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Abstract: In recent years, Cannabis use/misuse for treating pregnancy-related symptoms and other
chronic conditions has increased among pregnant women, favored by decriminalization and/or
legalization of its recreational uses in addition to its easy accessibility. However, there is evidence
that prenatal Cannabis exposure might have adverse consequences on pregnancy progression and a
deleterious impact on proper neurodevelopmental trajectories in the offspring. Maternal Cannabis use
could interfere with the complex and finely controlled role performed by the endocannabinoid system
in reproductive physiology, impairing multiple gestational processes from blastocyst implantation to
parturition, with long-lasting intergenerational effects. In this review, we discuss current clinical and
preclinical evidence regarding the role of endocannabinoids in development, function, and immunity
of the maternal–fetal interface, focusing on the impact of Cannabis constituents on each of these
gestational processes. We also discuss the intrinsic limitations of the available studies and the future
perspectives in this challenging research field.
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1. Introduction

Cannabis sativa is one of the most commonly consumed illicit drugs worldwide, even
among pregnant women [1–5]. In particular, the most recent epidemiological data report
an alarming increase in the use of Cannabis-derived products among pregnant women both
in North America and in the European Union (EU) [1,2,4]. This trend is expected to rise
over the next decades due to the progressive legalization and depenalization of Cannabis
for recreational uses in many Western countries [1–4]. For instance, since 2012, many US
jurisdictions have approved and formalized commercial models of non-medical Cannabis,
leading to increased accessibility to these products [5,6]. As a consequence, a growing
number of people, especially those suffering from chronic pathological conditions, tend to
use Cannabis as a substitute for one or more drug prescriptions, such as opioids, anxiolytics,
and antidepressants [7]. In particular, a recent epidemiological study in the US has reported
a high prevalence of Cannabis use among pregnant women with disabilities, particularly
those with sensory and cognitive deficits [8]. Pregnant women might also use Cannabis to
relieve nausea, pain, stress, appetite changes, and anxiety during pregnancy [9], a behavior
encouraged by the misconception that Cannabis use does not lead to detrimental effects
on health [10], and likely exacerbated by the distress condition imposed by the COVID-19
pandemic, as recently suggested [11].

Moreover, prenatal Cannabis use may be associated with the concomitant use of
other drugs of abuse, including tobacco and alcohol, interfering with their detrimental ef-
fects [8,12]. In fact, a higher prevalence and frequency of Cannabis use have been reported in
pregnant women with concurrent opioid use disorder and alcohol consumption [13], high-
lighting the need to evaluate with more attention the impact of Cannabis and polysubstance
use on pregnancy outcomes and the underlying pathogenic mechanisms [14].
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Conversely, the EU has adopted a more restrictive policy [15–17]. Currently, a lim-
ited number of Cannabis-based medicinal products has been authorized for marketing in
several EU member countries to treat specific medical conditions, including those related
to chemotherapy, chronic pain, epilepsy, and multiple sclerosis [16,18]. No European
government has legalized Cannabis sale for recreational use, although several European
countries, including Austria, the Netherlands and Portugal, have decriminalized the pos-
session of the drug in quantities which do not exceed that required for average individual
consumption [19].

The term “Cannabis” is used to define the products derived from Cannabis sativa, an
annual dioecious plant with complex phytochemistry, including sugars, hydrocarbons,
flavonoids, terpenoids, sterols, and more than 110 phytocannabinoids identified up to
now [20]. Among them, the most studied phytocannabinoid is ∆9-tetrahydrocannabinol
(∆9-THC), which is responsible of the main psychoactive effects of Cannabis [20]. In addition
to ∆9-THC, several other non-psychotropic cannabinoids have been identified in Cannabis
sativa, including cannabidiol (CBD), which in recent years has attracted great interest by
clinicians and researchers [21].

