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Abstract: Culex tritaeniorhynchus is the primary vector of Japanese encephalitis (JE) and has a
wide global distribution. However, the current and future geographic distribution maps of Cx.
tritaeniorhynchus in global are still incomplete. Our study aims to predict the potential distribution
of Cx. tritaeniorhynchus in current and future conditions to provide a guideline for the formation
and implementation of vector control strategies all over the world. We collected and screened the
information on the occurrence of Cx. tritaeniorhynchus by searching the literature and online databases
and used ten algorithms to investigate its global distribution and impact factors. Cx. tritaeniorhynchus
had been detected in 41 countries from 5 continents. The final ensemble model (TSS = 0.864 and
AUC = 0.982) indicated that human footprint was the most important factor for the occurrence
of Cx. tritaeniorhynchus. The tropics and subtropics, including southeastern Asia, Central Africa,
southeastern North America and eastern South America, showed high habitat suitability for Cx.
tritaeniorhynchus. Cx. tritaeniorhynchus is predicted to have a wider distribution in all the continents,
especially in Western Europe and South America in the future under two extreme emission scenarios
(SSP5-8.5 and SSP1-2.6). Targeted strategies for the control and prevention of Cx. tritaeniorhynchus
should be further strengthened.

Keywords: Culex tritaeniorhynchus; global distribution; species distribution models; impact factors;
climate change; habitat suitability; extension

1. Background

Japanese encephalitis (JE) is caused by infection with the Japanese encephalitis virus
(JEV) with an overall incidence of 1.8 per 100,000 [1–4]. Among them, 20–30% are fatal, and
30–50% of the survivors have a poor prognosis [5]. Cx. tritaeniorhynchus is the primary vec-
tor of JEV [6] and is widespread in Southeast Asia, the Middle East, Africa and Europe [7].
There are some other human and animal viral diseases that are also transmitted by Cx.
tritaeniorhynchus, including Dengue fever, Rift Valley fever and Tembusu virus infection
fever [8–10]. Cx. tritaeniorhynchus breeds mainly in paddy fields [11] and shows a large
expansion of geographic distribution and magnitude in many countries because of the
development of rice agriculture [12–14]. Pigs and cattle show an intimate connection with
the abundance of Cx. tritaeniorhynchus [9,15–19]. Climate and altitude also influence the
distribution of Cx. tritaeniorhynchus [20,21]. Although predictive studies have paid attention
to the various factors including climate and altitude [22], these results are not sufficient
enough to distinguish between areas where the species can and cannot survive. Human
footprint, as a composite indicator of human impact, including human population density,
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land transformation, human access and infrastructures, is often used in predicting species
distribution [23]. In addition, Liu et al. reported that human impact is a strong predictor of
Cx. tritaeniorhynchus [24]. Considering the importance of impact factors in prediction, it
is still necessary for us to make integration and inclusion with more comprehensive and
extensive factors.

Applying various methods to model the spatial distribution of vector species can assist
in the assessment and management of associated health risks [25]. Different modeling
techniques are successfully used to investigate potential geographical distribution in multi-
farious species, such as Culicoides imicola, Aedes aegypti, Biomphalaria straminea and Oriental
beech [26–29]. Though previous modeling efforts obtained the current distribution maps of
Cx. tritaeniorhynchus in China, Vietnam, Iran, Korea and even Asia [7,24,30–32], the current
and future global geographic distribution maps are still missing. Especially in recent years,
Cx. tritaeniorhynchus has also spread further worldwide with the clear trend of population
expansion [33,34]. These signs call for more comprehensive and in-depth research to fill
the gaps in the field, especially beyond Asia, to the global and future projections of Cx.
tritaeniorhynchus.

Plentiful species distribution models (SDMs) are effectively used to predict species
distributions using species occurrence and impact factors, especially for species expansion,
by quantifying the mathematical and physical relationships between species and environ-
mental variables, including a dozen of algorithms [28,35–37]. By identifying non-random
relationships, the presence of a disease or species can be determined by impact factors [38].

