtained results, the overlaps were limited, as summarized in Figure 2. In human DSF,
three DMPs were shared among all three treatments, of which two were located in genic re-
gions within POU2F3 and TMC1 genes. Both genes have been found to be overexpressed in
human cell lines during senescence, according to SeneQuest. Eleven common differentially
methylated sites were detected in hBM-MSC mapping to MCCC1, LOC101928008, SBF2,
FGF8, MIER1, DIAPH3, RAD51B, ZNF438 and TANC1 genes. According to SeneQuest,
DIAPH3 and RAD51B have been previously reported to be downregulated in senescent
human cells, while for ZNF438 and TANC1, up- and downregulation have been reported in
different cell lines. TANC1 was the only gene present also in the HAGR database, found as
overexpressed in cellular senescence. In hAd-MSC, a single CpG reached statistical signifi-
cance for all three senescence treatments and was located in the MIER1 gene that has not
been previously linked to senescence, according to the SeneQuest or HAGR database. Over-
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laps between IRR-SIPS and Dox-SIPS tended to be higher than those with RS, indicating
that both types of stress-induced senescence share common epigenetic mechanisms.

Figure 4. Visualization of cluster analysis in hBM-MSC samples. Principal component analysis (PCA)
was performed on normalized β-values of unique differentially methylated positions in cells after a
middle number of passages (MidPass), in replicative senescence (RS), in stress-induced premature
senescence after exposure to ionizing irradiation (IRR-SIPS) and doxorubicin (Dox-SIPS). X-axis
“Dim1” corresponds to the first principal component of PCA, and Y-axis “Dim2” to the second
principal component. The percentage of total variability explained by the component is indicated in
brackets. Colors reflect the quality of representation on the cluster map (cos2). Labels correspond to
samples (for detailed explanation of sample identifiers, consult Figure 1).

3.2.2. Treatment-Specific Epigenetic Signatures

Further, we searched for modifications in DNA methylation patterns that would be
treatment-specific but transversal across the three cell types. Neither significant CpGs
(Figure 6) nor genes (Figure 7) were shared among human DSF, hBM-MSC or hAd-MSC cells
in MidPass, IRR-SIPS and Dox-SIPS conditions. There was a single common gene between
IRR- and Dox-SIPS and between hBM- and hAd-MSC: MIER1, which has not been previously
associated with senescence based on the entries in SeneQuest and HAGR databases.
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Figure 5. Visualization of cluster analysis in hAd-MSC samples. Principal component analysis (PCA)
was performed on normalized β-values of unique differentially methylated positions in cells after a
middle number of passages (MidPass), in replicative senescence (RS), in stress-induced premature
senescence after exposure to ionizing irradiation (IRR-SIPS) and doxorubicin (Dox-SIPS). X-axis
“Dim1” corresponds to the first principal component of PCA, and Y-axis “Dim2” to the second
principal component. The percentage of total variability explained by the component is indicated in
brackets. Colors reflect the quality of representation on the cluster map (cos2). Labels correspond to
samples (for detailed explanation of sample identifiers, consult Figure 1).

On the other hand, in RS, as illustrated in Figure 8a, 823 DMPs (3%) were common to all
assessed cell types. Considering, instead, lists of the genes, the overlap included 2761 items
counting for 30–37% of the cell-specific gene sets (Figure 8b). Among the overlapping
entities were found genes such as TP63–Tumor Protein P63, XAF1–XIAP-Associated Factor
1, SLC13A3–Solute Carrier Family 13 Member 3 or EZH2–Enhancer Of Zeste 2 Polycomb
Repressive Complex 2 Subunit. The fact that the number of common genes exceeded so
remarkably the number of common differentially methylated CpGs confirms that epigenetic
mechanisms implicated in replicative senescence, independent of the cell type, do not
rely on single CpG sites but rather on extended alterations spread over genes becoming
epigenetic players. In other words, alterations in the DNA methylation status of one or
several adjacent CpG sites plausibly produce equivalent epigenetic outcomes. These sites
create an “epigenetic effector unit” and tend to be located within a region of a single gene.
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Figure 6. Differentially methylated positions shared among the three cell types after (a) a middle
number of passages (MidPass), (b) irradiation-induced senescence (IRR-SIPS) and (c) doxorubicin-
induced senescence (Dox-SIPS).