Pregnant women are exposed to Cannabis through different routes of administration,
with smoking being the most common, followed by edible forms and lotions, each with
a specific pharmacokinetic profile [22]. Independently from the route of consumption,
phytocannabinoids can easily cross the blood-tissue barriers in mammals’ bodies due to
their lipophilic nature, and they can impact both male and female reproductive functions.
For example, phytocannabinoids can cross the blood-testis barrier and may affect male
gonad functions and spermatogenesis, reducing male fertility [23]. Even more interestingly,
Cannabis constituents are also able to cross the placenta and the blood–brain barrier (BBB). In
fetuses and neonates exposed to Cannabis preparations during pregnancy and/or lactation,
∆9-THC or its metabolites can be detected in different specimens, such as hair, urine, meco-
nium, and more recently, in the umbilical cord [24]. In rats, ∆9-THC has been revealed in the
fetal plasma and brain at approximately 10% to over 30% of the concentrations found in the
maternal blood, depending on the timing, dose, and route of exposure [25,26]. The vertical
transmission to the fetus of these phytochemicals might explain the growing evidence that
associates maternal Cannabis use with pregnancy complications and long-term adverse
neurological and behavioral effects in the offspring, with an increased risk of psychopathol-
ogy [27–30]. This is a worrying issue given the increased concentration of ∆9-THC and
other cannabinoids often found today in several illicit Cannabis preparations [31–34].

In this context, a better understanding of the physiological role of the endocannabinoid
system for a successful pregnancy and of the impact of prenatal Cannabis exposure on the
health and well-being of both mother and offspring is of urgent need.

The aim of this review is to address and discuss the main clinical and preclinical
literature on the role of endocannabinoids on development, function, and immunity of the
maternal–fetal interface, focusing where possible on the impact of Cannabis constituents on
each of these gestational processes. We summarize the most recent advances in the field
providing hints for future research.

2. Formation and Development of the Maternal–Fetal Interface: An Overview

Most mammals have adopted a reproductive strategy based on the hemochorial pla-
centa, a transient extraembryonic vascularized organ that mediates nutrient and gas supply
from the mother to the developing fetus during gestation [35]. Placenta development,
positional, and functional defects are among the most frequent pregnancy complications in
mammals, and they can lead to adverse consequences both for maternal and fetal health [36].
Indeed, the placenta regulates multiple crucial processes for embryo development, such
as nutritional, excretory, endocrine, and immunological functions, protecting the fetus
from chemical and biological insults [37]. These functions are largely conserved among
eutherians, despite morphological differences in placenta architecture, highlighting the
impact of a dysfunctional placenta on proper fetal growth [38,39].
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Most information about the physiological role of the maternal–fetal interface, and
the pathological implications arising from its atypical functioning, derives from studies
performed on laboratory rodents.

In rodents, the maternal–fetal interface is formed by the maternal decidua, the junc-
tional zone, which constitutes the main endocrine compartment of the fetal placenta, and
the complex region of labyrinth, where placental exchange takes place thanks to specialized
trophoblasts [40,41] (schematic view in Figure 1). Briefly, after the first blastocyst interac-
tions with the endometrium around Gestational Day (GD) 4.5, the mouse uterine artery
branches into several spiral arteries by angiogenesis, and the endometrial stromal cells
transform into decidual cells (decidualization) at the site of placentation under the influ-
ence of steroid hormones. These processes lead to a substantial tissue and hemodynamic
remodelling of the endometrium, a prerequisite needed for pregnancy progression and to
allow the bidirectional exchange of micronutrients and gases between oxygenated maternal
blood flow and the developing fetus [40]. At the same time, the polar trophectoderm of
blastocyst, which resides over the inner cell mass (ICM), differentiates in the ectoplacental
cone and in the extraembryonic trophectoderm (GD 5.0–6.5). The first tissue interfaces with
the implantation site in the maternal decidua and, in turn, gives rise to trophoblasts that
help the embryo anchor and invade the host’s receptive endometrium, and trophoblast
giant cells, spongiotrophoblasts, and glycogen trophoblasts forming the junctional zone,
whereas the extraembryonic trophectoderm differentiates in chorionic ectoderm, which
later fuses with mesoderm-derived allantois. Other embryonic and extraembryonic tis-
sues are generated during gastrulation establishing the three definitive germ layers for
future organogenesis [42]. Subsequently, the chorioallantoic fusion and the invagination of
allantoic blood vessels into the chorionic plate stimulate the cytotrophoblast progenitors
to differentiate and fuse to form the syncytiotrophoblast layer, which structurally sup-
ports the formation of the highly vascularized labyrinth, a variation of the human villous
placenta [43] (Figure 1). As the pregnancy progresses, the mouse placenta acquires its
definitive disc-like architecture, around mid-gestation (GD 10–14.5), becoming the only
exchange system capable to respond to the bioenergetic demands of the developing fetus,
to which it is connected to via the umbilical cord.

