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Abstract: The specificity protein (Sp) transcription factors (TFs) Sp1, Sp2, Sp3 and Sp4 exhibit
structural and functional similarities in cancer cells and extensive studies of Sp1 show that it is a
negative prognostic factor for patients with multiple tumor types. In this review, the role of Sp1, Sp3
and Sp4 in the development of cancer and their regulation of pro-oncogenic factors and pathways
is reviewed. In addition, interactions with non-coding RNAs and the development of agents that
target Sp transcription factors are also discussed. Studies on normal cell transformation into cancer
cell lines show that this transformation process is accompanied by increased levels of Sp1 in most
cell models, and in the transformation of muscle cells into rhabdomyosarcoma, both Sp1 and Sp3,
but not Sp4, are increased. The pro-oncogenic functions of Sp1, Sp3 and Sp4 in cancer cell lines
were studied in knockdown studies where silencing of each individual Sp TF decreased cancer
growth, invasion and induced apoptosis. Silencing of an individual Sp TF was not compensated
for by the other two and it was concluded that Sp1, Sp3 and Sp4 are examples of non-oncogene
addicted genes. This conclusion was strengthened by the results of Sp TF interactions with non-
coding microRNAs and long non-coding RNAs where Sp1 contributed to pro-oncogenic functions
of Sp/non-coding RNAs. There are now many examples of anticancer agents and pharmaceuticals
that induce downregulation/degradation of Sp1, Sp3 and Sp4, yet clinical applications of drugs
specifically targeting Sp TFs are not being used. The application of agents targeting Sp TFs in
combination therapies should be considered for their potential to enhance treatment efficacy and
decrease toxic side effects.
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1. Background

Specificity protein 1 (Sp1) was among the first transcription factors (TFs) identified
and is a member of the Sp/Kruppel-like factor (Sp/KLF) family. Members of this family
exhibit variable structural domains and functions but all contain conserved zinc fingers in
their DNA binding domains that bind GC-rich (Sps) and CACC (KLFs) boxes [1–7]. Not
surprisingly, within the Sp and KLF sub-families there can be some overlap and competition
for the same cis-elements, although for many Sp-regulated genes, differences in cell context
and levels of expression dictate which Sp transcription factor is active. Among the 9 Sp
genes, Sp1-Sp4 are most similar in terms of both structure and function (Figure 1), and they
are the prime focus of this review. It should also be pointed out that among Sp1-Sp4, most
research has focused on Sp1 and to a lesser extent Sp3 and it is possible that for some genes
and pathways, the potential contributions of Sp2 and Sp4 have been understudied. There
has been extensive research on the mechanisms of Sp-regulated gene expression, which
frequently is observed in genes that lack a TATA box. Many Sp-regulated genes bind and
activate gene expression through one or more GC-rich sequences proximal to the start sites
where there are ordered assemblies of nuclear cofactors to form a transcriptionally active
complex that includes DNA-bound Sp1, Sp3 or Sp4. The composition of transcription com-
plexes includes polymerase II, transcription factor IID (TFIID), TATA box binding protein
(TBP) and associated factors (TAFs) and members of the cofactor required for Sp1 activa-
tion/mediator (CRISP/MED) complexes [8]. The overall complex is highly variable and
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both gene- and cell-context-dependent. Moreover, there is also evidence that Sp TFs bind
imperfect/variable GC-rich sequences and also interact with distal enhancer sequences,
as described for the Topoisomerase IIa promoter [9]. In this review, there is a focus on the
interactions of Sp TFs with non-coding RNAs and their functions; however, it should also
be noted that Sp1 physically interacts with over 55 other proteins [2]. Sp1 function is also
influenced by post-transcriptional modifications that include phosphorylation, acetylation,
glycosylation and cleavage, and these changes can enhance or inhibit protein stability.
Unfortunately, data for Sp3-Sp4 in terms of transcriptional function, post-transcriptional
modifications and interactions with other factors have not been extensively investigated.
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Figure 1. Schematic structures of Sp1, Sp2, Sp3 and Sp4 [1,2]. These transcription factors exhibit
several common structural features; however, Sp3 expresses an inhibitory domain that results in
gene-specific decreased expression in some cell lines.

Several excellent reviews on Sp transcription factors and their role on genes and
pathways associated with cancer and non-cancer endpoints have been published [1–7]
and this article primarily focuses on Sp TFs and cancer findings from studies published
within the last 5 years, more recent studies and their significance. It will become apparent
that while Sp TFs are not oncogenes, their designation as non-oncogene addiction genes is
highly appropriate [7].