However, it is still a challenge to compare the relative performance among different
models and ultimately determine the best modeling strategy [39]. Most studies focus on
single-model predictions now [24,40], and even the few that include comparisons of several
algorithms also lack further combined modeling [22]. In particular, to the best of our
knowledge, studies on Cx. tritaeniorhynchus are dominated by maximum entropy models
(MAXENT) or general boosted models (GBM) with the lack of multiple algorithms [7,24],
pointing to the possible room for more exploration in modeling technology. Whilst various
algorithms have been applied in other species [41], we still can further use an ensemble
forecast approach accounting for the variability among various algorithms to obtain the
central tendency [42]. Theoretically, the ensemble forecast is a meta-algorithm that combines
several modeling techniques into a single predictive model to decrease variance and bias
and improve prediction significantly [42,43].

In this study, we used ensemble modeling techniques that combined ten different
models to map the global distribution of Cx. tritaeniorhynchus and assessed the impact
of two climate change scenarios on the distribution using vector habitat suitability maps.
To the best of our knowledge, this is the first prediction study of the current and future
global distribution of Cx. tritaeniorhynchus, and to some extent, this study explored the most
comprehensive impact factors and applied a rich variety of algorithms. The identification
of the risk areas of Cx. tritaeniorhynchus would help in providing guidelines to formulate
vector control strategies globally.

2. Materials and Methods
2.1. Occurrence Data

We conducted an extensive literature search using the keywords “Culex Tritaeniorhynchus”
and “Cx. tritaeniorhynchus” in the PubMed, ScienceDirect and China National Knowledge
Infrastructure (CNKI) before 2021 August, and a comprehensive literature review was
developed (Table S1). We collected all occurrence records from the comprehensive literature
review and Global Biodiversity Information Facility database (GBIF, http://www.gbif.
org/, last accessed on 1 August 2021). A database was created of 2176 occurrences of Cx.
tritaeniorhynchus for the period 1905–2020. All occurrences were available from online
databases to ensure consistency and reproducibility [44,45].

We extracted all available location information for each occurrence. Google Earth
(https://www.google.com/earth/ (accessed on 1 September 2021) was used to acquire
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the coordinates of mosquito collection points when the information was not provided.
The occurrences with missing geospatial information and absent variable layers were
excluded. Duplicate records were deleted, and only one presence point was retained per
2.5 arc–min resolution grid (a 5 × 5 km area) to reduce spatial autocorrelation and avoid
inflated accuracy [20,46,47]. In addition, in de-duplication, we gave priority to retaining
occurrences close to the time of impact factors. Finally, older occurrences were removed
after checking.

2.2. Impact Factors

We obtained bioclimatic data, elevation data, vegetation index, pig density, cattle
density and human footprint (Table 1). Nineteen bioclimatic variables (1970–2000) with a
spatial resolution of 2.5 arc–min were from the latest WorldClim version 2.1 (Fick, S.E. and
R.J. Hijmans, Davis, CA, USA) [48], and these variables have been widely applied to model
the ecological niche and potential distribution of species.

Table 1. Variables used in the ecological niche modeling.

Variables Description Sources

Bio2 Mean diurnal temperature range

WorldClim database
(http://www.worldclim.org/
(accessed on 31 August 2021)

Bio3 Isothermality

Bio5 Max temperature of warmest
month

Bio8 Mean temperature of wettest
quarter

Bio12 Annual precipitation
Bio15 Precipitation seasonality
Bio18 Precipitation of warmest quarter
Bio19 Precipitation of coldest quarter

Altitude Altitude from DEM

Global Land One-km Base Elevation
Project (GLOBE) (https://www.ngdc.

noaa.gov/mgg/topo/globe.html
(accessed on 31 August 2021)

NDVI
SPOT VEGETATION Images from
spectral bands (SWIR, NIR, RED,

BLUE).

https://www.vito-eodata.be/
(accessed on 31 August 2021)

