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Abstract: Aroma is a crucial factor determining the market value and consumer satisfaction of fresh
oriental melon. However, few studies focus on the volatile flavor of fresh oriental melon, and the
effect of forchlorfenuron application on the aroma profile is unclear. This study characterized the
volatile profile of fresh oriental melon fruit after forchlorfenuron application by E-nose and HS-
GC-IMS. The holistic variation of volatile compounds exhibited evident distinction based on linear
discriminant analysis (LDA) with E-nose. Forty-eight volatile compounds were identified from fresh
oriental melon via GC-IMS, mainly esters, alcohols, aldehydes, and ketones, along with smaller
quantities of sulfides and terpenes. Compared to pollination melon fruits, 13 critical different volatile
flavor compounds were screened out in forchlorfenuron application groups by the PLS-DA model,
imparting sweet fruity flavor. The results of the current study provide a valuable basis for evaluating
the flavor quality of oriental melon after forchlorfenuron treatment.

Keywords: oriental melon; volatile compounds; forchlorfenuron; flavor; headspace-gas chromatography-ion
mobility spectrometry; electronic nose

1. Introduction

Oriental melon is a species of thin-pericarp melon [1], and it has the largest plantation
in China, accounting for about 51% of the total global production. Oriental melons are often
planted in greenhouses to increase the price of fruit. However, the lack of pollinators often
affects the fruit-set rate for facilities. Forchlorfenuron is a synthetic cytokinin-like growth
regulator, which can act synergistically with endogenous auxins to induce parthenocarpy
and promote cell expansion [2]. In recent years, forchlorfenuron has been extensively used
in oriental melon cultivation to improve the fruit set.

With the increasing prevalence of forchlorfenuron application, more and more studies
have focused on its influence on fruit quality [3,4]. Several studies have shown that the ap-
plication of forchlorfenuron decreased sucrose and glucose content and increased bitterness
in melon [5,6]. In addition to sugar, volatile aroma plays a decisive role in the purchase
of oriental melon [7]. The volatile components of melon have been analyzed in previous
reports, and approximately 300 compounds have been identified [8–11]. They produce
volatile aldehydes, alcohols, and especially large quantities of esters, likely to be the key
contributors to their unique aroma [12–14]. However, limited studies have reported the ef-
fect of forchlorfenuron on the aroma compounds of oriental melon fruit. Although Li et al.
found that the abundance of volatile compounds was decreased after forchlorfenuron
application in muskmelon using gas chromatography–mass spectrometry,13 the findings
have generally been obtained from frozen samples as an alternative to fresh samples. It has
been reported that significant changes in volatiles occurred during the freezing process in
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fruits and vegetables [15–17]. To accurately evaluate the effect of forchlorfenuron on aroma
characteristics, a quick and straightforward method to discriminate the variation of aroma
volatiles using fresh oriental melon fruit is critical.

Sensory analysis using trained panelists has been employed conventionally to evaluate
the variation of fruit aroma, which can directly measure the fruit flavor intensity. However,
this method is expensive and time-consuming, with low objectivity and reproducibil-
ity [18,19]. Electronic nose (E-nose) and gas chromatography–ion mobility spectrometry
(GC-IMS), as emerging techniques for volatile-compound analysis, offer advantages of fast
detection speed, high sensitivity, and little sample pretreatment [20–24]. These techniques
have been successfully utilized individually or in combination in many fields, mainly
involving freshness prediction, adulteration identification, and food composition classifi-
cation. Ezhilan et al. discriminated the pathogen contamination of apples using E-nose;
higher classification accuracy was attained with an accuracy of 99.9% [25]. The Guo et al.
study showed the potential of GC-IMS-based approaches to evaluate the volatile compound
profiles of fresh-cut yam at different stages in the yellowing period [26].

Therefore, the present study aims to identify the differentiation of flavor changes
in oriental melon treated with different concentrations of forchlorfenuron. E-nose and
HS-GC-IMS were applied to characterize the volatile compound composition and content
when the oriental melon fruits were harvested after maturation. The results will provide
new theoretical guidance for the more appropriate use of forchlorfenuron in oriental melon.

