Skip to main content
. 2023 Mar 8;12(6):1147. doi: 10.3390/foods12061147

Table 1.

Deep reinforcement learning hyperparameters.

Parameters Deep Reinforcement Learning’s Value
A 0.50
Batch size 20
Block size 1000
Epochs 500
Generation epoch 1040
GGNN activation function SELU
GGNN depth 4
GGNN dropout probability 0
GGNN hidden dimension 250
GGNN width 100
Initial learning rate 1.00 × 10−4
Learning rate decay factor 0.99
Learning rate decay interval 10
Loss function Kullback–Leibler divergence
Maximum relative learning rate 1.00
Message passing layers 3
Message size–input size of GRU 100
Minimum relative learning rate 1.00 × 10−4
MLP activation function SoftMax
MLP depth(Layers 1 and 2) 4
MLP dropout probability
(Layers 1 and 2)
0
MLP hidden dimension
(Layers 1 and 2)
500
Number of samples 200
Optimizer Adam
σ 20
Weight decay 0
Weight initialization Uniform