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Abstract: In recent years, a lot of attention has been paid to using radiology imaging to automatically
find COVID-19. (1) Background: There are now a number of computer-aided diagnostic schemes that
help radiologists and doctors perform diagnostic COVID-19 tests quickly, accurately, and consistently.
(2) Methods: Using chest X-ray images, this study proposed a cutting-edge scheme for the automatic
recognition of COVID-19 and pneumonia. First, a pre-processing method based on a Gaussian
filter and logarithmic operator is applied to input chest X-ray (CXR) images to improve the poor-
quality images by enhancing the contrast, reducing the noise, and smoothing the image. Second,
robust features are extracted from each enhanced chest X-ray image using a Convolutional Neural
Network (CNNs) transformer and an optimal collection of grey-level co-occurrence matrices (GLCM)
that contain features such as contrast, correlation, entropy, and energy. Finally, based on extracted
features from input images, a random forest machine learning classifier is used to classify images
into three classes, such as COVID-19, pneumonia, or normal. The predicted output from the model is
combined with Gradient-weighted Class Activation Mapping (Grad-CAM) visualisation for diagnosis.
(3) Results: Our work is evaluated using public datasets with three different train–test splits (70–30%,
80–20%, and 90–10%) and achieved an average accuracy, F1 score, recall, and precision of 97%, 96%,
96%, and 96%, respectively. A comparative study shows that our proposed method outperforms
existing and similar work. The proposed approach can be utilised to screen COVID-19-infected
patients effectively. (4) Conclusions: A comparative study with the existing methods is also performed.
For performance evaluation, metrics such as accuracy, sensitivity, and F1-measure are calculated. The
performance of the proposed method is better than that of the existing methodologies, and it can thus
be used for the effective diagnosis of the disease.

Keywords: computer-aided detection system; smart healthcare system; deep learning; COVID-19;
random forest; statistical features; convolutional vision transformers

1. Introduction

The coronavirus of 2019 is a severe illness that spreads quickly. A recently identified
virus known as the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the
cause of it. This disease first appeared in December 2019 in Wuhan, Hubei Province, China.
Since then, it has spread quickly to almost every country and region in the world, causing
a global pandemic that has never happened before [1]. The Chinese outbreak of COVID-19
was declared a public health emergency of international concern (PHEIC) by the Director
of the World Health Organization (WHO) on 30 January 2020, as it posed a serious risk
to states with vulnerable and fragile health organisations; the outbreak was subsequently
recognised as a pandemic by the WHO in March 2020 [2]. Recently, on 26 November 2021,
a new variant of omicron was diagnosed in people in South Africa, which is still under
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epidemiological study to understand the impact of omicron. Around 4.8 million new cases
and 39,000 deaths were reported globally in the last 28 days (30 January to 26 February
2023), representing a 76% and 66% decline, respectively, from the previous 28 days. Around
758 million confirmed cases and over 6.8 million deaths had been reported globally as of
26 February 2023 [2].

According to the WHO, the new variant B.1.1.529, called omicron, is still concerning [3].
Researchers in the UK, South Africa, Denmark, and all over the globe have investigated
many elements of omicron. The outcomes of these studies will be shared when they become
available. There is no evidence that the symptoms associated with omicron are distinct
from those associated with other variants. All COVID-19 variants, including the worldwide
predominant delta variant, can cause severe illness or even death, especially in the most
vulnerable; thus, prevention is the best approach. As of 22 December 2021, the omicron
variant was present in 110 countries across all six WHO regions. Our understanding of the
omicron variety continues to evolve as further information becomes available. Based on
the available research, omicron has a substantial growth advantage over delta. In locations
where community transmission has been documented, the virus spreads significantly faster
than the delta strain, with a doubling period of only two to three days. Estimated growth
rates in South Africa are now falling, owing primarily to falling rates in the Gauteng
province. It is unclear if the reported high growth rate since November 2021 is due
to immune evasion or intrinsic increased transmissibility, although it is most likely a
combination of the two. Early evidence from South Africa, the United Kingdom (UK), and
Denmark suggest that omicron has a lower risk of hospitalisation than delta. However,
hospitalisation risk is only one component of severity that admission policies can influence.
More data from different jurisdictions is needed to determine how clinical severity criteria,
such as oxygen consumption, mechanical ventilation, and death, are linked to omicron.
In the fall of 2022, the omicron subvariant of COVID-19, BA.5, became one of the virus’s
dominant strains in the United States. It was the most easily transmitted strain at the time,
and it is capable of evading immunity from COVID infection and immunisation [4–6].

Vaccines are currently available but are still undergoing testing against the omicron
variant. In the United Kingdom, after two doses of either the Pfizer BioNTech-Comirnaty
or AstraZeneca-Vaxzervria vaccines, the effectiveness of the omicron vaccination against
symptomatic disease decreased significantly compared to that of the delta vaccine. How-
ever, two weeks after obtaining a Pfizer BioNTech-Comirnaty booster, the effectiveness
against delta was marginally increased or comparable. More research is necessary to assess
the effect of booster vaccination on the durability of protection against severe and mild
disease, infection, and transmission, particularly in the context of evolving variants [7].
Data on the effects of this novel variant of concern on vaccine effectiveness, particularly
against severe disease, are currently lacking [8,9]. As a result, visual clues can be utilised
as an alternate method for rapidly screening infected patients. The most prevalent symp-
tom of this virus is a lung infection, for which CXR images are widely used as a visual
indicator [10]. Initial assessment, detection, and cure of patients with suspected or proven
COVID-19 diseases could be possible with radiological imaging modalities such as digital
chest X-ray images and thoracic computed tomography (CT).