Figure 7. Genes shared among the three cell types after (a) a middle number of passages (MidPass),
(b) irradiation-induced senescence (IRR-SIPS) and (c) doxorubicin-induced senescence (Dox-SIPS).

3.3. Pathway Enrichment Analysis
3.3.1. Cell Type-Specific and Treatment-Specific Analysis

Genes that emerged from the annotation of DMPs identified in differential methyla-
tion analysis were further used in pathway enrichment analysis. The number of KEGG
pathways found for the three cell types in each tested condition is summarized in Table 3.

In human DSF, after a middle number of passages, irradiation- and doxorubicin-
induced senescence 17, 8 and 1 pathways were significant with nominal p-values (Table 3).
None of them reached statistical significance level when considering the adjusted p-value
(Table 3). In replicative senescent human DSF 10 of 45 significant pathways remained
significant after correction for multiple testing, and they are described in detail in Table 4.
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Figure 8. Overlap of differentially methylated (a) CpG sites and (b) genes in replicative senescence of
all three cell types: DSF, hBM-MSC and hAd-MSC.

Table 3. Number of KEGG pathways that were enriched in the sets of genes identified with at least one
differentially methylated CpG when comparing treated cells with the respective early-passage cells.

Number of Pathways
Cell Type Condition with Nominal p-Value < 0.05 with Adjusted p-Value < 0.05

DSF

MidPass 17 0

RS 45 10

IRR-SIPS 8 0

Dox-SIPS 1 0

hBM-MSC

MidPass 1 0

RS 33 5

IRR-SIPS 14 2

Dox-SIPS 20 4

hAd-MSC

MidPass 57 7

RS 43 8

IRR-SIPS 11 0

Dox-SIPS 7 0

In hBM-MSC, after a middle number of passages, there was a single KEGG term with
a nominal p-value < 0.05, but it did not remain significant after correction for multiple
testing (Table 3). In senescent cells 33, 14 and 20, significant pathways were identified for
RS, IRR-SIPS and Dox-SIPS, respectively, that were reduced to 5, 2 and 4 terms reaching
significance level also with adjusted p-value (Table 3). Details on pathways remaining
significant after p-value correction are provided in Table 5.
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Table 4. Results of pathway enrichment analysis for DSF after replicative senescence (RS). Only the
terms for which adjusted p-value reached the statistical significance level of 0.05 are listed. Overlap
column indicates ratio between number of genes provided as input list and present in a particular
pathway and the total number of genes constituting that pathway. p-value and adjusted p-value
are calculated with Fisher’s exact test. Combined score is computed by taking the logarithm of the
p-value from Fisher’s exact test and multiplying that by the z-score of the deviation from the expected
rank. Rank-based ranking is derived from running the Fisher’s exact test for many random gene sets
in order to compute a mean rank and standard deviation from the expected rank for each term in the
gene-set library and finally calculating a z-score to assess the deviation from the expected rank.

KEGG Pathway Term in DSF Overlap p-Value Adjusted p-Value Combined Score
RS

Glutamatergic synapse 75/114 0.000 0.018 20.928

Adherens junction 49/71 0.000 0.029 21.230

Axon guidance 110/182 0.000 0.029 13.979

Parathyroid hormone synthesis, secretion and action 68/106 0.000 0.030 15.694

cAMP signaling pathway 127/216 0.000 0.031 12.113

Arrhythmogenic right ventricular cardiomyopathy 51/77 0.001 0.033 15.962

Rap1 signaling pathway 123/210 0.001 0.033 11.367

Dopaminergic synapse 81/132 0.001 0.034 12.464

Calcium signaling pathway 138/240 0.001 0.037 10.346

Morphine addiction 58/91 0.001 0.040 13.072

Table 5. Results of pathway enrichment analysis for hBM-MSC after replicative, irradiation- and
doxorubicin-induced senescence (respectively RS, IRR-SIPS and Dox-SIPS). Only the terms for which
adjusted p-value reached the statistical significance level of 0.05 are listed. For the description of
column names, please refer to Table 4.