2. Sp TFs as Cancer Prognostic Factors

Extensive analysis of tumor and non-tumor tissues has identified many prognostic
factors that can be used to predict patient outcomes. Moreover, in some cases, the results
dictate the application of specific treatment regimens, and this is particularly true of early-
stage breast cancer where expression of estrogen receptor α (ERα, ESR1) in mammary
tumors usually results in treatment with endocrine therapies [10]. Table 1 illustrates the
important role of Sp1 as a negative prognostic factor for multiple cancers where Sp1 is
generally more highly expressed in tumors compared to normal tissue and overexpression
is correlated with decreased disease-free patient survival or another negative outcome.
With the exception of highly variable results for lung cancer, most tumors overexpress Sp1
(or Sp3) compared to non-tumor tissue and poorer outcomes are observed in patients with
tumors overexpressing this TF. In liver cancer, both Sp1 and Sp2 are negative prognostic
factors for survival [11–13]. In many cases, manuscripts reporting the role of Sp1 as
a diagnostic factor are accompanied by laboratory studies showing the pro-oncogenic
functional activities of Sp1.
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Table 1. Clinical/prognostic Significance of Sp transcription factors.

Tumor Sp TF Prognosis Refs.

Prostate Sp1/Sp3/FLIP Overexpression correlated with a high Gleason score and
predicted recurrence [14]

Esophageal squamous cell carcinoma Sp1 High Sp1 predicts poor patient survival [15]
Astrocytoma Sp1 Poor patient prognosis [16]
Bladder urothelial carcinoma Sp Poor clinical outcomes [17]

Glioma Sp1 Poor outcomes, higher expression in higher grades,
immune invasion [18–20]

Head and Neck Sp3 Predicted poor survival [21]

Pancreatic Sp1 (Sp1/LOXL2) Decreased survival, higher grade, dual prognostic factor
(with LOXL2) [22–24]

Oral squamous cell carcinoma Sp1 Overexpressed and prometastatic [25]
Gastric cancer Sp1 Overexpressed, poor prognosis, increased in higher stages [26–30]
Liver cancer Sp1 Overexpressed, poor prognosis [11,12]
Colin cancer Sp1/Sp3 Overexpressed, decreased survival [31,32]
Breast cancer Sp1/Par3 Lower levels/advanced stage, poor prognosis [33–36]
Lung cancer Sp1 Variable prognosis, decreased Sp1 with increasing stage [37–39]
Ovarian cancer Sp1/DANCR Sp1 overexpression in tumor, correlates with DANCR [40]
Liver cancer Sp2 Decreased survival [13]

Meta-analysis of multiple studies has also been used to probe the role of Sp1 in gastric
cancer, and higher Sp1 expression is correlated with increased depth of invasion and lymph
node metastasis, increased TNM staging and Lauren’s classification [41]. A similar meta-
analysis approach was used to examine multiple tumor types [42] and similar associations
were observed as reported for gastric cancer.

3. Role of Sp in Cell Transformation

Sp1 is clearly a negative prognostic factor for multiple cancers, and this is accompanied
by increased expression of Sp transcription factors in tumors compared to non-tumor tissues.
These observations suggest that the process that drives the transformation of a normal cell
to a tumor cell may also involve Sp transcription factors. This was investigated in a classical
study that examined the effects of carcinogen or oncogene-induced transformation of
human fibroblasts into fibrosarcoma cells in which the fibrosarcoma, but not the fibroblasts,
had the ability to form tumors in athymic nude mice [43,44]. This dramatic change in
the phenotype of fibrosarcoma cells compared to the fibroblasts was accompanied by an
8- to 18-fold increased expression of Sp1 protein, which is enhanced during fibroblast
cell transformation. Moreover, it was also demonstrated that knockdown of Sp1 in the
fibrosarcomas resulted in cells that did not form tumors in athymic nude mice. Other
studies show that EGF-induced transformation of bladder epithelial cells and Kras induced
transformation of MCFI0A cells also involved Sp1 or an Sp1-regulated gene [45,46]. CYP1B1
also enhanced the proliferation, migration and invasion of MCFI0A and MCF7 cells and
this was also accompanied by increased expression of Sp1 and Sp1 regulated genes and
silencing or inhibition of Sp1 inhibited CYP1B1-mediated transformation [47].