This sequelae of events in rodents leads to the formation of a transient extraembryonic
organ that shares many functional characteristics with human placenta, despite species-
specific differences exist, making it a valid biological model to identify the molecular
mechanisms underlying the intricate crosstalk between mother and fetus both under
physiological and pathological conditions [44].

Unlike rodents, which have a hemotrichorial placenta in which two syncytiotro-
phoblast layers and a third endothelial layer separate maternal circulation from the fetal
compartment [45], humans have a hemomonochorial placenta with a single layer of contigu-
ous multinucleated syncytiotrophoblasts that lines the outermost surface of the fetal villous
trees [43]. Cytotrophoblast progenitor cells localize below the syncytiotrophoblast layer,
where they can differentiate to replenish it or generate extravillous trophoblasts (EVT). By
invading decidua, EVTs remodel spiral arteries favoring a sustained maternal blood flow to
the placenta at the end of the first trimester of pregnancy [46]. When maternal–fetal blood
interface is defined, the risk for the placenta and fetus of a hematogenous transmission
of drugs, toxicants, and pathogens circulating in the maternal bloodstream dramatically
increases despite the syncytiotroblast layer acts as a selective barrier [47].

A more detailed description of the development and organization of these placental
structures and the relative differences between humans and rodents can be found in recent
literature (e.g., see [40,45,47]).
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the same time, the mesoderm (primitive streak) emerges between visceral endoderm and ectoderm 

tissues. Subsequently, the chorion fuses with mesodermal-derived allantois promoting placental 

labyrinth formation. As pregnancy progresses, a definitive placental structure becomes evident 

around the second week of gestation (GD 10–14.5). (b) A schematic representation of human pla-

centa architecture. Figure created with “https://www.biorender.com/” (accessed on 8 March 2023)”. 
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Figure 1. (a) A schematic representation of mouse placenta development. At gestational day (GD)
3.5–5.0, the mouse blastocyst is composed by ICM, which contains precursor cells for embryonic
tissues (epiblast), and visceral and parietal endoderm (primitive endoderm), and by an outer cell
layer called trophectoderm. Starting from GD 5.0–6.5, the polar trophectoderm differentiates in
the ectoplacental cone, which gives origin to invading trophoblasts and junctional zone, and in the
extraembryonic trophectoderm, which, in turn, gives rise to the chorionic ectoderm (GD 6.5–9.5). At
the same time, the mesoderm (primitive streak) emerges between visceral endoderm and ectoderm
tissues. Subsequently, the chorion fuses with mesodermal-derived allantois promoting placental
labyrinth formation. As pregnancy progresses, a definitive placental structure becomes evident
around the second week of gestation (GD 10–14.5). (b) A schematic representation of human placenta
architecture. Figure created with “https://www.biorender.com/ (accessed on 18 January 2023)”.