2. Materials and Methods
2.1. The Oriental Melon Field Trials

Oriental melons (Cucumis melo var. makuwa) were cultivated in a greenhouse dur-
ing a summer–autumn cycle with common growing conditions. The temperature of the
greenhouse was maintained in the range of 25–30 ◦C, with 60% average relative humidity
throughout the experiment. The oriental melons were divided into three forchlorfenuron
application groups and one pollination group. In the treatment groups, doses of forchlor-
fenuron soluble concentrate (SL) were set from 10 to 20 mg/L according to the recom-
mended dose on the registered label, and the melon ovary was completely dipped with
forchlorfenuron solutions (10 mg/L, 15 mg/L, 20 mg/L) for 1–2 s, respectively. In the
pollination group, only the chasmogamy of female flowers by male flowers was considered.
All fruit-set treatments were performed on the same morning (6–9 AM).

Representative melon fruit samples were harvested with the best edible quality accord-
ing to the experience of melon farmers (34 days after pollination or forchlorfenuron appli-
cation). Mature melon fruits were selected using a combination of different harvest indices,
including smooth-skinned with sweet and fragrant pulp, aroma emission detected by the
human nose, pale yellow skin color, and peduncle suberization (Figure S1) [11]. In addition,
melons were selected in this experiment based on uniform size, weight, and color, and at
least six fruits were collected in each group. Melon samples were placed in polyethylene
bags and transported to the laboratory for the next stage.

2.2. Sample Preparation

The samples were hand cut with a sharp knife into 2 cm slices, from which the blossom
ends and the stem were discarded. Tissues were immediately smashed by a pulverizer,
and melon samples were placed into headspace vials, sealed until analysis.

2.3. E-Nose Analysis

The volatile profile of fresh oriental melon fruit was detected by PEN 3 E-nose
(AIRSENSE Company, Schwerin, Germany). The E-nose consists of ten different metal
oxide sensors. Each sensor has its corresponding sensitive substances: sensor 1 W1C is
sensitive to aromatic compounds; sensor 2 W5S is sensitive to oxynitride; sensor 3 W3C
is sensitive to ammonia and aromatic compounds; sensor 4 W6S is sensitive to hydrogen;
sensor 5 W5C is sensitive to alkanes and aromatic compounds; sensor 6 W1S is sensitive
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to methane; sensor 7 W1W is sensitive to sulfur compounds; sensor 8 W2S is sensitive to
ethanol; sensor 9 W2W is sensitive to aromatic and organic sulfur compounds; and sensor
10 W3S is sensitive to long-chain alkanes [27,28]. Samples (10 g) were placed in a 100 mL
beaker and sealed with tin foil for 60 min. The determination conditions were as follows:
the flow rate of carrier gas (pure dry air) was 400 mL/min, pre-injection time was 5 s,
sample measurement time was 100 s, reset time was 5 s, and cleaning time was 100 s.

2.4. HS-GC-IMS Analysis

The identification of the characteristic volatile compounds of fresh oriental melon fruit
was performed using a FlavourSpec® ion mobility spectrometry (IMS) instrument (G.A.S.,
Dortmund, Germany) equipped with an auto-sampler unit, a syringe, a heated splitless
injector, and a radioactive ionization source for headspace (HS) analysis.

The detection processes of HS-GC-IMS were conducted as described by Guo et al. [26]
and adjusted slightly according to fresh oriental melon fruit characteristics. A homogenized
oriental melon sample (2 g) was transferred to a 20 mL headspace bottle and was incubated
at 40 ◦C for 20 min. Then, 200 µL was sampled from the headspace and was automatically
injected into the heated injector at a temperature of 45 ◦C. After injection, GC was performed
with a 15 m standard capillary column (FS-SE-54-CB capillary column, 15 m × 0.53 mm)
to separate volatile compounds. The flow of carrier gas (nitrogen gas, 99.99% purity) was
set at 2.0 mL/min. The analytes were ionized by a tritium source (6.5 keV) at atmospheric
pressure and then transferred to the drift tube (98 mm length). Four groups of melon
samples were detected in sequence by GC-IMS (repeated four times), which takes 25 min per
sample. The retention index (RI) of volatile compounds was calculated using standardized
n-ketones (Sinopharm Chemical Reagent Beijing Co., Ltd., Beijing, China) whose RI was
linear. Compounds were identified by comparing RI and drift time (Dt, the time required
for ions to reach the collector through the drift tube, in milliseconds) to the standard in
the GC × IMS Library supplied by G.A.S. (Dortmund, Germany). The GC-IMS fingerprint
analysis was conducted by comparing GC retention time and IMS drift time.