Arsenic is a carcinogen and considered to be a public health hazard. Exposures of
human bronchial epithelial Beas-2B cells to arsenic over a period of several months lead
to cell transformation and this was due, in part, to induction DNA methyltransferase 1
(DNMT1) [48]. However, further examination found that arsenic induced Sp1, which in
part enhanced DNMT1 expression and loss of miR-199a-5p, which was critical for arsenic-
induced transformation. The proposed mechanism involves arsenic-induced Sp1, which
in turn activates DNMT1 and suppresses miR-199a-5p. These results demonstrate a role
for Sp1 in arsenic-induced transformation of Beas-2B cells; however, the direct effect of
Sp1-mediated suppression of miR-199a-5p is unexpected and needs further investigation.
Rhabdomyosarcomas (RMS) express high levels of Sp1 compared to non-transformed
muscle tissue and RMS cell lines express high levels of Sp1, Sp3 and Sp4. Transformation of
human smooth muscles with telomerase, the PAX3-FOXO1 oncogene and NMyc transforms
these muscle cell lines; however, expression of only one or two of these factors is not
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sufficient for transformation [49]. Interestingly, transfection of one or two of these genes
dramatically induces expression of Sp1 and Sp3 but not Sp4. This suggests that the process
of cell transformation is accompanied by early induction of Sp1 and Sp3 prior to conversion
of the muscle cell into a cancer cell [50].

The role of Sp TFs in the process of transformation has also been investigated in cancer
stem cells, where they directly regulate genes associated with “stemness” or cooperate
with other genes and non-coding RNAs to enhance stemness. At present, there is strong
evidence for the role of Sp1 in inducing stemness, and the cooperating factors vary with
tumor type. Stemness in breast cancer is maintained by the long non-coding RNA408
(Lnc408)—dependent recruitment of Sp3 to CBY1 gene promoters to inhibit expression
of CBY1, which indirectly enhances levels of nuclear β-catenin and β-catenin regulated
cancer stem cell-related genes [51]. In gastric cancer, Sp1 regulates expression of leucine-
rich repeat-containing receptor 5 (LGR5), a key stem cell factor [52], and in hepatocellular
carcinoma, Sp1 induced LncRNA DPPA2 upstream binding RNA (DUBR) [53]. DUBR
not only promotes stemness, but also oxaliplatin resistance through an Sp1/DUBR/E2F1-
CIP2A axis. The cancer stem-cell-related protein BMI1 is overexpressed in lung cancer
and is important for maintaining this phenotype and resistance to pemetrexed [54]. BMI1
also regulates Sp1 expression and knockdown of Sp1 or treatment mithramycin reverses
many of the effects of BMI1, including chug resistance. The pro-oncogenic LncRNA
HOTAIR interacts with and upregulates Sp1, which induces DNMI1, and transcriptional
repression of miR-199a-5p and targeting downregulation of Sp1 or DNMI1 was found to
decrease stemness and progression of cutaneous squamous cell carcinoma [55]. In papillary
thyroid carcinoma, the LncRNA DOCK9-AS2 interacts with and induces Sp1, which in
turn induces β-catenin, which is further induced by DOCK9-AS2 interacting with miR-
1972, resulting in increased β-catenin and Wnt signaling [56]. Sp1 is overexpressed in
glioblastoma cells [18–20] and plays a role in maintaining stemness and drug resistance in
this tumor type. It was also reported that ANGPTL4 and Sp4 were overexpressed in GBM
and predicted poor patient prognosis [57]. Sp4 also regulates ANGPTL4 and downstream
EGFR/AKT/4E-BP1, which is associated with temozolomide resistance and expression
of cancer stem cell markers. Drug resistance and stemness in GBM were also associated
with Sp1 in another study [58] and in glioma, HDAC/Sp1 regulation of BMI1 enhanced
stemness [59]; this exhibited some overlap with lung cancer cells and BMI1 [54].

4. Sp TFs and Regulation of Protein-Encoding Genes in Cancer Cells

In 1983–1984, Tjian and coworkers initially identified Sp1 as a factor that stimulated
SV40 early promoter transcription by 40-fold and bound to GC-rich elements in target
gene promoters [60,61]. This same group also identified Sp2 as another TF that bound
SV40 [60], and approximately a decade later, Sp3 and Sp4 were also characterized [62–66]
as a structurally related sub-class of the Sp/KLF family. Subsequent research has demon-
strated that Sp1-Sp4 TFs directly regulate or co-regulate thousands of protein-encoding
genes associated with cell proliferation, survival, migration and invasion [7]. A detailed
study of the role of Sp1, Sp3 and Sp4 in cancer was investigated in multiple cancer cell lines
by individual knockdown of the three genes and their combination coupled with analysis
of the resulting functional and genomic effects and their overlap [66]. Knockdown of Sp1
(siSp1), Sp3 (siSp3) and Sp4 (siSp4) and their combination (siSp1, 3, 4) decreased growth,
increased Annexin V staining (apoptosis) and decreased invasion in A549 lung, MiaPaca2
(pancreatic), SW480 (colon), 786-0 (kidney), SKBR3 (breast), MDA-MB231 (breast), Panc1
(pancreatic) and L3.6 pL (pancreatic) cancer cells. Knockdown efficiencies were high and
cell context-dependent differences in functional response potencies were < three-fold for
most responses. For most responses, cells deficient in Sp1, Sp3 and Sp4 (triple knockdown)
exhibited the highest effect on growth inhibition, induction of Annexin V staining and
inhibition of invasion; however, the magnitude of the differences between single and triple
knockdown was relatively modest. These results indicate that Sp1, Sp3 and Sp4 individu-
ally regulate proliferation, survival and invasion of cancer cells and the loss of one of these
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TFs is not compensated or rescued by the other two. One possible explanation is that Sp1,
Sp3 and Sp4 cooperatively regulate many of the same pro-oncogenic genes and loss of a
single TF compromises any possible rescue by the other two.