Human footprint Anthropogenic impacts on the
environment

Wildlife Conservation Society (WCS)
and Center for International Earth

Science Information Network
(CIESIN)

(http://sedac.ciesin.columbia.edu/
data/collection/wildareas-v2
(accessed on 31 August 2021)

Pig Global livestock distribution
Global pig density grid data
(http://www.geo-wiki.org

(accessed on 31 August 2021)

Cattle Global livestock distribution
Global cattle density grid data

(http://www.geo-wiki.org
(accessed on 31 August 2021)

Altitude as a geographical factor was extracted from elevation data from the Global
Land One-km Base Elevation Project (GLOBE) [49]. The Normalized Difference Vegetation
Index (NDVI) is a measure of photosynthetic activity, reflecting the spatial and temporal
dynamics of vegetation that influences mosquito reproduction and development [50]. We
obtained the NDVI data from The VEGETATION Programme. Human footprint was
accessed through the global human footprint layer version 2 from Wildlife Conservation
Society (WCS), and Center for International Earth Science Information Network (CIESIN)
(NASA Socioeconomic Data and Applications Center (SEDAC), Palisades, USA). Human
footprint calculates human influence globally, with datasets representing human population
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density, land transformation, human access and infrastructures [23]. Studies use human
footprint as a factor in assessing human impact on species [29,51]. In addition, we obtained
the pig and cattle density from the Livestock Geo-Wiki.

The WorldClim dataset also offers the future distribution of bioclimatic variables
based on different models such as MIROC5, MIROC6 and GCMs. [28]. MIROC6 is the
latest version of MIROC5 from CMIP6, with good performance in simulating mean climate,
internal climate variability and climate sensitivity [52], and simulates extreme and summer
precipitation better than other GCMs, especially in South Asia [53]. Thus, we used the
future bioclimatic variables from MIROC6 to model the distribution of Cx. tritaeniorhynchus
in the future. These are a new set of emission scenarios driven by different socioeconomic
assumptions developed by the energy modeling community in MIROC6. Two extremes
for the Shared Socioeconomic Pathways (SSPs), SSP5-8.5 and SSP1-2.6, respectively, which
represent the most severe and the least emission scenarios [54], were applied in modeling.
We used corresponding type future climate variables under SSP5-8.5 and SSP1-2.6 scenarios
in four periods (2021–2040, 2041–2060, 2061–2080 and 2081–2100) and the other non-climatic
variables above to model future projections. Finally, we obtained eight future distributions
for each period and scenario.

The same resolution was used for all variables using resampling technique, and the
masking technique was applied to extract the same geographic extent of all maps using
ArcGIS 10.2 (ESRI Inc., Redlands, CA, USA). To avoid the effects of overparameterization
and multicollinearity among variables, we excluded variables with a high intercorrelation
using Pearson’s correlation coefficient (r > 0.70) (Figure S1). Finally, 13 variables were
selected as impact factors in modeling (Table 1), rather than the original 24 variables.

2.3. Model Development and Assessment

Ensemble species distribution modeling using the biomod2 package in R 4.1.0 (The
R Foundation for Statistical Computing, Topeka, KS, USA) was used to predict the distri-
bution of Cx. tritaeniorhynchus. We implemented ten different algorithms: general linear
models (GLMs), general boosted models (GBMs, also referred to as boosted regression
trees), general additive models (GAMs), classification tree analysis (CTA), artificial neural
networks (ANNs), surface range envelope (SRE), flexible discriminant analysis (FDA),
multiple adaptive regression splines (MARS), random forests (RFs) and maximum entropy
(MAXENT) [43]. Several models require both absence and present records, and we intro-
duced 667 pseudo-absence records using random extraction and had 1 334 unique points
in the models.

All the presence and absence points were randomly split into two parts, with 75% of
the data to train and 25% to test the models. To synthetically evaluate and compare the
performances of models, we used the receiver operating characteristic curve (area under
the curve, AUC) and True Skill Statistics (TSS), which were generally applied in predictive
species distribution [26]. These two methods are independent, but it is desirable to execute
both methods for comprehensive assessment [43]. Low values reflected a model that is
no better than a random association between species presence/absence and underlying
variables, and high values close to 1.0 reflect a strong signal of association, indicating
excellent model performance [55].