2.5. Multivariate Analysis

Linear discriminant analysis (LDA) was performed using the E-nose software system.
The instrumental analysis software includes the Laboratory Analytical Viewer (LAV, G.A.S.,
Dortmund, Germany) and three plug-ins, as well as the GC × IMS Library Search, which
can be used for sample analysis from different angles.

OriginPro 9.1 (Origin Lab Corporation, Northampton, MA, USA) was used to draw the
radar chart. Principal component analysis (PCA) and partial least squares discriminant anal-
ysis (PLS-DA) were conducted using SIMCA-P software v14.1 (Umetrics, Umea, Sweden).

The odor type and odor strength were obtained from The Good Scents Company
Information System. (http://www.thegoodscentscompany.com/index.html (accessed on
9 March 2023)).

3. Results and Discussion
3.1. Evaluation of the Volatile Compounds of Fresh Oriental Melon Fruit by E-Nose

E-nose analysis was conducted on fresh oriental melon from different treatment groups
to monitor shifts in aroma composition. The odor radar map of volatile compounds in
fresh oriental melon is presented in Figure 1A, following detection using 10 odor sensors.
It was found that the W5S and W1W sensors had stronger responses to the volatiles of
melon samples, indicating that fresh oriental melon might have higher abundances of
nitrogen oxides and terpene compounds. Especially, the response values of the W5S sen-
sor were 1.3–2.0 times higher in all three forchlorfenuron application groups (10 mg/kg,
15 mg/kg, and 20 mg/kg) than in the pollination group (CK), suggesting that oriental
melon in forchlorfenuron application groups may have high abundances of nitrogen ox-
ides. For strawberries and avocados, more nitric oxide was detected in unripe fruits [29].
Previous studies reported that applying forchlorfenuron can result in a prolonged ripen-

http://www.thegoodscentscompany.com/index.html
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ing process and delayed fruit maturity [30,31], which may be one reason for the higher
concentrations of nitrogen oxides being detected in forchlorfenuron application groups.
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Figure 1. (A) Radar chart and (B) linear discriminant analysis (LDA) of fresh oriental melon after
forchlorfenuron application obtained by E-nose measurement. CK: pollination group; 10 mg/kg:
low-dose forchlorfenuron application group; 15 mg/kg: mid-dose forchlorfenuron application group;
20 mg/kg: high-dose forchlorfenuron application group.

Based on the responses of the E-nose sensors, the LDA method was used to reduce the
differences within the classification and expand the differences between different groups in
this study. As shown in Figure 1B, the variance contribution rates of LD1 and LD2 were
96.25% and 2.28%, respectively. Moreover, the LDA analysis showed the variation of
each group along the abscissa (LD1) with a trend. The distance between the four groups
was relatively far, especially between the pollination group (CK) and the other three
forchlorfenuron application groups (10 mg/kg, 15 mg/kg, and 20 mg/kg), indicating
that the three forchlorfenuron application groups were significantly different from the
pollination group. These findings show that the E-nose could be applied to monitor the
changes of volatile compounds in fresh oriental melon after forchlorfenuron application.
However, none of the sensors of the E-nose were sensitive to esters in fresh oriental melon,
which are the important volatile compounds of oriental melon. Therefore, more precise
instruments (i.e., GC-IMS) were used in the subsequent experiments.

3.2. Qualitative Analysis of the Volatile Compounds by HS-GC-IMS

Figure 2 shows the three-dimensional (Figure 2A) and two-dimensional (Figure 2B)
spectra obtained by HS-GC-IMS relying on chemical morphology. Different colors indicate
different concentrations of the individual compounds, with white dots indicating a lower
concentration and red dots indicating a higher concentration (Tian et al., 2020). Several
single compounds might produce multiple signals or spots (dimers or even trimers), which
are attributed to their varying concentrations [26].