Although traditional diagnosis has gotten more precise over time, it is still vulnerable
to medical personnel risks. It is also more expensive as diagnostic test kits are required for
each patient. In comparison, medical imaging procedures such as CT scans and X-rays,
which are considered safer, faster, and more easily accessible, can be employed for screening.
For COVID-19 screening, X-ray image screening is preferred over CT scans since it is more
widely available, easy, fast, and substantially less expensive [11,12]. On the other hand,
manual identification of COVID-19 using CXR images might be time-consuming. There may
be several inaccuracies and human flaws if there is no prior experience with or knowledge
of the virus and its symptoms. To tackle the COVID-19 worldwide pandemic, the US
federal government pushed health specialists and academics to adopt machine learning
(ML), artificial intelligence (AI), and other developing applications in March 2020 [13]. As a
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result, there is a need to automate such operations across the board. It should be available
to make diagnosis more effective, precise, and rapid. The existing work on COVID-19
detection using machine learning and deep learning (DL) is discussed in Section 2 of this
paper. A visual example of chest X-ray images is shown in Figure 1.
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1.1. Current Limitations and Major Contributions

Several DL and pre-trained DL model were used to detect COVID-19 using chest X-ray
images. However, these methods focused only on performance improvement. Most of the
models constructed are limited by the amount of COVID-19 images, especially at the onset
of the pandemic, because of unavailability or limited access to publicly available data [14].
Moreover, most of the developed methods include several deep learning models, making
these methods computationally complex. In addition, many of these developed methods
focus on enhancing the quality of CXR images before applying them to the DL-based
model. Therefore, there is still a gap in obtaining precise chest X-ray images for COVID-19
detection using a machine learning algorithm. Our proposed comprehensive research work
focuses on diagnosing COVID-19 using CXR images. The main purpose of this study is to
develop a simple approach for COVID-19 detection based on ML algorithms. Our work
comprises pre-processing, feature extraction, and classification phases to detect normal
X-rays and COVID-19 images.

Following are the contributions of our proposed work.

1. We have developed a new feature framework based on a convolutional vision trans-
former and an optimal set of GLCM features, such as contrast, energy, entropy, and
correlation, that is computationally efficient for extracting compelling features from
enhanced chest X-ray images.

2. A cost-efficient and simple pre-processing method was implemented based on the
Gaussian filter and logarithmic operator.
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3. The classification of conventional X-ray and COVID-19 images was accomplished via
a random forest classifier with three distinct training–test split techniques.

4. Results were evaluated on these performance metrics: accuracy, precision, recall, and
F1 score. A comparative assessment of the proposed work with existing similar work
for COVID-19 detection is also presented.

1.2. Paper Organization

This paper is structured as follows: Section 2 summarises the current work on COVID-
19 detection. Section 3 describes the data acquisition and the proposed method for the diag-
nostic system. Section 4 presents the experimental study of the proposed work. Section 5
presents the discussion, and, finally, Section 6 concludes the paper with future remarks.

2. Literature Review

After the COVID-19 outbreak in late 2019, more and more scientists, researchers in
medical image analysis, and AI experts have shown interest in making a very good COVID-
19 diagnostic system that uses chest X-rays. There are several studies based on AI that the
researcher developed to help clinicians efficiently detect COVID-19 pneumonia [14–18].
Several research and development-based methods have addressed chest X-ray image
classification using DL techniques to aid in the detection of pneumonia and COVID-19
disorders. Ref. [19] presents a good review study about DL-based COVID-19 detection
method using CXR images. Another [20] study examines existing deep learning methods
for detecting coronavirus infection in lung images. The study in [12] proposed using chest
X-ray images to investigate COVID-19 using a patch-based deep learning method. They
used a fully connected DenseNet, composed of 103 convolutional layers, to segment the
lung region from CXR images. After that, a few random patches were taken from the lung
areas that had been split up and put into the multimodal machine learning classifier as
inputs. The chest X-rays used in this study came from healthy people and people with
bacterial pneumonia, tuberculosis, and coronavirus-related viral pneumonia This proposed
work achieved an overall detection accuracy of 88.9% and an F1-score of 84.4%.

Another work [21] proposed a method that utilises a deep learning architecture called
DarkCovidNet(DCN). They used digital chest X-rays images to automatically identify
COVID-19. Their model had 17 convolutional layers and could handle both binary
(non-COVID vs. COVID-19) and multi-classification (non-COVID-19 viral pneumonia
vs. COVID-19 vs. bacterial pneumonia). For binary classifications, the diagnostic accuracy
was found to be 98.08%, and for multinomial classifications, it was found to be 87.02%. In a
similar study [22], a DL model (Inf-Net) was used to segment the suspicious area of the
lung using CXR samples to look for COVID. The suspicious area was chosen at random. In
this work, the final segmented maps are made with the help of a parallel partial decoder.
Finally, precise edge detection and reverse attention were used to enhance and model the
boundaries. The model produced decent segmentation scores, with an alignment index of
0.89 and a Dice of 0.74.

Using radiographs, the study [18] built a deep network called COVID-net in May
2020 to tell the difference between people with a SARS-CoV-2 infection and healthy people.
Using the same image datasets, the proposed work was compared to ResNet-50 and VGG-
19, the standard deep learning networks already trained. The suggested work does better
than the VGG-19 and ResNet-50 models, with a positive predictive value (PPV) of 90% for
healthy individuals, 91% for pneumonia, and 99% for COVID-19. A separate study [23]
found that a deep COVID-XNet model could detect COVID-19 infection in 50 chest X-rays.
The author utilised seven deep neural networks to extract image features successfully.
They comprehensively compare the proposed model to other DL networks (DenseNet201
and VGG-19), and the outcome suggests that the approach has outstanding diagnostic
performance with 90% accuracy.

The research in [24] developed a three-step DL model for classifying CT scan samples
to find SARS-CoV-2 and identify it. This work uses different pre-trained models, such



Healthcare 2023, 11, 837 5 of 24

as SqueezeNet, ResNet101, ResNet50, and ResNet18, for transfer learning, abnormality
localisation, and data augmentation. Experiments showed that the Resnet18 network
model gave the best diagnostic performance, with accuracies of 99%, 97%, and 99% on
the train, valid, and test sets, respectively. In another study [25], five network models
(ResNet152, InceptionV3, ResNet101, Inception-ResNetV2, and ResNet50) were made to
find COVID-19-infected patients using radiograph images. Cross-validation schemes were
used to check this work by putting it into different classes for several binary classification
tasks. The ResNet50 model was thought to be the best at finding coronavirus-2 because it
had an overall accuracy of 98%. In [26], the authors suggested using artificial intelligence
to come up with a fast way to find coronaviruses. The dataset had 1020 CT scan images
from 194 patients, some of whom were healthy and some had COVID-19. The author
used 10 CNNs to find COVID-19-positive people: VGG-19, VGG-16, ResNet-18, AlexNet,
ResNet50, ResNet101, GoogleNet, Xception, SqueezeNet, and MobileNet. The authors
reported that Xception and ResNet-101 attained excellent diagnostic performance among all
networks. The ResNet101 model achieved an overall accuracy of 99%, while the Xception
model achieved an overall accuracy of 100%. However, the work reported indications that
the radiologists’ performances in detecting SARS-CoV-2 was modest. The author chose
the ResNet101 network model as the best for screening and diagnosing coronaviruses.
Therefore, it could be used in diagnostic applications. One recent work, in [27], developed
five different deep learning models: ResNet50, ResNet101, DenseNet121, DenseNet169,
and InceptionV3, for COVID-19 detection using chest X-ray images. The performance
of these five models was evaluated using a large, publicly available library comprising
CXR pictures associated with COVID-19 patients, as well as unknown data that had not
before been seen by any model during the training or validation phase. The five studied DL
algorithms produced good results, with the Resnet 101 model achieving the best accuracy
of 96%, making it suitable for medical usage scenarios including the detection of COVID-19
cases using CXR Images.

