Table 1.
Parameters | Deep Reinforcement Learning’s Value |
---|---|
A | 0.50 |
Batch size | 20 |
Block size | 1000 |
Epochs | 500 |
Generation epoch | 1040 |
GGNN activation function | SELU |
GGNN depth | 4 |
GGNN dropout probability | 0 |
GGNN hidden dimension | 250 |
GGNN width | 100 |
Initial learning rate | 1.00 × 10−4 |
Learning rate decay factor | 0.99 |
Learning rate decay interval | 10 |
Loss function | Kullback–Leibler divergence |
Maximum relative learning rate | 1.00 |
Message passing layers | 3 |
Message size–input size of GRU | 100 |
Minimum relative learning rate | 1.00 × 10−4 |
MLP activation function | SoftMax |
MLP depth(Layers 1 and 2) | 4 |
MLP dropout probability (Layers 1 and 2) |
0 |
MLP hidden dimension (Layers 1 and 2) |
500 |
Number of samples | 200 |
Optimizer | Adam |
20 | |
Weight decay | 0 |
Weight initialization | Uniform |