It could be seen that volatile compounds were effectively separated from signal dots.
Most of the signals appeared in the retention time of 100–700 s and the drift time of 1.0–2.0.
A total of 48 volatiles were identified from the GC-IMS library (Table 1), including esters
(27), alcohols (7), aldehydes (7), ketones (4), sulfides (2), and terpenes (1). These volatiles’
primary descriptive odor dimensions are fruity and ethereal, which have high odor strength.
Among the 48 volatiles, esters, including 9 acetates and 18 nonacetate esters, were dominant
quantitatively, accounting for 56.25%. The other quantity-predominant compounds were
alcohols (14.58%), aldehydes (14.58%), and ketones (8.33%); sulfides and terpenes together
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accounted for only 6.25%. Consistent with the previous study, ethyl hexanoate, ethyl
2-methylbutyrate, and ethyl butanoate were considered key odorants in various melon
fruits, having fruity, floral, and sweet odor [4,12]. Alcohols and aldehydes with nine
carbon atoms, dominated by (Z)-non-6-enal, (E)-2-nonenal, and (3Z,6Z)-nona-3,6-dien-1-ol,
which smelled “cantaloupe-like, cucumber-like”, were identified by many researchers as
the characteristic components of the family Cucurbitaceae [4,11,12]. In this study, only
n-Nonanal with nine carbon atoms was identified in oriental melon fruits. These differences
could be attributed to geographical and cultivar variations as well as the different aroma
extraction methods used. Compared with the oriental melon, the muskmelon has a different
distribution profile of volatile compounds as has been reported, with aldehydes being the
dominant compounds (33.33%), followed by esters (27.45%), alcohols (25.49%), and ketones
(13.76%) [32].
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3.3. Different Profiles of Volatile Flavor Compounds in Fresh Oriental Melon after Forchlorfenuron
Application by HS-GC-IMS

To better understand the effect of volatile compounds in fresh oriental melon after
forchlorfenuron application, the difference comparison model was applied to compare the
differences between the different treatment groups. The topographic plot of fresh oriental
melon from the pollination group (CK) was selected as a reference, and the spectrum
of the other samples deducted the reference. If the volatile compounds were consistent,
the background after deduction was white; red and blue indicated that the concentration of
volatile compounds was higher and lower than the reference, respectively. As shown in
Figure 3A, the number of red dots increased gradually with the increase in concentration of
the forchlorfenuron application (10–20 mg/kg). Moreover, more red spots were observed
for the mid-dose (15 mg/kg) and high-dose (20 mg/kg) groups. Further, several blue
spots can be observed in the three forchlorfenuron application groups, indicating that
the concentration of several volatile compounds in the three forchlorfenuron application
groups was lower than in the pollination group (CK).
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Table 1. Volatile flavor compounds in oriental melon identified by HS-GC-IMS.

Count Compound CAS# Formula MW RI Rt [sec] Dt [RIPrel] Comment Odor Type Odor Strength

Esters (27)
1 Ethyl hexanoate 123-66-0 C8H16O2 144.2 1007.3 598.713 13.415 monomer fruity high
2 Ethyl hexanoate 123-66-0 C8H16O2 144.2 1007.3 598.713 17.987 dimer fruity high
3 Amyl acetate 628-63-7 C7H14O2 130.2 916.2 424.211 13.134 monomer fruity /
4 Amyl acetate 628-63-7 C7H14O2 130.2 916.2 424.211 17.643 dimer fruity /
5 3-Methylbutyl acetate 123-92-2 C7H14O2 130.2 880.9 368.989 12.962 monomer fruity high
6 3-Methylbutyl acetate 123-92-2 C7H14O2 130.2 882.4 371.198 17.425 dimer fruity high
7 Ethyl 2-methylbutanoate 7452-79-1 C7H14O2 130.2 852.4 332.543 12.448 monomer fruity medium
8 Ethyl 2-methylbutanoate 7452-79-1 C7H14O2 130.2 850.6 330.334 16.536 dimer fruity medium
9 Butyl acetate 123-86-4 C6H12O2 116.2 810.3 287.261 1237 monomer ethereal high
10 Butyl acetate 123-86-4 C6H12O2 116.2 813.7 290.574 16.208 dimer ethereal high
11 Ethyl butanoate 105-54-4 C6H12O2 116.2 796.7 274.007 12.058 monomer fruity high
12 Ethyl butanoate 105-54-4 C6H12O2 116.2 796.7 274.007 15.615 dimer fruity high
13 Ethyl 2-methylpropanoate 97-62-1 C6H12O2 116.2 756.0 236.253 11.927 monomer fruity high
14 Ethyl 2-methylpropanoate 97-62-1 C6H12O2 116.2 755.3 235.641 15.619 dimer fruity high
15 Ethyl propanoate 105-37-3 C5H10O2 102.1 709.0 198.307 1148 monomer fruity high
16 Ethyl propanoate 105-37-3 C5H10O2 102.1 709.0 198.307 14.528 dimer fruity high
17 Methyl 2-methylbutanoate 868-57-5 C6H12O2 116.2 776.1 254.614 11.927 monomer fruity /
18 Methyl 2-methylbutanoate 868-57-5 C6H12O2 116.2 774.8 253.39 1533 dimer fruity /
19 Ethyl Acetate 141-78-6 C4H8O2 88.1 590.9 145.231 10.968 monomer ethereal high
20 Ethyl Acetate 141-78-6 C4H8O2 88.1 599.6 148.029 13.349 dimer ethereal high
21 Methyl isobutyrate 547-63-7 C5H10O2 102.1 687.5 184.409 11.419 monomer fruity /
22 Methyl isobutyrate 547-63-7 C5H10O2 102.1 688.1 184.759 14.424 dimer fruity /
23 Isobutyl acetate 110-19-0 C6H12O2 116.2 767.5 246.674 16.135 fruity medium
24 Ethyl pentanoate 539-82-2 C7H14O2 130.2 901.4 399.717 12.764 monomer fruity high
25 Ethyl pentanoate 539-82-2 C7H14O2 130.2 901.4 399.717 16.829 dimer fruity high
26 Methyl hexanoate 106-70-7 C7H14O2 130.2 925.4 440.483 12.895 monomer fruity medium
27 Methyl hexanoate 106-70-7 C7H14O2 130.2 926.1 441.667 16.845 dimer fruity medium