3. The Endocannabinoid System

Endocannabinoids are a group of endogenous lipid mediators synthetized from mem-
brane phospholipids in response to tissue demands in almost all tissues and body districts [48].
These lipid mediators, together with cannabinoid receptors and metabolic enzymes, constitute
the endocannabinoid system (ECS). N-arachidonoylethanolamine (known as anandamide,
AEA) and 2-arachidonoylglycerol (2-AG) are the best-studied members of this modulatory
system. AEA is synthetized from membrane phospholipid precursors mainly by the sequen-
tial action of N-acyltransferase (NAT) and N-acylphosphatidylethanolamine (NAPE)-specific
phospholipase d-like hydrolase (NAPE-PLD), and it is hydrolyzed by the fatty acid amide
hydrolase (FAAH) to ethanolamine and arachidonic acid, respectively [49]. Conversely,
diacylglycerol lipase α (DAGLα) and DAGLβ catalyze the biosynthesis of 2-AG, which is
mainly degraded by monoacylglycerol lipase (MAGL) and α/β hydrolase domain contain-
ing 2 (ABHD2), ABHD6, and ABHD12 to glycerol and arachidonic acid [50]. Interestingly,
both AEA and 2-AG can also be synthetized and metabolized by alternative pathways,
which require different intermediates and metabolic enzymes, including cyclooxygenase-2
(COX-2) and lipoxygenases (LOXs) [51]. The relevance of each metabolic pathway might
change depending on cell lineage, tissue, developmental stage, and physiological or patho-
logical conditions. For instance, COX-2-mediated oxidation of both AEA and 2-AG to
prostaglandins is a key regulator of decidual remodeling [52], and it is increased during
inflammatory processes [53].

https://www.biorender.com/
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Once synthetized, endocannabinoids activate specific receptors, modulating a wide
range of physiological processes [54–56]. Their major and best-characterized targets are
the type-1 (CB1) and type-2 (CB2) G protein-coupled cannabinoid receptors. CB1 recep-
tors are highly expressed in the nervous system [57] despite their expression reported in
other peripheral organs, including the reproductive tissues [58]. On the contrary, CB2
receptors are primarily expressed in immune cells, where they exert immunomodulatory
functions [59,60].

Finally, besides CB1 and CB2 receptors, cannabinoids can signal trough orphan G-
protein-coupled receptors (e.g., GPR55 and GPR119), the transient receptor potential
vanilloid 1 (TRPV1) channel, and the nuclear peroxisome proliferator activated receptors
(PPARs), adding further complexity to the pharmacology of this modulatory system [61].

4. The ECS: A Modulatory System for a Successful Pregnancy
4.1. Role of Endocannabinoids in the Early Gestational Processes

Alterations of the ECS have been implicated in the etiology of several neurological and
neuropsychiatric disorders both in humans and in preclinical models [60–63]. However,
besides a well-documented role of ECS in the modulation of cognitive and emotional
processes [64,65], increasing evidence over the last decades suggests that endocannabinoids
are also involved in many aspects of male and female reproduction and fertility [23,66].
Endocannabinoids, cannabinoid receptors, and/or metabolic enzymes required for their
synthesis and degradation have been identified in many human and rodent reproductive
structures and biofluids, as testis, seminal fluid, follicular fluid, ovary, fallopian tube,
oviductal fluid, myometrium, endometrium, decidua, placenta, and embryo [58,67–77].
Among these, the female endometrium is a regenerative tissue which undergoes to a
profound remodeling during the menstrual cycle, largely under hormonal control [78]. In
particular, the transition from the late follicular phase to the early secretory stage of the
menstrual cycle, during which ovulation occurs, is characterized by a drastic reduction
in plasma level of estradiol and by a significant increment of progesterone, whose level
remains elevated up to mid-secretory stage [78]. Interestingly, plasma AEA levels have
been correlated with the dynamic changes of sex steroid hormones during the menstrual
cycle [79,80], suggesting that these might partially regulate fluctuations in the AEA tone
over this period [81–83]. In effect, plasma AEA levels are lower in the luteal secretory
phase than those in the follicular proliferative phase of the menstrual cycle in healthy
women [79,80,82,84]. The endometrium becomes spontaneously receptive during the mid-
secretory phase of the menstrual cycle (app. 19–24 days, window of implantation), when
AEA levels are low, independently from fertilization [85]. This evidence suggests that low
levels of AEA during early pregnancy might be needed to assist early gestational stages,
modulating endometrium receptivity to blastocyst implantation and development. The
spatiotemporal regulation of AEA tone during the menstrual cycle and across pregnancy
requires that the activity of AEA-metabolic enzymes, NAPE-PLD and FAAH, is tightly
controlled to create the appropriate conditions for placenta development [77,86]. This
fine-tune regulation is particularly evident in rodents, where decidualization does not
begin until blastocyst attachment to the endometrial surface takes place [87]. At this
time, implantation sites present low levels of AEA, as determined by a reduced NAPE-
PLD/FAAH ratio, in contrast to the adjacent inter-implantation sites, where high AEA
concentrations have been reported [77,86,88,89].