KEGG Pathway Term in hBM-MSC Overlap p-Value Adjusted p-Value Combined Score
RS

Morphine addiction 54/91 0.000 0.015 20.899

GABAergic synapse 53/89 0.000 0.015 21.046

Axon guidance 96/182 0.000 0.018 14.928

Nicotine addiction 27/40 0.000 0.023 25.946

Synaptic vesicle cycle 46/78 0.000 0.023 17.543
IRR-SIPS

Regulation of actin cytoskeleton 3/218 0.001 0.033 155.910

Melanoma 2/72 0.001 0.038 264.684
Dox-SIPS

Melanoma 4/72 0.000 0.002 318.266

Calcium signaling pathway 5/240 0.000 0.008 92.954

Regulation of actin cytoskeleton 4/218 0.001 0.038 61.131

Leukocyte transendothelial migration 3/114 0.002 0.043 81.200

Data collected from hAd-MSC revealed 57 and 43 pathways with significant nominal
p-values in MidPass and RS, respectively (Table 3). After correction for multiple testing,
seven and eight terms remained significant (Table 3), and the details are presented in Table 6.
Eleven pathways were found to be enriched in irradiation-induced senescence, and seven
after the treatment with doxorubicin. None of the identified items reached the significance
level when the adjusted p-value was considered (Table 3).
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Table 6. Results of pathway enrichment analysis for hAd-MSC after a middle number of passages
(MidPass) and replicative senescence (RS). Only the terms for which adjusted p-value reached the
statistical significance level of 0.05 are listed. For the description of column names, please refer to
Table 4.

KEGG Pathway Term in hAd-MSC Overlap p-Value Adjusted p-Value Combined Score
MidPass

Glutamatergic synapse 14/114 0.000 0.033 26.984

Phospholipase D signaling pathway 16/148 0.000 0.033 21.973

GnRH signaling pathway 12/93 0.000 0.033 26.654

Thyroid hormone signaling pathway 14/121 0.000 0.033 23.318

Choline metabolism in cancer 12/98 0.001 0.039 23.535

Spinocerebellar ataxia 15/143 0.001 0.040 19.261

Calcium signaling pathway 21/240 0.001 0.041 15.392
RS

ECM-receptor interaction 50/88 0.000 0.022 20.025

Axon guidance 91/182 0.000 0.022 14.152

Nicotine addiction 26/40 0.000 0.022 25.441

Cholinergic synapse 60/113 0.000 0.022 15.193

Morphine addiction 50/91 0.000 0.022 16.266

GABAergic synapse 49/89 0.000 0.022 16.200

Arrhythmogenic right ventricular cardiomyopathy 43/77 0.001 0.028 15.881

Focal adhesion 97/201 0.001 0.030 11.409

Comprehensive results of pathway analysis with complete lists of pathways that
reached significance with nominal p-values are provided in Supplementary Information
Tables S14–S16.

3.3.2. Treatment-Specific Analysis

Due to the number of genes identified as common for the three cell types and specif-
ically for the particular tested conditions, only the set that emerged from the analysis of
replicative senescence allowed for further pathway enrichment analysis. As a result, a list
of 83 pathways that reached statistical significance with a nominal p-value was obtained.
Fifty-one of the KEGG terms remained significant after correction for multiple testing, and
they are presented in Table 7.

Table 7. Results of pathway enrichment analysis for genes that were found common for replicative
senescence (RS) in human DSF, hBM-MSC and hAd-MSC. Only terms for which adjusted p-value
reached the statistical significance level of 0.05 are listed. For the description of column names, please
refer to Table 4.

KEGG Pathway Term in RS Overlap p-Value Adjusted p-Value Combined Score
GABAergic synapse 34/89 0.000 0.000 72.311

Morphine addiction 32/91 0.000 0.000 52.258

Adherens junction 26/71 0.000 0.000 49.409

Cholinergic synapse 35/113 0.000 0.000 37.102

Circadian entrainment 31/97 0.000 0.000 37.029

Calcium signaling pathway 59/240 0.000 0.000 25.074
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Table 7. Cont.

KEGG Pathway Term in RS Overlap p-Value Adjusted p-Value Combined Score
Dopaminergic synapse 38/132 0.000 0.000 30.938