Alcohols (7)
28 Ethanol 64-17-5 C2H6O 46.1 483.8 110.843 10.485 monomer alcoholic medium
29 Ethanol 64-17-5 C2H6O 46.1 484.8 111.146 11.285 dimer alcoholic medium
33 1-Octen-3-ol 3391-86-4 C8H16O 128.2 985.1 555.176 11.583 monomer earthy high
31 1-Octene-3-ol 3391-86-4 C8H16O 128.2 986.2 557.384 15.954 dimer earthy high
32 1-Octen-3-ol 3391-86-4 C8H16O 128.2 985.1 555.176 17.302 polymer earthy high
33 2-Methylbutanol 137-32-6 C5H12O 88.1 736.3 219.252 12.326 monomer ethereal medium
34 2-Methylbutanol 137-32-6 C5H12O 88.1 738.5 221.168 1472 dimer ethereal medium
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Table 1. Cont.

Count Compound CAS# Formula MW RI Rt [sec] Dt [RIPrel] Comment Odor Type Odor Strength

Aldehydes (7)
35 Benzaldehyde 100-52-7 C7H6O 106.1 957.5 500.837 11.488 fruity high
36 3-Methylbutanal 590-86-3 C5H10O 86.1 665.8 173.049 11.584 monomer aldehydic high
37 3-Methylbutanal 590-86-3 C5H10O 86.1 661.3 170.97 14.065 dimer aldehydic high
38 n-Nonanal 124-19-6 C9H18O 142.2 1106.9 783.669 14.789 monomer aldehydic high
39 n-Nonanal 124-19-6 C9H18O 142.2 1106.9 783.669 19.299 dimer aldehydic high
40 (E)-Hept-2-enal 18829-55-5 C7H12O 112.2 956.9 499.653 16.611 green high
41 Pentanal 110-62-3 C5H10O 86.1 697.5 190.514 1183 fermented /

Ketones (4)
42 Acetone 67-64-1 C3H6O 58.1 500.2 116.093 11.249 solvent high
43 2,3-Butanedione 431-03-8 C4H6O2 86.1 582.4 142.503 11.657 buttery high
44 2-Butanone 78-93-3 C4H8O 72.1 584.4 143.132 10.575 monomer ethereal /
45 2-Butanone 78-93-3 C4H8O 72.1 583.3 142.782 12.482 dimer ethereal /

Sulfides (2)
46 Butyl sulfide 544-40-1 C8H18S 146.3 1072.9 721.533 12.851 alliaceous high
47 Dimethyl trisulfide 3658-80-8 C2H6S3 126.3 947.6 481.593 13.084 alliaceous /

Terpenes (1)
48 Alpha-Pinene 80-56-8 C10H16 136.2 938.3 464.062 12.175 herbal high

The odor type and odor strength were obtained from The Good Scents Company Information System.