Mahdy et al. [28] provided a complete scheme for recognising COVID-19 radiograph
images. A support vector machine extracts in-depth features to categorise coronavirus-
affected chest X-ray samples. This system is proposed as a beneficial Computer-Aided
Diagnosis (CAD) tool to aid healthcare experts and medical doctors recognise COVID-
19-positive cases early. This scheme reported excellent results in the categorisation of
COVID-19. This work obtained an overall average accuracy of 97%. Samy et al. [29] re-
cently presented a new CAD framework based on GLCM features with a latent-dynamics
conditional random field (LDCRF) classifier model to classify COVID-19 positive and
negative cases. This study extracted all ten features from GLCM for COVID-19 and non-
COVID-19 chest X-ray images. The experimental result showed that the proposed method
obtained an F1-score, recall, precision, and average accuracy of 95.5%, 94.6%, 96.1%, and
95.8%, respectively. However, this work is computationally complex because of the complex
pre-processing and the extraction of several irrelevant features from CXR images. Recently,
Oguz et al. [30] proposed a novel hybrid model for COVID-19 detection based on the com-
bination of ResNet-50 and SVM. When tested on real data sets obtained from one hospital
environment, the accuracy achieved by the proposed hybrid model (ResNet-50 + SVM)
was 96.296%, F1 score of 95.868%, and an AUC value of 0.9821, which is greater than that
of conventional ResNet-50 models alone.

This study in [31] presented a fuzzy logic-based deep learning (DL) strategy for
distinguishing between Chest X-ray (CXR) images of patients with COVID-19 pneumonia
and those with non-COVID-19 interstitial cases of pneumonia. The developed model,
dubbed ‘CovNNet’, was used for extracting relevant features from CXRs combined with
fuzzy images generated by a fuzzy edge detection algorithm. The experiments showed that
using both the CXR and fuzzy feature inputs within a deep learning framework resulted in
an accuracy rate of up to 81%, which was higher than benchmark DL approaches. Another
work [14] proposed a Deep Learning Method (DLM) to detect COVID-19 using chest X-ray
images. It was evaluated on 10,040 samples and had an accuracy rate of 96.43%, with
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a sensitivity of 93.68%, for correctly diagnosing COVID-19 instances compared to other
expensive and time-consuming pathological tests, such as PCR or antigen testing kits,
etc. Another recent work in [32] combined the deep learning model DenseNet 169 and
Machine Learning model XgBoost to diagnose COVID-19. It achieved 98.23% accuracy
in two-class problems and 89.70% accuracy in three-class problems, with 99.78%, 100%
specificity and 92.08%, 95.20 sensitivity values, which are greater than other systems used
before for detection purposes, such as the DarkCovidNet network. Table 1 demonstrates
the related work performance along with its limitations.

Table 1. Summary of related work for COVID-19 detection.

Cited Methodology Dataset Results Parameters Limitations

Yujin et al. [12]

A Patch-based
CNN method was
developed based

on ResNet-18
architecture.

JSRT + NLM

ACC = 88%,
F1-score = 84%,

SEN = 96%,
SPE = 81%

NIL

The method is considered
computationally complex
because of complex image

pre-processing and
classification steps.

Tulin et al. [21] The DCN model
was proposed. OWN Datasets

ACC = 98%,
F1-score = 96%,

SEN = 95%,
SPE = 95%

678 Trainable The limited number of
COVID-19 samples used.

Fan et al. [22]
The inf-Net deep
learning model
was developed.

COVID-19 CT
Collection

SEN = 87%,
SPE = 97%. NIL

Only focused on lung
infection segmentation
rather than classifying

COVID-19 patients.
Complex approach to

obtain multi-class label
infection label.

Linda et al. [18]

The covid-Net
deep learning

model for
detection.

COVIDx ACC = 93% 11.78 million The method has
degraded performance.

Ezz et al. [23]
The covidXNet

model was
proposed

OWN Datasets ACC = 90% NIL
Training complexity;
several deep learning

models were used to train.

Sakshi et al. [21,24]
Several pre-trained
models were used

in the study.
CT scan Dataset

ACC = 99%.
SEN = 100%,
SPE = 98%

NIL

No effective evaluation of
the deep learning model

because only one
train–test split strategy

is used.

Ali et al. [25]

Several deep
learning models

are use in
this work.

Dr Joseph
Dataset,

ChestX-ray8
Dataset,

Kagge ChestXray
Datasets

ACC = 96%,
ACC = 99%,
ACC = 99%

210.4 Millions

Several deep learning
models used in the

proposed work, making
them complex.

Abbasian et al. [26]

A comparative
study of 10 deep
learning models
was presented.

Own Datasets ACC = 100% NIL Limited in terms of
model complexity.

Lamia et al. [28]

A multi-level
threshold and

SVM method were
proposed.

Montgomery
County X-ray Set

ACC-97%,
SPE = 99%,
SEN = 95%

NIL Low generalizability
problem.

Constantinou et al.
[27]

Several deep
learning models

are used in
this work.

Chest X-ray
Image

PRE = 96%.
RECALL = 96%

ACC = 96%
NIL Low generalization

problem.
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Table 1. Cont.

Cited Methodology Dataset Results Parameters Limitations

Oguz et al. [30] ResNet 50 and
SVM Model. CT Images ACC = 96%,

F1_score = 95% 23 Million Limited in terms of data
used in work

Ieracitano et al.
[31]

A fuzzy
logic-based deep

learning (DL)
approach called

CovNNet

CXR Images ACC = 81% NIL Degraded performance

Chakraborty et al.
[14]

DLM method is
used to detect

COVID.
CXR Images ACC = 96%.

SEN = 93% 11 Million Lack of model validation
because of limited data.