We performed three evaluation runs during the modeling and obtained a total of
30 models (10 modeling methods ×3), and average values of testing AUC and TSS were
measured [26]. For ensemble modeling, only the models with TSS > 0.8 and AUC > 0.9
were considered [26,55], and the consensus method based on the weighted mean approach
increased the model accuracy [56]. We calculated the ranks for the importance of effective
variables to compare their predictability among the models. Uncertainty was calculated
as the coefficient of variation of the projections between the individual models in the
ensemble, reflecting the disagreement between SDM techniques [57]. The agreement
between techniques was not a direct indication of accuracy but only an addition to our
results (Figures S2 and S3). With regard to the urgency of the control and the assessment
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of suitability for other species [28,41], we also developed geographical distribution maps
with five levels according to the probability of occurrence.

3. Results
3.1. Overall Occurrences

Among 2176 occurrences for the period 1905–2020, there were 914 duplicated occur-
rences, 422 occurrences without geospatial information, and 173 occurrences restricted by
spatial resolution, which were removed from our database. For the remaining 667 spatially
unique occurrences (Table S2), Cx. tritaeniorhynchus had been detected in 41 countries
from 5 continents, including 22 Asian countries (90%) and 19 other countries (10%). Most
occurrences were in China (43.0%), followed by India (11.4%), Japan (7.0%), Thailand
(6.9%), Korea (6.3%) and Pakistan (5.4%) (Figure 1).
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Figure 1. Geographical distribution of Cx. tritaeniorhynchus occurrence records. The map showed
unique occurrences in (A) all world, (B) Asia and (C) Africa.

3.2. Model Evaluation

Figure 2 shows the predictability of ten algorithms. RF (TSS = 0.833, AUC = 0.958)
performed the best, while SRE (TSS = 0.493, AUC = 0.746) performed the worst. We
obtained a final ensemble model by incorporating weighted runs from the eight models
with TSS > 0.8 and AUC > 0.9 (two using GBM, FDA and RF, and one using MARS and
GLM). Compared to any single model, the performance of the ensemble model showed the
best predictability (TSS = 0.864 and AUC = 0.982). Thus, we used the final ensemble model
to predict current and future distributions.
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Figure 2. Beanplot illustrating performance in terms of TSS and AUC values over the 30 predictive
models (10 algorithms × 3 runs). The bold horizontal lines indicate the overall average values for
each algorithm. GLM, general linear model; GBM, general boosted model; GAM, general additive
model; CTA, classification tree analysis; ANN, artificial neural network; SRE, surface range envelope;
FDA, flexible discriminant analysis; MARS, multiple adaptive regression spline; RF, random forest;
MAXENT, maximum entropy.

3.3. Variable Importance

Figure 3 ranked the importance of the 13 impact factors. The final ensemble model
indicated that human footprint was the most important factor for the occurrence of Cx.
tritaeniorhynchus. For other algorithms, human footprint was also often at the top. In
contrast, altitude was often at the bottom of the ranks. Bio8, pig and bio15 ranked differently
for various models with a greater length of the vertical bars. Human footprint and cattle
performed similarly for different algorithms.