Foods 2023, 12, 1272 8 of 13

Foods 2023, 12, x FOR PEER REVIEW 9 of 14 
 

 

 
Figure 3. Differences of volatile flavor compounds of fresh oriental melon after pollination or 
forchlorfenuron application: (A) two-dimensional spectrum of the HS-GC-IMS response data; (B,C) 
gallery plot of the HS-GC-IMS response data. 

3.4. PCA and OPLS-DA Analysis 
To better visualize the variability of volatile flavor compounds in fresh oriental 

melon after forchlorfenuron application, multivariate analyses (PCA and OPLS-DA) were 
attempted in this study. As shown in Figure 4A, all volatile compounds obtained from 
HS-GC-IMS were subjected to PCA analysis, with PC1 and PC2 accounting for 61% of the 
total variance. All samples from the pollination group (CK) are positioned on the left side 
of the score plot, and all melon samples from the forchlorfenuron application groups (10 

Figure 3. Differences of volatile flavor compounds of fresh oriental melon after pollination or forchlor-
fenuron application: (A) two-dimensional spectrum of the HS-GC-IMS response data; (B,C) gallery
plot of the HS-GC-IMS response data.

The fingerprint was used to make an accurate judgment regarding the dense mate-
rial on the topographic plot. As shown in Figure 3B,C, the signal intensities of methyl
2-methyl butanoate, amyl acetate, ethyl propanoate, (E)-hept-2-enal, methyl hexanoate,
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methyl isobutyrate, and dimethyl trisulfide were found to be higher in three forchlor-
fenuron application groups but were lower in the pollinated group (CK). These volatile
compounds impart sweet, fruity, and sulfureous flavor. On the contrary, 2-methylbutanol
imparts an alcoholic flavor, and 2-butanone possesses an ethereal fruity odor, which were
significantly lower in the three forchlorfenuron application groups. A previous study
showed that forchlorfenuron application could significantly influence the volatile flavor
compounds in muskmelon [14]. The relative abundances of 14 volatile compounds emitted
by the forchlorfenuron-treated fruits declined, including six ethyl esters, four aldehydes,
three alcohols, and one ketone. By contrast, the relative abundance of 1-hexanol was on
average higher in all the forchlorfenuron-treated fruits [11].

3.4. PCA and OPLS-DA Analysis

To better visualize the variability of volatile flavor compounds in fresh oriental melon
after forchlorfenuron application, multivariate analyses (PCA and OPLS-DA) were at-
tempted in this study. As shown in Figure 4A, all volatile compounds obtained from
HS-GC-IMS were subjected to PCA analysis, with PC1 and PC2 accounting for 61% of
the total variance. All samples from the pollination group (CK) are positioned on the
left side of the score plot, and all melon samples from the forchlorfenuron application
groups (10 mg/kg, 15 mg/kg, and 20 mg/kg) are positioned on the right side. Moreover,
the proximity of the forchlorfenuron application groups indicates they have similar volatile
compounds. The analysis results were consistent with those of the E-nose.
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Supervised OPLS-DA was then conducted on the volatile compounds of fresh oriental
melon samples to test the validity of PCA clustering and to further clarify the critical
different aroma-active compounds of oriental melon after forchlorfenuron application.
As shown in Figure 4B, a clear discrimination was achieved between the fresh oriental
melon samples from different treatment groups. The OPLS-DA model explained a cumu-
lative 62% of the total variance with high-quality performance parameters (R2Y = 0.874,
Q2 = 0.894, and CV-ANOVA p-value < 0.05) [33]. The results indicate the goodness-of-fit
and predictability of the PLS-DA model and confirm the excellent performance of GC-IMS
combined with PLS-DA for the discrimination of oriental melon after forchlorfenuron
application. Meanwhile, the VIP method of PLS-DA was used to screen the critical different
aroma-active compounds of oriental melon after forchlorfenuron application. As shown
in Table 2, the VIP scores of 13 volatile compounds were more than 1, indicating that
these compounds might be used as critical markers in determining discrimination in the
HS-GC-IMS PLS-DA model.



Foods 2023, 12, 1272 10 of 13

Table 2. The 13 difference markers of the volatile flavor compounds of oriental melon under different treatment groups.