Nasiri et al. [32]
DenseNet 169 and
extreme gradient

boosting
CXR Images ACC = 98%. NIL Low sensitivity achieved

in two-class problem

3. Materials and Methods
3.1. Data Acquisition

We used a public dataset that Tawsifur Rehman [33] shared with us to test how well our
proposed method works. This dataset, COVID-19, which a group of researchers from Qatar,
Bangladesh, Malaysia, and Pakistan created in collaboration with medical professionals,
was the winner of the COVID-19 database contest that the Kaggle community held. The
database includes 3816 COVID-19 images, 345 pneumonia images, and 192 normal chest
X-rays. In this study, we evaluated our proposed CAD system utilising a total of 1095 chest
X-rays, including 375 normal images, 345 viral pneumonia images, and 375 COVID-19
images. Figure 2 displays image samples of normal and COVID-19. Whereas, in Table 2,
the total images of each class are represented.
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Table 2. Number of images in each class of COVID-19 database, with data augmentation and without
data augmentation.

Classes No. of Images Data Augmentation

normal 375 12,000
pneumonia 345 12,000
COVID-19 375 12,000
Total 1095 36,000
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3.2. Proposed Methodology

This section covers the proposed strategy for automatic COVID-19 and pneumonia
recognition. Below, Figure 3 shows the flowchart of our proposed framework. The overall
structure of the proposed framework is as follows: First, each chest X-ray image is enhanced
using a logarithm operator and Gaussian filter. Afterwards, hybrid features are extracted
based on the Convolutional Vision Transform (CVT) and some statistical texture features by
using the GLCM of chest X-ray images. These hybrid features are converted into a 1D vector
representation and input into a random forest machine learning classifier to categorise
images into three classes, namely, COVID-19, pneumonia, and normal. The proposed
methodology’s workflow phases are explained in depth in the following subsections. Those
steps are also described in Algorithm 1.
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Algorithm 1: Classification of chest disease by using hybrid features and random forest classifier

Step 1: Preprocess image, i.e., image = X and Preprocessing step are applied by using:
(a) Reshape image (X) to (500, 500)
(b) Remove noise using the Gaussian smoothing operator, and
(c) Enhance local contrast, logarithmic operator

Step 2: Apply data augmentation technique on pre-processed images
Step 3: Extract Hybrid Feature:

(a) Feature Extraction used: Next optimal texture feature of GLCM is used, which includes
Contrast, Energy, Entropy, and Correlation, and we keep the distance 1 and 5, angle = 0 to
reduce the computational complexity in feature contraction using GLCM.
(b) Afterward Vision transformer model is applied to extract more detailed spatial
local features.

Step 4: Hybrid-features = Both types of the above feature were combined and used as input
to classifier

Step 5: The classification used the output of previous feature extraction map steps, and a Random
classifier is used to classify the images into three classes, namely, COVID-19, Pneumonia
and Normal

3.2.1. Pre-Processing

The pre-processing step aims to detect and reduce the number of imperfections in the
image. This phase is necessary for X-ray images since many radiological images contain
noise and unwanted artefacts, such as patient clothing and wiring, that must be removed
to identify COVID-19 accurately. In our proposed method, we apply simple pre-processing
steps, which include image resizing, removing noise, and enhancing local contrast. We
removed the noise from X-ray images using a Gaussian smoothing filter. Afterwards, a
logarithm operator was employed to improve the local contrast of an image. This logarithm
operator is also called the pixel logarithm operator because it enhances the low-intensity
pixel value. Figure 4 represents the raw and enhanced image.
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3.2.2. Data Augmentation to Control Class Imbalance

Geometric augmentations are usually applied in combination to generate new aug-
mented X-ray images. In this study, we evaluated our proposed CAD system utilised in a
total of 1095 chest X-rays, including 375 normal, 345 viral pneumonia, and 375 COVID-19
images. First, we applied the percentage of data in the validation, testing, and training sets
with the values of 10%, 20%, and 80%, respectively. Then, to avoid class imbalance, we
applied a data augmentation technique. After applying the data augmentation technique,
the 1095-image dataset is converted into 36,000 X-ray images, including 12,000 of normal,
12,000 of pneumonia, and 12,000 of COVID-19, as shown in Table 2. Figure 5 shows ge-
ometric augmentations that are applied individually to the X-ray image. This visualises
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the impact of each geometric augmentation method and gives the reader an idea about
their relevance. Figure 5 demonstrates 12 different augmentation methods. From left–right
and top–down, these are translation in the x-axis with +10 pixels, translation in the x-axis
with −10 pixels, translation in the y-axis with +10 pixels, translation in the y-axis with
−10 pixels, random shear in the x-axis within the range [−30, 30], random shear in y-axis
within the range [−30, 30], random rotation within the range [−90, 90], random rotation
within the range [−15, 15], horizontal reflection (or flipping), vertical reflection (or flipping),
scaling in x-axis [0.85, 1.15], and scaling in y-axis [0.85, 1.15].
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3.2.3. Hybrid Features Extraction

After pre-processing the image, the next step is the extraction of hybrid features. The
purpose of feature extraction is to extract discriminant features from imaging data. These
features are then provided as input vectors to learning paradigms so that the machine
can automatically generate a visual representation, analysis, or comprehension of image
contents. This proposed work extracted the best discriminative statistical texture features
of GLCM from chest X-ray images. These features included contrast, energy, correlation,
and entropy. A second-order method was employed to obtain statistical texture attributes,
which consider the connection of cluster pixels in the chest X-ray image I as input. The
method has been employed in a variety of applications.

The GLCM P ∈ NN×N can be built as a frequency matrix by calculating the time every
couple of quantised grey levels appear as neighbours in the quantified image QI. In more
technical terms, each component of the GLCM P(i, j) can be easily figured as follows:

Pij ∑K
k=1 ∑T

t=1{1, i f QI(k, t) = i, QI(k + ∆x, t + ∆y) = j, 0, Otherwise, 0 (1)

where δ = (∆x, ∆y) denotes the displacement vector in pixel units along the x- and y-
axes. It should be noted that a GLCM feature vector can be constructed using multiple
displacement vectors. For example,
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∆0◦ = (1, 0)
∆45◦ = (1, 1)
∆90◦ = (0, 0)

∆135◦ = (−1,−1)

(2)

If we take the transpose of the feature vector, the equation becomes

∆180◦ = (−1, 0)
∆225◦ = (−1,−1)
∆270◦ = (0,−1)
∆370◦ = (1,−1)

(3)

Discriminative information from input images is obtained in different directions
and distances using GLCM to acquire the frequency of comparable patterns in multiple
angles. Figure 6 [34] illustrates a GLCM computation. The first matrix is called the matric
transformation matrix, whereas the second is the host image. Suppose there is a pair of
(2, 2) pixels in the host image. If we consider distance one and angle zero, we find three
positions in the matrix highlighted in red. We can write three for this pixel pair in the
transformation matrix. This way, we can also generate other pixel pairs.
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In this study, we used a distance of 1 and 5 and an angle of 0 to reduce computational
complexity by applying an optimal collection of features. They are described below:

Contrast: This attribute determines the intensity values in an image at the local level.
Contrast estimates the intensity contrast between neighbouring pixels over the entire image.
Consequently, a low-contrast image has a smooth range of greys, but a high-contrast image
has richer colours at both ends of the scale (white and black). It indicates that low spatial
frequencies define a low-contrast image instead of low grey levels. Therefore, the GLCM
contrast is closely correlated with spatial frequencies.