3.4. Predicted Current Geographical Distribution of Cx. tritaeniorhynchus

The predicted distribution map according to the final ensemble model indicated that
Cx. tritaeniorhynchus was mainly distributed in the tropics and subtropics (Figure 4). Asia
showed the largest area with high habitat suitability for Cx. tritaeniorhynchus, including
all southeastern Asian countries such as China, India, Japan, Myanmar, Thailand, Laos,
Vietnam, Bangladesh and Cambodia. High habitat suitability was also found in countries
on other continents such as Central America, Mexico, Cuba, Colombia, western Norway,
northern Greece, Nigeria and Tanzania. The region of highest uncertainty was in North
America, with scattered areas of high uncertainty in Western Europe, where relatively clear
inconsistencies were observed between the individual models (Figure 5).
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Figure 3. Ranks of the importance according to the contribution of each variable in different algorithms
(RF, GBM, GLM, FDA and MARS) and the final ensemble model. The length of the vertical bars indicate
the difference in the rank of importance for the same variable in the above algorithms. The lower rank
values indicated higher importance. RF, random forest; GBM, general boosted model; GLM, general
linear model; FDA, flexible discriminant analysis; MARS, multiple adaptive regression spline.
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Figure 4. Predicted current geographical distribution of Cx. tritaeniorhynchus. The habitat suitability
of geographical distribution was divided into five levels according to the probability of occurrence for
Cx. tritaeniorhynchus as follows: absent: 0–0.2, low: 0.2–0.4, moderate: 0.4–0.6, high: 0.6–0.8 and very
high: 0.8–1.0. In addition the closer to 0, the lower the probability of Cx. tritaeniorhynchus occurring.
The closer to 1, the higher the probability of Cx. tritaeniorhynchus occurring. (A) All world, (B) Asia
and (C) Africa.
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3.5. Predicted Future Geographical Distribution of Cx. tritaeniorhynchus

Figures 6 and 7 shows the predicted future distribution of Cx. tritaeniorhynchus under
two extreme emission scenarios. High habitat suitability would still be distributed in
southeastern Asia, Central Africa, southeastern North America and eastern South America.
However, the levels of habitat suitability would increase in northern China, Japan, Indone-
sia, Iraq, Central Saudi Arabia, eastern Brazil, the United States and various countries in
Western Europe, even under the SSP1-2.6 scenario with the lowest emissions. In addition
to these areas, under the SSP5-8.5 scenario with the highest emissions, the levels of habitat
suitability would increase more markedly in other areas, including Central India, Korea,
eastern Russia, southern Niger, northern Argentina, Bolivia and southern Venezuela. Mean-
while, there was no significant overall change of uncertainty for SSP1-2.6 (Figure S2). For
Figure S3, there was a global increase for the areas with already some obvious uncertainties
in the future. Especially for North America and Europe, the uncertainty of high growth
was worth noting.

Table 2 shows that under the SSP1-2.6 scenario, the areas with low, moderate, high
and very high habitat suitability levels would show the largest expansion in 2041–2060 and
then decline slightly afterward in 2061–2080 and 2081–2100. In addition, the area of low
habitat suitability level would increase to 1150 km2 in 2041–2060 from 983 km2 at present.
Under the SSP5-8.5 scenario, there would be a significantly greater expansion of habitat
suitability with low, moderate, high and very high levels, which was predicted to peak
at the end of the 21st century. The area of low suitability habitat for Cx. tritaeniorhynchus
would increase the most in 2081–2100 to approximately 1451 km2. The area would be 20 to
30% larger for moderate, high and very high habitat suitability compared to the current
distribution. An extension was observed in the future along the coasts and river systems
such as the Amazon River, Congo River and Danube River.
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Table 2. Projected future area of different habitat suitability for Cx. tritaeniorhynchus under the
SSP5-8.5 and SSP1-2.6 scenarios in four periods (2021–2040, 2041–2060, 2061–2080 and 2081–2100).

Scenario Period
Area of Different Habitat Suitability/Km2 (%)

Absent Low Moderate High Very High

Current 11,041 (81.8) 983 (7.3) 513 (3.8) 377 (2.8) 586 (4.3)

SSP1-2.6

2021–2040 10,711 (79.3) 1129 (8.4) 584 (4.3) 436 (3.2) 640 (4.7)
2041–2060 10,662 (79.0) 1150 (8.5) 595 (4.4) 444 (3.3) 650 (4.8)
2061–2080 10,694 (79.2) 1134 (8.4) 587 (4.3) 446 (3.3) 639 (4.7)
2081–2100 10,733 (79.5) 1129 (8.4) 573 (4.2) 435 (3.2) 630 (4.7)