Glutamatergic synapse 34/114 0.000 0.000 31.755

Nicotine addiction 17/40 0.000 0.000 54.133

Axon guidance 47/182 0.000 0.000 24.963

Arrhythmogenic right ventricular cardiomyopathy 25/77 0.000 0.001 32.301

GnRH secretion 22/64 0.000 0.001 34.784

cAMP signaling pathway 52/216 0.000 0.001 20.612

Rap1 signaling pathway 50/210 0.000 0.001 19.042

Phospholipase D signaling pathway 38/148 0.000 0.002 20.332

Pathways in cancer 104/531 0.000 0.002 13.958

MAPK signaling pathway 64/294 0.000 0.002 15.863

Oxytocin signaling pathway 38/154 0.000 0.004 17.441

Synaptic vesicle cycle 23/78 0.000 0.004 21.827

Adrenergic signaling in cardiomyocytes 37/150 0.000 0.004 17.034

AMPK signaling pathway 31/120 0.000 0.005 17.539

Aldosterone synthesis and secretion 26/98 0.001 0.009 16.726

Parathyroid hormone synthesis secretion and action 27/106 0.001 0.013 14.866

Insulin secretion 23/86 0.001 0.014 15.578

Pentose and glucuronate interconversions 12/34 0.001 0.015 22.599

Bacterial invasion of epithelial cells 21/77 0.001 0.015 15.504

Long-term potentiation 19/67 0.001 0.015 16.346

Ascorbate and aldarate metabolism 11/30 0.001 0.016 23.627

Retrograde endocannabinoid signaling 34/148 0.002 0.018 11.963

Wnt signaling pathway 37/166 0.002 0.019 11.271

Amphetamine addiction 19/69 0.002 0.019 14.792

Focal adhesion 43/201 0.002 0.019 10.593

Bile secretion 23/90 0.002 0.020 13.236

ErbB signaling pathway 22/85 0.002 0.020 13.378

Ras signaling pathway 48/232 0.002 0.021 9.884

Hippo signaling pathway 36/163 0.003 0.022 10.609

PI3K-Akt signaling pathway 68/354 0.003 0.022 8.855

Proteoglycans in cancer 43/205 0.003 0.024 9.680

Non-small cell lung cancer 19/72 0.003 0.026 12.768

Porphyrin and chlorophyll metabolism 13/43 0.004 0.031 14.892

Cocaine addiction 14/49 0.005 0.039 13.156

Growth hormone synthesis secretion and action 27/119 0.006 0.041 9.515

Fc gamma R-mediated phagocytosis 23/97 0.006 0.041 10.017

Protein digestion and absorption 24/103 0.006 0.042 9.672

Estrogen signaling pathway 30/137 0.006 0.042 8.900

Chronic myeloid leukemia 19/76 0.006 0.042 10.541

Gastric cancer 32/149 0.007 0.043 8.596

cGMP-PKG signaling pathway 35/167 0.007 0.044 8.250

T cell receptor signaling pathway 24/104 0.007 0.044 9.314

Chemokine signaling pathway 39/192 0.008 0.048 7.738
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As presented in Table 7, the performed pathway enrichment analysis returned a
number of KEGG terms linked to the human nervous system (NS). In order to verify if
the observed enrichment in NS-related entities was statistically significant, our study was
complemented with neuro-pathway enrichment analysis performed as described in the
Materials and Methods section. Fisher’s exact test was applied to examine whether the
KEGG map obtained from a selection of common RS-related genes contained an increased
number of significant pathways related to a broadly considered neuro-context, comparing
the non-significant terms. Considering as significant those KEGG terms that reached
adjusted p-value below 0.05, we obtained a contingency table with 25 significant and
41 non-significant NS-related pathways in comparison to 25 significant and 212 non-
significant non-NS-related pathways. As a result, Fisher’s exact test returned a p-value
of 9.70 × 10−7, indicating significant enrichment in neuro-pathways. If the significance of
KEGG terms was determined based on their nominal p-values instead, the contingency table
contained 36 significant and 30 non-significant NS-linked pathways in contrast to 47 and
90 significant and non-significant non-NS-related pathways, respectively. Thus, Fisher’s
exact test returned a p-value of 8.73 × 10−8, confirming again the statistical significance of
neuro-pathway enrichment.

3.4. DNA Methylation Clocks Analysis

The acceleration of biological age was evaluated in human DSF, hBM-MSC and hAd-
MSC using Horvath’s DNAmAge model. Even though no statistically significant differences
in the epigenetic age of early-passage, MidPass, RS, IRR-SIPS and Dox-SIPS cells were
found, a trend was observed in all three cell types; that is, replicative senescent cultures
tended to present higher values of predicted biological age than cultures of the four other
conditions (Figure 9).