Energy: It denotes the homogeneity of grey distribution in an image. It can be defined
as the quadratic sum of GLCM attributes.

Entropy: Another significant GLCM attribute to discriminate an image texture is
entropy, a standard quantity of unpredictability typically regarded as a first-degree as-
sessment of an image’s disorder level. The entropy obtained from the GLCM is inversely
related to the energy feature of the GLCM.

Correlation: The GLCM correlation feature has comparable discriminative power to
the contrast attribute. It delivers a numerical value that indicates how closely a pixel is
connected or correlated with its neighbour throughout the image. It is defined as the linear
grey-level dependence between pixels at specific locations concerning one another. Table 3
shows the numerical value of seven extracted features of some images.
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Table 3. Extracted features of some images.

Features

Images Energy_1 Correlation_1 Contrast_1 Energy_2 Correlation_2 Contrast_2 Entropy

Image_1 0.052535 0.994353 30.0105 0.0348948 0.936108 327.297 7.18441

Image_2 0.0267825 0.993088 22.6968 0.0158728 0.939816 194.681 7.24483

Image_3 0.0597171 0.992787 78.1387 0.0436013 0.923739 815.503 7.60572

Image_4 0.0270262 0.991886 37.3811 0.0158361 0.902464 440.749 7.32227

Image_5 0.0380929 0.995518 15.8684 0.0226321 0.965529 122.115 7.15369

The data was cleaned as necessary after being received from the Kaggle repository [33].
To execute a deep learning approach and obtain trustworthy results, a sizable amount of
data is needed. However, every issue probably lacks sufficient evidence, particularly those
that are medically connected. Medical data collection can be time- and money-consuming
at times. Augmentation can be used to overcome these types of problems. A suggested
model’s accuracy can be improved, and the overfitting issue can be solved by augmentation.

In addition, augmentation is used in this gathered dataset to avoid over-fitting. Ro-
tation, zooming, and image sharing were among the augmentations. The data were then
rearranged in order to make the model more inclusive and less overfitting. Following
that, the suggested model was trained using the prepared dataset. To improve analysis,
three distinct models were put into practice, and the accuracy of each was determined
by comparing how well they performed. We used a novel approach, replacing the ReLU
activation function in the supplied models with LeakyReLU activation. This procedure
expedites training and prevents the issue of dead neurons (i.e., the ReLU neurons become
inactive due to zero slope). The proposed model for chest X-ray image analysis is shown
in Figure 1.

The Vision Transformer (ViT) [35] is likely the first completely transformer-based vision
architecture, considering image patches as simple word sequences that are then encoded
using a transformer. When pretrained on large datasets, the ViT can deliver outstanding
image recognition results. However, without considerable pre-training, ViT performs badly
in image identification. This is due to the transformer’s high model capability and lack
of inductive bias, which leads to overfitting. Several subsequent studies have focused on
sparse transformer models developed for visual tasks, such as local attention, to regularise
the model’s capacity and improve its scalability successfully. The Swin transformer is
an effective attempt to modify transformers by applying self-attention to shifting, non-
overlapping windows. This methodology outperformed ConvNets on the ImageNet test
for the first time using a pure vision transformer. Window-based attention was discovered
to have limited model capacity due to the loss of non-locality, and, hence, scales badly on
larger data sets, such as ImageNet-21K, despite being more adaptable and generalisable
than the complete attention used in ViT. However, because the attention operator has
quadratic complexity, full-attention acquisition of global interactions in a hierarchical
network at early or high-resolution stages requires computationally significant effort. It is
still difficult to include global and local interactions while maintaining model capacity and
generalizability within a computer cost.

Shift, scale, and distortion invariance are Convolutional Neural Networks (CNNs)
aspects. These aspects are translated to the ViT architecture [36] while the benefits of
transformers have been retained. (i.e., dynamic attention, global context, and better gen-
eralisation). Although vision transformers are effective on a broad scale, they perform
worse when trained on less data than smaller CNN rivals (such as ResNet). One argument
might be that because CNNs naturally exhibit some desired features ViT lacks, they are
better suited to addressing vision-related concerns. A texture forces the capture of this
local structure by using local receptive fields, shared weights, and spatial subsampling.
As a result, it achieves some shift, scale, and distortion invariance. For instance, images
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frequently have a strong 2D local structure with closely spaced-apart pixels intimately
related. Additionally, learning various complex visual patterns, from low-level edges and
textures to higher-order semantic patterns that account for local spatial context, is made
possible by the hierarchical structure of convolutional kernels.

The convolutional projection is the first layer of the convolutional transformer block. In
this study, we proposed that, while maintaining a high level of computational and memory
efficiency, convolutions might be selectively introduced to the ViT structure to enhance
performance and robustness. In our work, we only incorporated convolutions blocks
from transformer, and was innately efficient in terms of parameters and floating-point
operations, which was given as evidence supporting our idea. We added an Attentional
Selective Fusion (ATTSF) layer to CvT to emphasise the local and global interactions
of pixels. Token embedding and projection for attention hierarchical transformers were
integrated into the original CvT model by the authors as part of a sophisticated strategy.
However, we adopted a computationally effective strategy via an ATTSF mechanism.

In our work, the proposed convolution block to act as Feature Learning (FL) to extract
robust feature from CXR images. The FL extracts learnable features from CXR images. A
group of convolutional procedures makes up the feature learning (FL) component. The
FL component follows the hierarchy of the Inception v3 architecture. The FL component
differs from the Inceptionv3 model in that it does not contain the Fully-Connected Layer
(FCL) present in the Inceptionv3 design and instead extracts features for our classification
component. A CNN without the FCL layer is the outcome.