SSP5-8.5

2021–2040 10,692 (79.2) 1135 (8.4) 594 (4.4) 439 (3.3) 640 (4.7)
2041–2060 10,507 (77.8) 1218 (9.0) 625 (4.6) 476 (3.5) 674 (5.0)
2061–2080 10,279 (76.1) 1321 (9.8) 684 (5.1) 512 (3.8) 703 (5.2)
2081–2100 9995 (74.0) 1451 (10.7) 752 (5.6) 553 (4.1) 749 (5.5)

Note: The habitat suitability of geographical distribution was divided into five levels according to the probability
of occurrence for Cx. tritaeniorhynchus as follows: absent: 0–0.2, low: 0.2–0.4, moderate: 0.4–0.6, high: 0.6–0.8 and
very high: 0.8–1.0. In addition, 0 was completely impossible, and 1.0 was certain for Cx. tritaeniorhynchus to occur.
The global land area is 135 million square kilometers except for Antarctica. The coverage was differentiated for
current and future distributions according to the different periods of climatic variables from WorldClim.

4. Discussion

The study provided the most comprehensive maps for predicted global Cx. tritae-
niorhynchus distribution at present. We also initially predicted the future global distribution
under the SSP5-8.5 and SSP1-2.6 scenarios. We developed an ensemble model (TSS = 0.864
and AUC = 0.982) with various algorithms and broader impact factors, such as climate,
altitude, NDVI, human footprint, pig density and cattle density. The results provided
important information to develop targeted measures for Cx. tritaeniorhynchus monitoring.

The high suitable areas of Cx. tritaeniorhynchus were in the tropics and subtropics. In
our maps, we found obvious high habitat suitability in Asia, which was similar to previous
studies [7]. Further, when the projections were first extended globally in our study, a
tendency of Cx. tritaeniorhynchus to spread from the coastlines to the inlands was observed
on all continents. The possible ecological reasons are that water plays an important role
in larval development, and summer monsoon winds further help mosquitoes spread and
migrate. It is also interpreted as the effects of temperature changes caused by topography
and land/sea contrasts [58]. A similar trend was observed inland. For example, the
mosquito habitat is mainly distributed along the river system, including the Congo River
in Africa, the Danube River in Europe and the Paraguay River in South America (Figure 4).
As water systems are often accompanied by large populations, the surrounding should
be the focus of future surveillance. In addition, based on the predicted distribution of
Cx. tritaeniorhynchus, we grouped countries into five habitat suitability levels in our maps.
Specifically, for countries with poor entomological reporting, these classification maps can
be used to prioritize surveillance for prevention. This will be especially important in areas
not located in Asia where JEV was initially detected or with unprecedented emergence in
recent years, such as Italy, Australia and Angola [33,59–61]. Beyond the traditional risk
zone of Cx. tritaeniorhynchus in Asia, our findings filled a gap in the worldwide predictions
and provided surveillance guidance on a global scale.

Our study indicated that there would be an obvious expansion of distribution under
two different climate models (Figures 6 and 7). Asia would still be the main epidemic area
for Cx. tritaeniorhynchus, and Europe, North America and Africa would have a larger exten-
sion. Considering that the socioeconomic conditions and public health infrastructure in
North America and Europe may limit the outbreak and impact of Cx. tritaeniorhynchus [62]
and that Asia is a traditional epidemic area with rich experience in prevention and con-
trol [63], the focus of future studies should shift toward Africa and South America.

In addition, an extension was observed in the future along the coasts and river systems,
and the levels of habitat suitability would increase, to a large degree, related to increasing
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near-surface temperatures in winter [64]. Compared with the decreases of other mosquito
species in the future in northern South America, southern Europe, Central Africa and
Southeast Asia [20,65], Cx. tritaeniorhynchus is believed to gain a great advantage in
mosquito competition due to climate change. Changing conditions in the tropics are more
beneficial for the invasion and establishment of Cx. tritaeniorhynchus than Ae. albopictus as
native species.