The highly invasive Panc1 pancreatic cancer cell line was used as a model to investigate
the differential expression of genes after knockdown of Sp1, Sp3 and Sp4. Figure 2 illustrates
the number of DEGs after knockdown of Sp1, Sp3 and Sp4, including 3532, 4826 and
4232 genes, respectively. Further analysis shows that the common DEGs after knockdown
of Sp1/Sp3, Sp1/Sp4 and Sp3/Sp4 were 1113, 1140 and 2753, respectively, indicating
that pairs of the three Sp TFs regulated a relatively high percentage of genes in common.
This was particularly true for Sp3/Sp4, in which 2753 genes were commonly regulated
by both transcription factors, which includes 57 and 64% of all Sp3 and Sp4 regulated
genes, respectively. This would suggest that particularly for Sp3 and Sp4 and also the
other pairs (Sp1/Sp3, Sp1/Sp4), there may be significant cooperative regulation of genes
that requires more than one Sp TF. As demonstrated in Figures 2 and 3, Sp1, Sp3 and Sp4
regulate expression of several thousand genes, with many of them associated with cancer
proliferation, survival, and migration/invasion. Moreover, the three transcription factors
also regulate genes in common and also genes that are Sp- specific and vary with cell
context. Sp (Sp1, Sp3 and Sp4) regulated genes include epidermal growth factor receptor 1
(EGFR), other tyrosine kinases, cMyc, bcl2, survivin, vascular endothelial growth factor
receptors (VEGFR1 and VEGFR2), matrix metalloproteinases and many other genes.
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Since Sp TF regulate genes associated with cell proliferation, survival, and inva-
sion, we used ingenuity pathway analysis (IPA) to analyze DEGs for each pathway after
knockdown of individual Sps and their combination. The relative expressions of DEGs
were determined and the results are illustrated in Figure 3. The patterns of DEGs as-
sociated with Panc1 cell proliferation, survival, and invasion after knockdown of Sp1,
Sp3 and Sp4 were similar; however, the number of genes involved followed the order
of proliferation ≥cell death > invasion. In addition, the pattern of the number of DEGs
commonly expressed by Sp1/Sp3, Sp1/Sp4 and Sp3/Sp4 associated with cell proliferation,
survival and invasion was higher than that observed for the total genes. The percentage
of common genes/total genes was the highest for Sp3/Sp4, where the percentages were
67%, 68% and 74% (Sp3), and 66%, 67% and 72% (Sp4) for cell proliferation, survival, and
invasion respectively. Casual IPA analysis also confirmed by their z scores (>2.0 or <−2.0)
that the DEGs in each group were strongly associated with the functional responses.

There is evidence from the large number of publications that not only do Sp1, Sp3
and Sp4 regulate pro-oncogenic pathways and genes, but there are also reports that Sp2
performs similar functions [13,67,68]. For example, Sp2 knockdown in hepatocellular
carcinoma cells decreases cell migration, proliferation and survival of hepatocellular car-
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cinoma cells and this is due, in part, to decreasing the expression of the TRIB3 gene [13].
Additionally, Sp2-dependent suppression carcinoembryonic antigen-related cell adhesion
molecule 1 (CEACAM1) [67] and overexpression of Sp2 increase susceptibility to wound-
and carcinogen-induced tumorigenesis [68]. Thus, Sp1-Sp4 regulation of protein-encoding
genes plays an important role in cell transformation and tumorigenesis.