Additionally, we included an attentional selective fusion (ATTSF) that combines global
and local attention to add flexibility when combining different types of information. To
obtain more local and global interactions, we initially fused the best GLCM texture features
with the CNN features (CNN) using only the feature learning component of CVT in this
work. Afterwards, fused features were supplied into the random forest, which converts
them into COVID− and COVID+ for the final detection stage.

As shown in Figure 1, our attentional selective fusion (ATTSF) included both local
and global attention, which could increase flexibility when combining different types
of information. As previously said, to capture the following information exchange, we
first fused the best GLCM features (contrast, energy, entropy, correlation) and the CNN
features, yielding two feature maps (GLCcont, GLCeng, GLCent, GLCcorr, CNN) acquired
from the backbones:

Features(i, j)map = GLCcont + GLCeng + GLCent + GLCcorr + W × CNN (4)

In the above equation, the extracted feature map uses GLCM features and CNN is the
integrated feature map. It was simple to generate the W weights for the initial integration
using two 1 × 1 convolutions. Next, we used these fused feature maps for classification
tasks using a random forest classifier.

3.2.4. Formulation of Classification Model

The feature classification part of our proposed system distinguishes SARS-CoV-2 and
non-SARS-CoV-2 instances, as described in this section. This step in our work primarily
categorises every chest X-ray image into two diagnostic classes (COVID-19 and pneumonia
normal) based on texture information obtained. The classification module relies heavily
on the availability of clinical diagnostic cases. This collection of instances with an early
diagnosis is referred to as the “training set”. The employed learning strategy is known as
“supervised learning”. Various classification strategies are available in the literature for
the recent job of COVID-19 classification, including Bayesian networks, SVM, conditional
random fields, latent-dynamic CRF, k-nearest neighbour, artificial neural networks, etc. We
used a random forest machine learning classifier for the classification task in this work.
Random Forest (RF) [37] is an ensemble technique proposed by Breiman for classification
problems. This machine-learning approach boosts the system’s accuracy by combining sev-
eral models to solve the said problem. The participation of several decision models usually
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results in inaccurate predictions compared to the prediction obtained using a single model.
This model is the best machine-learning algorithm for classification problems in different
research domains [38–40] because it can draw its training data from randomly selected
subsets and construct trees in a similarly haphazard fashion [41]. Recent studies show that
random forest classifiers present encouraging results in several healthcare systems [39,42].
Figure 7 represents the operation flow of the random forest classifier. The parameters used
in the random forest algorithm are described in Table 4.
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Table 4. Parameter used in random forest algorithm.

Parameters Range

n_estimator 60
min_samples_split 2

max_depth None
min_samples_leaf 1

Random_state 42

The random forest classifier linked with features and training samples Sn could be
depicted as:

• Beginning: S1, S2, S3, . . . , Sn were sampled with replacement using a preset probability.
• For each sample, Sn, build a decision tree. The training samples are chosen randomly

from the available features using the subspace of the m-try dimension. Compute
all the possibilities regarding all features. The leaf node yields the best data split.
The operation will be repeated until the saturation threshold is met. We investigated
hyper-parameters and selected the optimal parameter for our proposed CAD system
to improve the algorithm’s performance. Table 4, below, shows the hyper-parameter
for the RF classifier.

• A combination of unpruned trees h1(X1), h2(X2), . . . of N number in a random forest
ensemble uses the highest possible value for classification decisions.
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4. Results

The proposed automated detection method was developed and applied in Python
using the Anaconda framework and OpenCV Library. This vision library is used for
real-time object detection and digital image processing. All experiments, analyses, and
evaluations were performed on a Dell laptop equipped with an Intel(R) Core (TM) i7 CPU,
16 GB of RAM, a 1.50 GHz processor, and a Microsoft Windows 10 × 64 version.

4.1. Performance Evaluation Metrics

Several assessment measures, such as sensitivity, specificity, F1-score, accuracy, recall,
and precision, are used to quantitatively evaluate the performance of the proposed tech-
nique. Four key metrics are utilised to calculate these measures: (a) correctly identified
unhealthy cases (TP), (b) incorrectly diagnosed diseased cases (FN), (c) correctly identified
healthy cases (TN), and (d) incorrectly classified healthy cases (False Positives, FP).

Accuracy (ACC): The most often used, and one of the basic, performance measures is
accuracy, which is the probability that a randomly selected example (negative or positive)
would be accurate. The diagnostic test in this metric shows the probability of a correct
result, i.e., the probability that the diagnosis will be correct.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision (PR): It relates to the ability to detect positive classes among all accurately
predicted positive classes, represented as a proportion of all correctly predicted positive
classes to all correctly predicted positive classes.

PR =
TP

TP + FP
(6)

Sensitivity (SEN): Also known as recall, true positive rate, or hit rate, is a measure of a
model’s capability to detect all positive cases. It is worth noting that the above equation
implies that a low false-negative rate almost always accompanies a high recall.

Recall or SEN =
TP

TP + FN
(7)

Specificity (SPE): The data’s ratio of true negatives to total negatives.

SPE =
TN

TN + FP
(8)

F1-score: It is not as straightforward as accuracy, but this metric is useful in determin-
ing the classifier’s exactness and robustness. The F1 score, a fundamental test performance
statistic that considers both memory and precision, is typically computed as a weighted
average of recall and precision.

The TN (true negative) and TP (true positive) are accurately predicted negative and
positive outcomes, respectively. FN (False Negative) and FP (false positive) are not correctly
predicting negative and positive COVID-19 cases.

Area Under the Curve (AUC): It stands for “Area Under the Curve.” It gives the
performance measure on all thresholds. The AUC scale runs from 0 to 1, with 0 being the
lowest and 1 being the highest. The AUC of a model with 100% inaccurate predictions is
0.0, whereas the AUC of a model with 100% accurate predictions is 1.0. Figure 8 depicts the
AUC representation.
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4.2. Results Analysis

Three experiments were performed in this work. The first experiment was about
selecting the best possible combination of texture features for our computer-aided diagnos-
tic (CAD) system. The second experiment evaluated our proposed CAD using different
train–test splits with different performance metrics. The third experiment was about the
performance analysis of the proposed method compared to other state-of-the-art studies
found in the literature.