Figure 9. DNA methylation-based prediction of biological age using Horvath’s DNAmAge model in
human DSF, hAd-MSC and hBM-MSC from different cell cultures: early-passage cells (EarlyPassage),
cells after a middle number of passages (MiddlePassage), cells in replicative senescence (RS), cells in
stress-induced premature senescence after exposure to ionizing irradiation (IRR_SIPS) and cells in
stress-induced premature senescence after exposure to doxorubicin (Dox_SIPS).
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4. Discussion

Aging is characterized by the inevitable progressive decline in tissue and organ func-
tion and the increased risk for morbidities and mortality. Both falling within the hallmarks
of aging, cellular senescence and epigenetic alterations are interconnected, given that epige-
netic dysregulation has been considered a key driver for cellular senescence and stem cell
aging [38–40]. DNA methylation, in particular, has been reported to change during cellular
senescence in a context-dependent manner [38]. For example, altered DNA methylation pat-
terns have been observed in replicative senescent cells, but not in prematurely irradiation-,
oncogene- and non-permissive temperature-induced senescent cells [20,41]. Given that the
epigenetic mechanisms underlying replicative and stress-induced premature senescence
have not yet been fully elucidated, the aim of the current study was to investigate (i) global
DNA methylation, (ii) epigenetic signatures and (iii) biological age acceleration in three
different types of cellular senescence in human DSF, as well as in hBM-MSC and hAd-MSC.
For each cell type, samples from two individual donors were analyzed. Senescence in cells
was induced as a result of replicative exhaustion due to long-term serial subculturing or as
a response to genotoxic stress, i.e., exposure to ionizing irradiation and doxorubicin.

The obtained results confirmed the presence of alterations in global DNA methylation
patterns. Global hypo- and hyper-methylation were consistently found in all three cell
types in cultures after a middle number of passages and in irradiation-/doxorubicin-
induced prematurely senescent cells, respectively. In replicative senescence instead, human
DSF were hypermethylated compared to the respective early-passage cultures, while in
both mesenchymal stem cells, global DNA hypomethylation was observed. In our work,
we identified three epigenetic signatures: (a) cell type- and treatment-specific signature;
(b) cell type-specific senescence-related signature; and (c) cell type-transversal replicative
senescence-related signature. Cluster analysis performed on methylation data of cell-
specific DMPs for all treatments demonstrated high interpersonal variability of epigenetic
profiles and increased similarity in the methylation patterns of early-passage, IRR-SIPS and
Dox-SIPS cells. Replicative senescence is accompanied by a profound epigenetic remodeling
to the point that eventually surpasses interpersonal dissimilarities. Middle-passage cells
present a methylation profile that is between replicative senescent and early-passage cells,
suggesting that epigenetic remodeling is a progressive process. However, our experimental
design does not allow us to understand whether epigenetic modeling is a consequence or a
cause of the replicative senescence process. Nevertheless, it is reasonable to assume that
this profound methylation reshaping led to consistent changes in the molecular physiology
of the cells, eventually contributing to the replicative senescence phenotype. From the
observation of the genes emerging from the cell type-transversal replicative senescence-
related signature, we noted in many comparisons an enrichment in pathways linked to the
nervous system functions. We performed Fisher’s exact test to confute this observation, and
the analysis confirmed that neuro-system function is significantly enriched with respect
to other pathways. These pathways indeed contained an increased number of significant
KEGG terms involved in “signal transduction”, “signaling molecules and interaction”,
“nervous system”, “sensory system”, “development and regeneration”, “neurodegenerative
diseases” and “endocrine system”. Taking together these results led us to speculate that,
in consideration of the high epigenetic homogenizing effect of cellular senescence on the
different cell types, such common methylation remodeling could be particularly detrimental
in the cells belonging to the nervous system, in agreement with the theory that the cellular
senescence process plays a role in neurodegenerative diseases [42]. Regarding biological
age, replicative senescent cells of all types tended to present higher values of predicted
biological age, without reaching statistical significance that would evidence the acceleration
of DNAmAge.