5. Sp TFs-MicroRNA (miRNA) Interactions in Cancer Cells

Although noncoding RNAs have been described long before the sequence of the
human genome was published, it became evident from the sequencing data that only a small
faction (1–2%) of the human genome encodes for proteins [69]. Subsequent studies have
identified many different types of non-coding RNAs (ncRNAs), including housekeeping
and regulatory ncRNAs, which have been linked to many functions, some of which include
interactions with Sp TFs [69–73]. Mature miRNAs have a length ≤20 nucleotides and are
processed from pri-miRNA; one of their major functions involves interactions of the seed
sequences of these miRNAs with complementary 6-8 base pair sites in the 3′-region of target
genes to inhibit transcription [70]. There is a sub-set of miRNAs that directly inhibit Sp1
expression and the resulting inverse expression of these miRNAs with Sp1 is sometimes
also associated with their use as a positive prognostic value for cancer patients. MiRNAs
that repress expression of Sp1, Sp3 and Sp4 are illustrated in Table 2, and it is clear that
several miRNAs are key regulators of Sp expression in multiple tumor types and Sp1 is
preferentially targeted in cancer cells. It is also evident that multiple miRNAs target Sp
in the same tumor cell type. For example, miRNA-375, miRNA-375-3p, miRNA-1224-5p,
miRNA-382, and miRNA-149 target Sp1 and decrease expression of Sp1 in colorectal cancer
and eight miRNAs decrease Sp1 expression in gastric cancer. Some of the miRNAs in Table 2
and others are also regulated by Sp TF in cancer cells. For example, Sp1 induces expression
of multiple miRNAs in lung cancer cells (miRNA-3194-5p, miRNA-218-5p, miRNA-193-
5p, miRNA-182-5p and miRNA-135-5p), [74] miRNA-200 in breast cancer cells [75], and
miRNA-365 in Hela cells [76]. In contrast, Sp1 decreases miR-335 expression in ovarian
cancer cells, and this is one of the rare reported examples of Sp1 as a transcriptional
receptor [77].

Table 2. MiRNA-Dependent inhibition of Sp. TFs.

miRNA Sp TF Tumor Refs.

miRNA-29b Sp1 Myeloid leukemia [78,79]
miRNA-29b Sp1 Multiple myeloma [80]
miRNA-23b Sp1 Multiple myeloma [81]
miRNA-377 Sp1 Glioblastoma [82]

miRNA-380-3p Sp1 Neuroblastoma [83]
miRNA-29b Sp1 Tongue squamous cell carcinoma [84]
miRNA-429 Sp1 Esophageal carcinoma [85]
miRNA-506 Sp1/Sp3 Breast cancer cells [86]
miRNA-27b Sp1 Non-small cell lung cancer [87]

miRNA-324-5p Sp1 Hepatocellular carcinoma [88]
miRNA-491-3p Sp1 Hepatocellular carcinoma [89]

miRNA-200b/200c Sp1 Gastric cancer [90]
miRNA-22 Sp1 Gastric cancer [91]
miRNA-223 Sp1 Gastric cancer [92]
miRNA-638 Sp1 Gastric cancer [93]

miRNA-145/133a/133b Sp1 Gastric cancer [94]
miRNA-335 Sp1 Gastric cancer [95]
miRNA-375 Sp1 Pancreatic adenocarcinoma [96]
miRNA-375 Sp1 Colorectal cancer [97]
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Table 2. Cont.

miRNA Sp TF Tumor Refs.

miRNA-375-3p Sp1 Colorectal cancer [98]
miRNA-1224-5p Sp1 Colorectal cancer [99]

miRNA-382 Sp1 Colorectal cancer [100]
miRNA-149 Sp1 Colorectal cancer [32]
miRNA-429 Sp1 Renal cell adenocarcinoma [101]
miRNA-137 Sp1 Bladder cancer [102]
miRNA-375 Sp1 Squamous cervical cancer [103]
miRNA-34a Sp1 Hela cells [104]
miRNA-330 Sp1 Prostate cancer [105]