In experiment 1, we first evaluate the proposed classifier’s accuracy with each texture
attribute, and these single features offer different accuracy results. Here, for this experiment,
we have evaluated the classification accuracy on three different train–test splits, i.e., 90–10%,
80–20%, and 70–30%, to select the best combination of features. A total of six texture
features, such as energy, correlation, dissimilarity, homogeneity, contrast, and entropy, were
evaluated. The accuracy of a random forest classifier using various texture features was
investigated in Table 5. We have noticed that the classification accuracy of using a single
feature, namely energy, correlation, contrast, and entropy, reported more than or equal
to 85% on three train–test splits. It shows the potential of these features to detect normal,
pneumonia, and COVID-19 chest X-ray images. In the next experiment, we have combined
those best four features to investigate further the potency of the proposed work using
different train–test splits.

Table 5. Classification accuracy with different train–test splits.

Features Classifier Train–
Test Splits Class Precision Recall F1-Score SEN SPE ACC Avg. ACC

Energy +
Correlation +
Contrast +
Entropy +
Convolution
Block

Random
Forest

90–10% COVID-19
Normal

100%
100%

100%
100%

100%
100% 100% 100% 100%

97%80–20% COVID-19
Normal

99%
91%

91%
99%

95%
96% 91% 99% 96%

70–30% COVID-19
Normal

95%
91%

90%
96%

93%
93% 91% 94% 93%

In this experiment, we select the four best features from experiment 1. We combined
them and extracted the best four features (energy, correlation, contrast, and entropy). We
used them with a random forest classifier to classify chest X-ray images into COVID-19
and normal images. Three train–test splits (90–10%, 80–20%, and 70–30%) were used to
better evaluate the proposed method’s performance. We have noticed from Table 5 that
we obtained a good detection accuracy on each train–test split and an average accuracy
of 97%. We can also observe from the table below that our proposed method performs
well and obtains an F1-score value of greater than 93% on all train–test splits. It shows
our proposed scheme’s significance and effectiveness in detecting COVID-19 and normal
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cases. In addition, our model obtained good precision, also known as positive predictive
value (100%, 99%, and 95%, respectively, for COVID-19 patients and 100%, 91%, and 91%
for normal patients), and recall (100%, 91%, and 90% for COVID-19 cases, and 100%, 99%,
and 96% for normal cases), which shows the supremacy of the proposed work.

Figure 9, below, represents our proposed work’s confusion matrix using different train–
test splits. There are a lot of interesting observations that can be made regarding how our
proposed method operates in various settings. First, our proposed state-of-the-art algorithm
has a high sensitivity for COVID-19 cases (100%, 91%, and 91%, respectively, under different
train–test splits), as shown in Table 5 and Figure 9, below, which is significant since we aim
to minimise the number of missing COVID-19 instances. Second, the detection of negative
cases is also high; we achieved a specificity of 100%, 99%, and 94% in different split settings.
As a result of these findings, it is clear that the proposed feature and the machine learning
framework-based CAD system as a whole do a great job of recognising COVID-19 instances
from CXR images. In addition, Figure 10 demonstrates the comparison graphs for model
accuracy with loss related to both data augmentations and no augmentation techniques on
training and testing datasets. These graphs show that the data augmentation technique is
very important in solving the issue of data imbalance.
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Figure 11 shows the AUC representation of our proposed classifier using three different
training–test splits. Figure 11 shows that our proposed model predicts nearly 100% of the
time on three different training–test splits. The AUC evaluates the proposed classifier’s
outstanding classification performance by comparing the true and false positive rates when
identifying COVID-19 instances from test images (a chest X-ray). Hence, this satisfies the
fact that the proposed work is recommended and would be an efficient choice for detecting
COVID-19 cases.
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As was previously said, it is crucial to determine how the network picks up information
from the CXR pictures. Score-CAM-based heat maps made from original (not segmented)
and segmented CXR images can be used to make sure that the classification algorithm can
learn what parts of the CXR images are important and what parts are not.

The heat map of the segmented lungs and the original lungs shows that the CNN
models’ decision-making in the original CXR does not always originate from the lung
sections (Figure 12). When CNN uses plain X-ray pictures to put things into groups, itis not
always the lungs that are the most important parts of the CXR images. However, it is clear
from Figure 12 that the proposed CAD system can work well with X-ray images, which is
good for a biomedical application as important as this one. On the other hand, segmented
CXR images are better for computer-aided diagnosis because they make it easier to put
diseases into the right categories using chest X-ray images.

The proposed diagnostic system was compared to similar research [25,34–38] con-
ducted in the past. This was performed to show that the proposed diagnostic system is
better than the current detection schemes regarding several estimation metrics. Table 6
summarises the details of the quantitative comparison. Our proposed CAD model, based
on three unique train–test splits, produces a good accomplishment regarding the F1-score,
precision, recall, and average accuracy with 96%, 96%, 96%, and 97%, respectively. It
can be noted from Table 6 that our proposed approach outperforms the other similar
studies in terms of recall, precision, F1-score, and average accuracy. Therefore, our pro-
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posed CAD scheme could be a significant addition to healthcare centres to help diagnose
COVID-19 cases.
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Table 6. Performance comparison of proposed work with earlier works.

Method Recall Precision F1-Score Accuracy

Podder et al. [43] 94% 94% 94% 94%
Panwar et al. [44] 82% 97% 89% 88%
Echtioui et al. [45] 86% 96% 91% 94%
Shukla et al. [46] 90% 92% 91% 87%
Kunar et al. [47] 83% 89% 82% 93%
Samy et al. [29] 94% 96% 95% 95%

Our Proposed CAD system 96% 96% 96% 97%

From pre-processing the image to the last step of the proposed method, the presented
CAD solution for COVID-19 takes about 2 s to figure out, on average. This means that it
can be used for real-time processing. Moreover, the proposed work has low computational
costs for pre-processing steps, real-time texture feature extraction, and classification.

5. Discussion

The first case of the fatal infectious illness coronavirus disease 2019 (COVID-19) was
discovered in Wuhan, China, in December 2019 [28,38,48]. A huge epidemic has been
caused by the COVID-19 virus because there has yet to be a cure found for it. Because the
disease changes over time and has a structure with only one strand of RNA, it is hard to
treat. Thousands of people have died because of COVID-19, which has notably affected
nations such as the United States, Spain, India, Italy, China, the United Kingdom, Iran,
etc. Humans, cats, dogs, pigs, chickens, rodents, and other animals all carry different
strains of COVID-19. Symptoms of COVID-19 include sore throat, fever, headache, nose
flushing, and cough. People with compromised immune systems are most vulnerable
to the virus, which can be fatal. This contagious COVID-19 illness spreads quickly from
person to person around the world. The major ways that this may transfer from one person
to another include physical contact, breath contact, hand contact, or mucous contact. A
virus family that includes this one is known to cause severe respiratory problems. There
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are spikes on the crown and outer surface of the virus’s structure. Middle East respiratory
syndrome (MERS) and severe acute respiratory syndrome (SARS) are also included in this
group [45]. Severe lung damage and acute respiratory discomfort are additional effects
of such circumstances [10]. As of 15 July 2020, there were 12,964,899 afflicted individuals
around the planet, resulting in 570,288 fatalities. The current situation indicates that
people with chronic health conditions and the elderly appear to be more vulnerable to the
COVID-19 death rate. The virus is passed from person to person by coughing, sneezing, and
respiratory droplets [44]. Fever, inflammation, abnormalities in the respiratory system, and
illnesses including pneumonia, multiple organ failure, and death are common symptoms
of this virus [36,41]. Laboratory tests are expensive, time-consuming testing methods that
call for a well-equipped research lab.