The decrease in global methylation levels during in vitro culturing of animal and
human cells has been reported [43–47], and a set of focal site-specific alterations has been
described [43,48,49]. In the study of Bork et al., DNA methylation was investigated in
replicative senescent hBM-MSC [43]. In contrast to our study, Bork et al. detected no
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changes in the global methylation patterns of early- and late-passage cultures. A number
of sites associated with RS were identified, particularly 29 hypermethylated CpGs (corre-
sponding to 28 unique genes) and 55 hypomethylated CpGs (mapping to 51 unique genes).
We also found 3 of the above-mentioned 29 and 5 of the above-mentioned 55 sites to be
RS-related DMPs in hBM-MSC. When considering the lists of unique genes, the specific
overlaps between the results of both studies reached 13 of 28 (i.e., LCAT, CPA1, DLX5,
MAMDC2, FES, ACTA2, FGFR1, SPARCL1, MYF5, TRIM65, RUNX3, TSC1, ISLR) and 21 of
51 items (i.e., PRSS1, RAB24, DSG4, CEACAM3, SCN7A, KRTAP26-1, C18orf20, SPRR2A,
CTSG, VN1R2, PBOV1, DPP6, LY9, CCR3, REG3A, LACRT, SPRR3, GLIS1, RUNX3, MYH1,
KRTAP11-1), respectively. Some of these genes have already been linked to serious neuro-
logical conditions, such as SCN7A, which has been associated with amyotrophic lateral
sclerosis [50], GLIS1 with Parkinson’s Disease [51] and SPARCL1 with neuroinflammation in
Alzheimer’s Disease [52]. Pathways related to the discovered genes in the work of Bork et al.
were enriched, particularly in processes related to development. In the cited study, authors
identified additional age-related changes by comparing DNA methylation in early-passage
cells derived from young (21–50 years old) and elderly (53–85 years old) donors, and they
verified the presence of overlaps between both senescence- and age-associated signatures.

Koch et al. investigated culture expansion-related DNA methylation alterations in
dermal fibroblasts, mesenchymal stem cells from bone marrow and adipose tissue [53].
According to the authors, unsupervised PCA revealed two tendencies: clustering of the
cells deriving from the same tissue and distinction of the respective RS cultures in accor-
dance with our findings. Changes in the methylation pattern were shown to be correlated
with the number of passages, having a reproducible character and spreading constantly
with the successive expansion steps. CpG sites associated with long-term culturing were
predominantly hypermethylated. The authors focused particularly on six differentially
methylated sites located in GRM7 and CASR (both found hypermethylated), PRAMEF2,
SELP, CASP14 and KRTAP13-3 genes (all found hypomethylated). These CpGs served to
create an Epigenetic-Senescence-Signature model that was successfully validated in several
cell types. Four of the six afore-mentioned genes, namely GRM7, CASR, SELP and CASP14,
were found to be hypermethylated in replicative senescent human DSF, hBM-MSC and
hAd-MSC in our study, compared to their respective early-passage cultures.

Another study further investigated senescence-related methylation changes by com-
paring methylomes of replicative senescent human dermal fibroblasts and human bone
marrow-derived mesenchymal stem cells [49]. The authors confirmed the tendency in the
clustering between the methylation profiles of cultures deriving from the same cell tissue.
Similar to our observations, authors noticed that RS-related signatures for different cell
types were considerably overlapping, indicating that epigenetic regulation of involved
mechanisms must be at some part common and cell type-independent.

Koch and colleagues further explored senescence-related methylation changes in
mesenchymal stem cells from human bone marrow [41]. Authors of this study found
1702 hypermethylated (corresponding to 1219 unique genes) and 2116 hypomethylated
CpG sites (mapping to 1260 unique genes) in late-passage cultures, when compared to
early-passage cells. Of these, 64 and 397 probes, respectively, were present in the list of
RS-associated DMPs in hBM-MSC in our study. In terms of unique genes, the overlap
with our work was 739 and 889 items, respectively. Furthermore, although exposure to
irradiation resulted in the senescence of the cells, Koch et al. did not manage to identify
any differentially methylated CpGs. Thus, DNA methylation could not be considered a
causative mechanism in IRR-SIPS. This observation is in agreement with our results, since
irradiation of hBM-MSC resulted in only 14 CpGs that reached the significance level with
a nominal p-value, which was further limited to two sites that remained significant after
correction for multiple testing.