6. Sp TFs-LncRNA Interactions in Cancer Cells

Long non-coding RNAs (lncRNAs) are another class of ncRNAs that are > 200 nu-
cleotides long, and it is estimated that the human genome encodes more than 28,000 lncRNAs.
LncRNAs have multiple functions, including both tumor suppressor and tumor promoter-
like activities [106–109]. These activities are the result of their diverse mechanisms of
action that act via signaling, decoys, guides and scaffolds [110]. Sp1 plays a varied role in
regulating LncRNA since Sp1 and various LncRNAs regulate each other individually or
reciprocally and also cooperate with other gene products and miRNAs in cancer cells. Since
Sp1 is a negative prognostic factor for many tumors, it is not surprising that Sp1 regulates
expression of several LncRNA, many of which are also pro-oncogenic. Table 3 summarizes
a number of lncRNAs that are directly regulated by Sp1 and some of these ncRNAs are also
regulated by Sp3 and Sp4 [86,111–143]. Sp TFs also interact with lncRNA/miRNA where
there is not a direct modulation of lncRNA/Sp expression [144–148]. In addition, there is
also evidence that lncRNA LOC90024 promotes an RNA splicing step that results in forma-
tion of a long pro-oncogenic form of Sp4 [148,149]. Examples of mechanisms involving Sp
TFs and lncRNAs include the following; direct transcriptional activation of lncRNAs by
Sp1 (Figure 4A); sponging of miR-375 by RP11-626G11-3 to enhance Sp1 levels (Figure 4B);
formation of an Sp1/XLOC013218 complex on the PIK3R2 promoter to activate gene expres-
sion (Figure 4C); and formation of an HDAC3/Sp1/EZH2 complex on the MEG3 promoter
to inhibit gene expression (Figure 4D). The physical and functional interactions of Sp1, Sp3
and Sp4 with non-coding RNAs have primarily been observed for Sp1, as indicated from
Tables 2 and 3. However, it is apparent from the current available data that Sp interactions
with ncRNAs are highly variable and cell-context-dependent. The emergence of dominant
Sp-miRNA and Sp-lncRNA complexes that modulate critical pathways in cancer will be
dependent on the results of future research. Thus, many functional effects of lncRNAs are
Sp1 dependent and these are often in association with other genes involved in the complex.
With few exceptions, lncRNA/miRNA pathways that lead to higher expression of Sp1, Sp3
and Sp4 result in downstream activation of pro-oncogenic genes/pathways, indicating that
drugs targeting ncRNAs or Sp TFs should be highly effective anti-cancer agents.

Table 3. Sp TFs regulate LncRNA expression in cancer cell.

Sp TF LncRNA Tumor Ref.

Sp1 MIR155HG Glioblastoma [111]
Sp1 HOTTIP Osteosarcoma [112]
Sp1 Lnc00152 Retinoblastoma [113]
Sp1 RNA TINCR Gastric cancer [114]
Sp1 LINC01638 Non-small cell lung cancer [115]
Sp1 THAP7-AS1 Gastric cancer [116]
Sp1 MELTF-AS1 Non-small cell lung cancer [117]
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Table 3. Cont.

Sp TF LncRNA Tumor Ref.

Sp1 DUBR Hepatocellular carcinoma [53]
Sp1 HOTAIR Hepatitis B virus [118]

Sp1 a PCAT6 Breast cancer [119]
Sp1 a PCAT19 Gastric cancer [120]
Sp1 a LINC00659 Gastric cancer [121]
Sp1 a LINC00520 Non-small cell lung cancer [122]
Sp1 a MIR155HG Melanoma [123]
Sp1a CTBP1-AS2 Hepatocellular carcinoma [124]
Sp1 a HOXD-AS1 Cholangiocarcinoma [125]
Sp1 a LMCD-AS1 Osteosarcoma [126]
Sp1 a LINC00689 Osteosarcoma [127]
Sp1 a SNHG4 Prostate [128]

Sp1/Sp3/Sp4 MALAT-1 Pancreatic cancer [129]
Sp1 ab MEG3 Pancreatic cancer [130]
Sp1 b SAMMSON Thyroid carcinoma [131]
Sp1 b MALAT1 Lung adenocarcinoma [132]
Sp1 b HOTAIR Hepatocellular carcinoma [133]
Sp1 b HOTAIR NSCLC [134]
Sp1 CRNDE Hepatocellular carcinoma [135]

Sp1 b HOTAIR Cutaneous squamous cell carcinoma [55]
Sp1 ab HOTAIRM1bc Glioblastoma [136]

Sp1 TUG1 Colorectal cancer [137]
Sp1 POU3F3 Cervical cancer [138]

Sp1 a LINC00511 Glioma [139]
Sp1 a TINCR Colorectal cancer [140]
Sp1 a RP11-626G113bc Glioma [141]
Sp1 a MIR31HG NSCLC [142]
Sp1 a SNHG22 Ovarian cancer [143]

a: miR involved; c: +Line—Sp1; b: reciprocal.
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lncRNA to a miRNA. (C) Sp1 interacts with lncRNA XLOC013218 and forms an activation
complex on the PIK3R2 gene promoter, whereas (D) MEG3 expression is inhibited by the
EZH2/HDAC3/Sp1 complex.