Multiple variables were related to the distribution of Cx. tritaeniorhynchus, and among
them, human footprint was the most important one. Similar results have been reported
in previous studies [24,29]. Human population characteristics may mediate interactions
among mosquito species [66], their hosts [19] and their pathogens [67]. Pigs and cattle
played a less important role than human footprint, though Cx. tritaeniorhynchus may have
an innate feeding preference for pigs and cattle than humans [68]. A possible reason is that
human footprint not only represents enough food resources but also extends the living
space geographically on account of the large sphere of human activity in recent years.

Bioclimate variables also played an important role in the geographical distribution
of Cx. tritaeniorhynchus. Bio2, an index of temperature, was the top variable, after human
footprint, affecting mosquito distribution. A field survey in India found a strong correlation
between temperature and Cx. tritaeniorhynchus distribution [69]. Mosquito population, viral
species, and temperature also significantly influence both vector competence and vectorial
capacity [70]. Bio15, as an indication of precipitation, also affected the distribution of Cx.
tritaeniorhynchus, and it might improve the condition for larval development and adult
survival [71]. Water depth could influence the choice of Cx. tritaeniorhynchus in preferring
the breeding habitat of mosquitos [72]. Bio8 ranked at the top in MARS but at the bottom
in FDA. Using non-parametric regression and linear discriminant analysis (LDA), FDA is a
multigroup non-linear discrimination technique [73], and MARS automatically estimates
complex non-linear relations based on a series of spline functions of the predictor variables
with a two-stage process [74]. With the change of algorithms, the contribution of each
variable in modeling has a certain elasticity.

The ensemble model performed best in our study (TSS = 0.864 and AUC = 0.982);
the model was statistically robust, and its predictive precision was excellent. For a single
model, RF showed the best performance. Although MAXENT has been used alone in
some studies to predict Cx. tritaeniorhynchus [24], the performance is not relatively ideal
among the algorithms in our study. Further, studies have shown that no single model
performed well under various conditions [28,75–77], which affects the effectiveness of
model predictions in application [42,78]. Indeed, the results of the application of the
traditional method that selected the best model from multiple models often differ from
the actual observations, especially when the observation set is spatially or temporally
independent from the calibration set [79,80]. The ensemble modeling technique was applied
to deal with inter-model uncertainty well [43,81], and more robust and accurate prediction
results were obtained. It is similar to the results from Xia et al. [41], who proposed that
the complex relationships that exist between species and variables can explain the general
performance of classical models.

There are several limitations of our study. We included a number of impact factors
but did not consider the effects of socioeconomic development and anthropogenic changes
to the land. The raw data differed in sampling and resolution and might have certain
spatial autocorrelation. In addition, we only considered the presence and absence of Cx.
tritaeniorhynchus, but its abundance, which plays a crucial role in disease transmission [20],
was not investigated. Uncertainty existed in these occurrences. The level of mosquito
surveillance and the number of scientific reports in different countries influenced the
uncertainty of occurrences that we collected from public databases. For the future projection,
different selections for the combination of emission and socioeconomic scenarios could
result in various results [65]. In the current study, we chose two scenarios representing the
lowest and highest emission scenarios in the future for interval coverage. An additional
limitation is that the two scenarios used for future projection are only from a single model,
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viz. MIROC6. In addition, due to the lack of available variables such as NDVI, human
footprint, pig and cattle in the future, only future climate variables were added, and other
variables remained the same in the future distributions.

5. Conclusions

Our study predicted the global geographic distribution of Cx. tritaeniorhynchus at
different habitat suitability levels. In addition, Cx. tritaeniorhynchus is predicted to show a
wider distribution in all continents, especially in Western Europe and South America in the
future under two extreme emission scenarios (SSP5-8.5 and SSP1-2.6). Targeted strategies
for the control and prevention of Cx. tritaeniorhynchus should be further strengthened.
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