On CT scans, a deep learning-based algorithm is used to look for COVID-19. Sev-
eral researchers have also produced and made chest X-ray images of COVID-19 patients
accessible in public databases [15,16]. These open datasets are used to diagnose COVID-
19 using a technique called COVID-Net [21]. Deep learning was used to diagnose from
chest X-ray images, and the results were promising. For processing medical imaging data,
deep learning models are frequently utilised. In Ref. [16], convolutional neural networks
are used to identify pneumonia. This research proposes an automated technique for the
deep network-based diagnosis of COVID-19. The suggested network makes use of the
multiresolution analysis feature. There are several benefits to using deep networks and
wavelet transformations together. The network receives the wavelet decomposition as
input. A conventional convolutional neural network (CNN) is not being used. In this study,
a depth-wise separable network is used.

An automated approach for detecting COVID-19 from chest X-ray pictures was given
in the paper through the creation of an enhanced depth-wise convolution network with
spectrum analysis. The convolution and pooling layers have been rewritten to be more
general cases of filtering and downsampling. This reformulation incorporates depth-wise
networks and multiresolution analysis. For multiresolution analysis, the input pictures are
deconstructed using the Haar wavelet. Fix-weight filters are used to apply the wavelet.
The developed model is used to detect COVID-19 illness on chest X-ray images. The photos
are divided into three categories by the model: normal, viral pneumonia, and COVID-19.
A comparison analysis is also performed to assess how well the suggested approach works.
From chest X-ray pictures, the suggested approach may be utilised to diagnose COVID-19.
The utilisation of X-ray pictures will aid in illness management.

5.1. Advantages of the Current Study

Our extensive research project is focused on utilising CXR images to diagnose COVID-
19. For identifying normal X-rays and COVID-19 images, our effort involves pre-processing,
feature extraction, and classification stages. The contributions of our suggested work are
listed below.

(1) We have created a novel feature framework based on a convolution vision transformer
and an optical set of GLCM characteristics, such as contrast, energy, entropy, and
correlation, to extract attractive features from improved chest X-ray pictures.

(2) The Gaussian filter and the logarithmic operator were used to construct a low-cost
and straightforward pre-processing approach.

(3) The random forest classifier was used to classify traditional X-ray and COVID-19
pictures using three different train–test split strategies.

(4) Accuracy, precision, recall, and F1 score were used as performance indicators to
analyse the results. A comparison of the planned study with earlier related work for
the detection of COVID-19 was also provided.

5.2. Limitations of the Current Study

Deep learning (DL) models, according to recent research, can learn from irrelevant data
and make decisions based on that data [43–46], even though high-performing networks’
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performances cannot be extrapolated to real-world applications. In contrast to ordinary
X-rays, the segmented lungs helped the CNN model to identify the primary Region of Inter-
est (ROI). In other words, the end-user’s trust in the performance of Artificial Intelligence
(AI) must be increased by the consistency of the categorisation judgments made by the
network. The lung area in the CXR images should be used to make conclusions about lung
diseases instead of using whole images. The results are presented using ordinary X-rays,
which can partially or entirely fail in a real-world application because there are not many
ground-truth of using masks available these days. Several authors created a benchmark of
lung masks with the aid of a group of radiologists. However, they are not sufficient to train
the model.

In a sample case, almost all image enhancement techniques misclassified COVID-19
X-rays as normal or non-COVID lung opacity, but the gamma-correction-based image
enhancement technique classified it correctly. It is interesting to see how the gamma
enhancement technique outperforms other enhancement techniques. To appropriately
identify the lung image, the gamma correction approach on the segmented lungs uses
judgments made by the region of interest, or lungs, as shown in Figure 12. To summarise,
COVID-19 and other lung infection detection performance reported in recent literature
is comparable to the performance described in this study (Table 6). However, this study
reports the crucial elements that are absent from other recent publications. In addition,
no article has reported results using such large CXR images and corresponding ground
truth lung masks. As a result, given that this study trained and validated its models on
a sizable dataset, its results are comparable to those of the state-of-the-art, trustworthy,
and generalisable.

6. Conclusions

This work proposes a cost-effective diagnostic scheme to identify COVID-19 cases
using CXR images. The proposed method comprises three steps: image pre-processing,
feature extraction, and classification. This work adopted simple pre-processing techniques
based on the Gaussian filter and logarithmic operator to enhance image quality. Then
a fused feature extraction scheme, based on a convolutional vision transformer and an
optimal set of GLCM features, such as contrast, correlation, entropy, and energy, was
applied, and the features were extracted from each enhanced chest X-ray image. Finally,
the extracted features from images were input to a random forest classifier. The proposed
method obtained excellent average accuracy, precision, recall, and precision of 97%, 96%,
96%, and 96%, respectively. The proposed scheme performs better than similar work in
the literature using chest X-ray images. This study investigates how various image en-
hancement methods affect deep convolutional neural networks’ ability to automatically
recognise COVID-19 from CXR pictures. A shallow CNN model was built from scratch
in this paper, and six different deep learning pre-trained CNN models were trained with
ImageNet weights. The performance of seven CNN models for five distinct image enhance-
ment approaches was used to investigate the categorisation of COVID-19, non-COVID
lung infection, and normal CXR images. Our thorough research on image enhancement
methods demonstrates that an accurate COVID-19 diagnosis may be made with 96.29%
accuracy, 96.28% precision, and 96.28% recall.

Also, because it uses a traditional feature extraction method and a traditional machine
learning classifier, our proposed CAD system takes less time and money to compute.
Therefore, this method could be a suitable choice for the real-time diagnosis of COVID-19.
The proposed method can be trained and evaluated with a larger dataset in the future, and
numerous other machine-learning methods can be included for performance evaluation.
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