7. Sp Transcription Factors as Drug Targets

Sp transcription factors are prognostic indicators for multiple cancers (Table 1) and in-
teract with both miRNAs and lncRNAs (Tables 2 and 3) to facilitate cancer cell proliferation,
survival, migration and invasion. These pro-oncogenic activities correlate with the results
of knockdown studies that are consistent with their designation as non-oncogene addiction
genes [66]. Despite these facts, anticancer agents that specifically target SpTFs are not being
developed currently for clinical applications, even though several small molecules that are
used for cancer and other chemotherapies also downregulate/degrade Sp1, Sp3 and Sp4.
These include HDAC inhibitors, metformin, bardoxolone methyl, bortezomib and some
non-steroidal anti-inflammatory drugs (NSAIDs). Two review articles from this labora-
tory have previously outlined compounds that downregulate or induce degradation of
Sp TFs [4,150], and these include drug-induced ROS, proteasome-dependent degradation,
cannabinoid receptor (CBR) induced responses, zinc depletion and kinase/phosphatase
pathways. Studies in this laboratory have investigated drugs that activate most of these
pathways [4,150] and result in coordinated downregulation of Sp1, Sp3 and Sp4. Most other
studies have focused on drug-induced downregulation of only Sp1, and it can be assumed
that in many cases, downregulation of Sp1 is accompanied by parallel decreases in Sp3
and Sp4. Multiple classes of compounds decrease expression of Sp TFs in cancer cells, and
these include structurally diverse ROS inducers, non-steroidal anti-inflammatory drugs
(NSAIDs), cannabinoids and other drugs including retinoids, α—tocopherol thiazolidine-
diones, bortezomib, flavonoids and structurally diverse natural products and synthetic
analogs [4,150].

7.1. ROS Pathway

ROS inducers are among the most well-characterized compounds that decrease levels
of Sp TFs in cancer cells, and this response contributes to their overall anticancer activities.
ROS inducers include phenethyl isothiocyanate (PEITC), benzyl isothiocyanate (BITC),
celastrol, curcumin, betulinic acid, piperlongumine, penfluridol, the nitro aspirin GT-094,
histone deacetylase (HDAC) inhibitors, hydrogen peroxide, ascorbic acid, arsenic trioxide,
and t-butyl hydroperoxide [151–166]. In addition, several other compounds that target Sp1
downregulation including phloretin, honokiol, triptolide baicalin, quercetin, licochalcone,
7,8-dihydroxyflavone [167–180] also induce ROS [181–186] and may act in some cell lines
through the ROS-Sp (downregulation) pathway. The mechanism associated with ROS-
dependent downregulation of Sp TFs was determined over several years and was in part
dependent on two separate and independent studies. Firstly, O’Hagan and coworkers
reported that ROS induced genome-wide chromatin shifts of complexes containing CpG
islands and this resulted in the downregulation of c-Myc [187]. A second study reported
that treatment of breast cancer cells with an HDAC inhibitor induced expression of an Sp
repressor gene ZBTB10 and this was accompanied by downregulation of miR-27b, which is
part of the miRNA-23a-27a-24-2 cluster [188]. These results, coupled with extensive studies
on various ROS inducers, conclude that the overall mechanism of Sp downregulation is
linked to ROS-dependent downregulation of Myc and Myc-dependent miRNAs (including
miR-27a) (Figure 5). This results in the induction of ZBTB10, which in turn competitively
binds GC-rich promoters and displaces Sp TFs. ZBTB10 and related ZBTB genes do not
have a transactivation domain, and this results in gene silencing at GC-rich sites at the
expense of Sp TFs. Subsequent studies show that miR-27a also regulates expression of
ZBTB34 [151,152,162,165,166]. This also results in decreased expression of Sp1, Sp3 and
Sp4, which are self-regulated genes. In addition, cMyc also regulates miRNA-20a and
miRNA-17-5p expression, which are part of the miRNA-17-92 cluster, and this results
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in induction of ZBTB4, which also represses expression of Sp TFs [189]. The results of
these studies were confirmed by both overexpression and rescue experiments and also
demonstrate that knockdown of cMyc also decreases levels of Sp1, Sp3 and Sp4.
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Figure 5. Mechanisms of Sp downregulation [149,150,160,162,164]: ROS-inducers target
Myc [149,150] whereas Metformin and WIN target kinases [189–191] to activate ZBTB (via miRNA
downregulation), which displace Sp TFs from GC-rich sites. ZBTB genes induced via these pathways
include ZBTB10, ZBTB34 and ZBTB4.