The work of Bielak-Zmijewska et al. provided insight into the methylation alterations
after Dox-SIPS treatment [54]. This study examined the epigenetics of senescence in
vascular smooth muscle cells derived from the human aorta. Although the authors observed
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global DNA hypomethylation after replicative senescence, no change after doxorubicin
treatment was detected. This observation is not in line with what could be expected since
doxorubicin was shown to inhibit the enzymatic activity of DNMT1, leading, in turn to
the downregulation of methylating events [55]. Additionally, the study confirmed an
association between the number of culture passages and the shortening of telomeres, while
Dox-SIPS seemed to have no effect on telomere length. Although—as reported above—
there is evidence of some similarity in the epigenetic mechanisms among different cell
types, a comparison of the results from the study of Bielak-Zmijewska et al. with ours
should be conducted with caution, due to the different origin of the cells.

In the existing literature, there is a limited number of works on DNA methylation-
based age in cellular senescence. Lowe et al. have explored the acceleration of the biological
clock estimated with Horvath’s algorithm in senescent human coronary artery-derived
endothelial cells [56]. Authors of the particular work confirmed acceleration of the epige-
netic aging in RS and oncogene-induced senescence; however, no evidence of a similar
tendency in irradiated cells was provided. Again, any discrepancy with our results could
be attributed to cell-type-specific differences.

Interestingly, some of the genes identified in our methylation study are included in the
CellAge signature of the HAGR repository, for instance, TP63, shown to induce senescence
in mouse- and human-derived fibroblasts [57]; XAF1, found over-expressed in IRR-SIPS
and Dox-SIPS pulmonary microvascular endothelial cells [58]; SLC13A3, accelerating RS
in human diploid cells and renal tubular cells [59]; or EZH2, the deficiency of which has
been shown to lead human gastric cancer cells to senescence [60]. Others could be retrieved
from the SeneQuest senescence-focused search engine, such as POU2F3 [61] and TMC1 [62],
which have been reported to display senescence-associated upregulated expression, or
such as DIAPH3 [61] and RAD51B [63] that have been reported to be downregulated in
human cell lines. Previously reported data on the regulation of the discovered genes at
the expression level could indicate that the epigenetic changes revealed in this study may
be plausibly translated to transcriptomic events and may have functional consequences
in the cells.

Overall, our work demonstrates changes in the DNA methylation levels of senescent
human fibroblasts and stem cells, i.e., of human DSF, hBM-MSC and hAd-MSC. Epigenetic
alterations varied among the cell types studied, while in all cases, they were more pro-
nounced in replicative senescent cells than in cells rendered senescent after their exposure
to ionizing irradiation or doxorubicin. This finding strongly supports the heterogeneity
of senescent cells depending on the tissue of origin and the stimulus provoking senes-
cence, implying diverse biological roles in tissue homeostasis and the development of
age-associated diseases. Further characterization of these epigenetic signatures that could
be linked to different degrees of sensitivity towards senotherapeutic compounds may prove
extremely useful for designing novel therapeutic strategies.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells12060927/s1, Table S1. List of neuro-pathways: KEGG path-
ways widely related to nerves, nervous system and neurological mechanisms. Table S2. Differentially
methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in MidPass DSF. Table S3. Differentially
methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in RS DSF. Table S4. Differentially
methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in IRR-SIPS DSF. Table S5. Differentially
methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in Dox-SIPS DSF. Table S6. Differentially
methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in MidPass hBM-MSC. Table S7. Dif-
ferentially methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in RS hBM-MSC. Table S8.
Differentially methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in IRR-SIPS hBM-MSC.
Table S9. Differentially methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in Dox-SIPS hBM-
MSC. Table S10. Differentially methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in MidPass
hAd-MSC. Table S11. Differentially methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2 in
RS hAd-MSC. Table S12. Differentially methylated CpGs with adjusted p-value < 0.05 and ∆β > 0.2
in IRR-SIPS hAd-MSC. Table S13. Differentially methylated CpGs with adjusted p-value < 0.05 and
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∆β > 0.2 in Dox-SIPS hAd-MSC. Table S14. Results of pathway enrichment analysis for DSF after a
middle number of passages, replicative senescence, irradiation- and doxorubicin-induced senescence.
Table S15. Results of pathway enrichment analysis for hBM-MSC after a middle number of passages,
replicative senescence, irradiation- and doxorubicin-induced senescence. Table S16. Results of path-
way enrichment analysis for hAd-MSC after a middle number of passages, replicative senescence,
irradiation- and doxorubicin-induced senescence. Table S17. Summary of DMP sets used in cluster
analysis. Figure S1 Gene overlaps among the three types of senescence in (a) DSF, (b) hBM-MSC and
(c) hAd-MSC.
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