Compound CAS# Formula Odor Descriptor Peak Area
CK 10 mg/kg 15 mg/kg 20 mg/kg

Esters
Ethyl acetate dimer 141-78-6 C4H8O2 ethereal fruity sweet weedy green 33,030.65 31,044.70 31,555.70 31,832.88

3_Methylbutyl acetate dimer 123-92-2 C7H14O2 sweet fruity banana solvent 9685.77 10,484.30 10,242.62 10,906.42
Ethyl propanoate dimer 105-37-3 C5H10O2 sweet fruity rum juicy fruit grape pineapple 9154.11 9455.36 9616.75 9970.14

Isobutyl acetate 110-19-0 C6H12O2 sweet fruity ethereal banana tropical 5429.39 4908.41 4740.68 4901.22
Ethyl hexanoate dimer 123-66-0 C8H16O2 sweet fruity pineapple waxy green banana 1320.87 3116.89 2774.75 3979.39

Ethyl hexanoate monome 123-66-0 C8H16O2 sweet fruity pineapple waxy green banana 2109.47 3067.76 2806.68 3155.46
Amyl acetate dime 628-63-7 C7H14O2 ethereal fruity banana pear banana apple 1403.12 2094.79 1673.21 2559.41

Ethyl 2-methylbutanoate dime 7452-79-1 C7H14O2 sharp sweet green apple fruity 6161.62 6653.40 6602.08 7472.25
Ethyl 2-methylbutanoate monome 7452-79-1 C7H14O2 sharp sweet green apple fruity 1103.21 1326.94 1325.19 1380.20

Ethyl pentanoate monomer 539-82-2 C7H14O2 sweet fruity apple pineapple green tropical 492.25 889.20 661.18 972.12

Methyl 2-methylbutanoate dime 868-57-5 C6H12O2
ethereal estery fruity tutti frutti green apple

lily of the valley powdery fatty 491.19 679.60 770.23 900.93

Methyl hexanoate monomer 106-70-7 C7H14O2 fruity pineapple ether 137.25 379.01 441.57 604.47

Aldehydes
Benzaldehyde 100-52-7 C7H6O strong sharp sweet bitter almond cherry 241.09 389.94 335.86 425.24
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The 13 difference markers contain 12 esters, imparting a sweet fruity flavor in fresh
oriental melon. Except for ethyl acetate and isobutyl acetate, the signal intensities of
the other 10 esters in the pollination group (CK) were much lower than that of the three
forchlorfenuron application groups (10 mg/kg, 15 mg/kg, and 20 mg/kg). Among them,
ethyl 2-methyl butanoate was decreased appreciably in overripe cantaloupe as has been
reported [34]. Consistent with the result of E-nose, applying forchlorfenuron could delay
the fruit maturity of oriental melon [30], which may be one of the reasons for the decrease
of these esters in the pollination group (CK).

The major limitation of this work includes the lack of data regarding the specific con-
tribution of each compound to the aroma of fresh oriental fruits. Further studies are being
designed to identify key aroma-active compounds in fresh oriental melon. The concentra-
tion and odor activity value (OAV) of critical volatile flavor compounds will be further
calculated to verify the obtained results from this study. Furthermore, the mechanism of
the changes in the types and concentrations of volatile compounds in oriental melon fruit
after forchlorfenuron application is still unknown, and this needs further study.

4. Conclusions

In this study, the influence of forchlorfenuron on the volatile flavor compounds in
fresh oriental melon was studied. E-nose can effectively separate the oriental melon from
different application groups. The volatile profile of fresh oriental melon was characterized
by establishing the fingerprint with GC-IMS. Forty-eight volatile components, including
esters, alcohols, aldehydes, and ketones, along with smaller quantities of sulfides and
terpenes, were identified from flesh oriental melon. Esters are the main substance of volatile
compounds in fresh oriental melon. Compared to pollination melon fruits, the application
of forchlorfenuron could significantly influence the content of esters in fresh oriental
melon, which may be related to the prolonged ripening process of oriental melon after
forchlorfenuron application. This work could be conducive to a better understanding of the
characteristic aroma differences of fresh oriental melon after forchlorfenuron application
and provide new theoretical guidance for the more rational use of forchlorfenuron.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12061272/s1, Figure S1:Representative oriental melon fruits
at mature period in different application groups.
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