7.2. Kinase/Phosphatase Pathway

Interestingly, the role of ZBTB-induced suppression was also observed downstream
from drug-induced activation of kinases through the cannabinoid receptor. The synthetic
CB receptor ligand WIN55,212-activates protein phosphatase 2A, resulting in miRNA-27a
downregulation and activation of ZBTB10 in colon cancer cells [190] (Figure 5). Moreover,
it was reported in that in breast cancer cells, betulinic acid also targeted the miRNA-279-
ZBTB10 pathway through betulinic acid acting as a cannabinoid receptor ligand [191].
The antidiabetic drug metformin also induced Sp downregulation and like many other
agents noted above, the mechanism was cell-context-dependent. In Panc1 cells, metformin-
dependent downregulation of Sp TFs was due to mitogen-activated protein kinase phos-
phatase 1 (MKP-1) and MKP-5, which targeted miR-27a-ZBTB10, whereas in Panc28 and
L3.6pL cells, metformin induced proteasome-dependent degradation of Sp1, Sp3 and
Sp4 [192,193] (Figure 5). In addition, several other studies found that phosphatases in-
duced Sp1 downregulation. For example, progesterone activation of progesterone receptor
induced MKP1 and Sp1 downregulation [193] and both α-tocopherol succinate and hydro-
gen peroxide activated a phosphatase-JNK1 pathway that also decreased expression of
Sp1 [194,195].

7.3. Proteasome-Dependent Degradation

Several studies have reported proteasome-dependent degradation of Sp1, Sp3 and Sp4
by a number of anticancer agents, including tolfenamic acid and related NSAIDs, betulinic
acid and celecoxib [196–201]. The mechanisms of drug-induced degradation of Sp TFs by
proteasomes has been investigated in other studies, which suggest that multiple pathways
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are involved. Sumoylated Sp1 can recruit the E3 ubiquitin ligase RING Finger protein 4
(RNF4) which undergo proteasome degradation; a similar pathway has also been observed
for betulinic acid, which induces degradation of Sp1 and Sp3 [202–205]. Further studies
on the role of sumoylation and other cofactors on degradation of Sp1, Sp3 and Sp4 need
to be further investigated. Activation of caspases also plays a role in Sp degradation, and
this pathway has been observed for several drugs including aspirin, retinoids, tolfenamic
acid, and bortezomib; these effects are also cell-context-dependent [206–212]. Many of
these studies have focused on the mechanisms associated with only one of the Sp proteins
(usually Sp1), and the results clearly demonstrate that several mechanisms are operative.

7.4. Activation of Caspases

For example, cleavage of Sp1 by a retinoid in liver cancer cells involves induction of
caspase-3 and transglutaminase [210] and caspases-2 and 3 in leukemia cells [209]. A role
for caspase-3 activation in Sp1 degradation has been observed in other studies [211,212],
whereas bortezomib was found to decrease Sp1, Sp3 and Sp4 in leukemia cells, and this
was dependent on caspase-8 [179]. The zinc chelator N,N,N′,N′-tetrakis (2-pyridylmethyl)
ethylenediamine (TPEN) sequesters zinc, and this results in activation of caspases-3,8,
and 9 and downregulation of Sp1 [207]. Similar results were observed in colon cancer
cells treated with aspirin [206], which also induced degradation of Sp1, Sp3 and Sp4, and
treatment with tolfenamic acid [208] gave results similar to that observed for aspirin. This
was confirmed in studies showing that activation of caspases and Sp downregulation by
TPEN, aspirin and tolfenamic acid was reversed in cancer cells after cotreatment with
zinc sulfate. Figure 6 illustrates the structurally diverse agents that downregulate Sp
transcription factors via mechanisms outlined in Figure 5. These studies indicate that
drugs targeting the pro-oncogenic Sp1, Sp3 and Sp4 act through multiple pathways that
are cell-context-dependent.
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8. Summary and Conclusions

There is increasing evidence that Sp1, Sp3 and Sp4 play an important role in multiple
cancers and their prognostic importance spans their functional pro-oncogenic activities
alone and in combination with miRNAs and lncRNAs. Genomic studies on these tran-
scription factors and genes/pathways regulated by Sp1, Sp3 and Sp4 demonstrate their
role in the growth, survival and migration/invasion of cancer cells and tumors, and this is
consistent with their designation as non-oncogene addiction genes. Moreover, this designa-
tion is supported by interaction of Sp TFs with ncRNAs where their role is associated with
enhancing pro-oncogenic pathways. There is also extensive evidence that multiple com-
pounds, including approved drugs that are used for other diseases, induce downregulation
or degradation of Sp1, Sp3 and Sp4, which is accompanied by inhibition of cell/tumor
growth and invasion and induction of apoptosis. Anticancer agents that target Sp TFs are
not yet clinically used for cancer chemotherapy and the clinical applications of these agents,
including repurposed drugs, need to be evaluated in combination therapies.
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