On the other hand, a sustained AEA signaling increases the uterine refractoriness to
embryo implantation [89,90], and inhibits the formation of the maternal decidua impairing
endometrial stromal cell survival and their differentiation in decidual cells [91]. Indeed,
an increased AEA tone impairs both the oviductal embryo transport and implantation
processes in rodents by CB1-dependent mechanisms [90,92]. Accordingly, genetic or phar-
macological inhibition of CB1 receptors rescued the impaired blastocyst development and
oviductal retention induced by plant-derived cannabinoids [90,93]. Similarly, the synthetic
cannabinoid agonists WIN55,212 and CP55,940 were found to negatively modulate the
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preimplantation development of blastocysts [94]. Overall, these findings suggest that CB-
mediated endocannabinoid signaling contributes to the crosstalk between blastocyst and
maternal tissues underlying oviductal transport and uterine implantation dynamics. In line
with these observations, Li and coworkers recently found that CB1 and CB2 knockout mice
showed a higher incidence of pregnancy failure and implantation defects, primarily due to
improper blastocyst-endometrium interaction [95]. Indeed, although the authors found
an on-time implantation in double knockouts, in contrast to previous works [93,96], the
luminal epithelial organization of the endometrium at the implantation chamber appeared
abnormal and associated with increased edema compared to controls [95].

In addition, CB1-mediated signaling regulates the oviductal transport of the embryo
to the uterus acting on the adrenergic system, which in turn, controls the coordinated
oviductal muscle contractility and relaxation [96]. An excessive local AEA tone might
impair oviductal smooth muscle activity, which is essential for the embryo passage from
the ampulla to the uterus, a condition that could favor ectopic pregnancies in humans. In
humans, ectopic pregnancy has been associated with high AEA levels and deregulated CB1
and FAAH expression/activity in the fallopian tubes [71,97] and the peripheral blood [98].
Furthermore, genetic variations of the Cnr1 gene were found in pregnant women suffering
from ectopic pregnancy [97] and preeclampsia [99], suggesting that CB1 dysregulations
may be a potential risk factor for gestational complications in humans, despite some
contradictory results among studies have been reported [100]. For example, some authors
reported an increased placental CB1 expression, especially in the syncytiotrophoblast
layer, in patients suffering from preeclampsia compared to healthy women [101], while
others reported no differences [102]. Of interest, Lombó and colleagues more recently
demonstrated an upregulation of CB1 expression within the chorionic villi in preeclamptic
patients [103]. The same authors associated CB1 upregulation with increased collagen
deposition and lipid peroxidation in these placental compartments, providing a potential
role for the ECS, and especially for CB1 receptors, in preeclampsia [103]. Due to these
controversial findings, the role of CB1 and other components of the ECS in the pathogenesis
of preeclampsia remains to be fully elucidated.

Finally, it is worth noting that implantation and placentation failures are not associated
exclusively with maternal defects. Appropriate AEA signaling on the fetal blastocyst is
essential not only for uterine receptivity, but also for promoting embryo implantation
competency [93,104]. Endocannabinoid signaling also impacts multiple biological path-
ways in preimplantation blastocysts, including those related to trophoblast cell migration
and mobility [105]. Indeed, both CB1-/- and FAAH-/- mouse blastocysts showed in vitro
compromised trophoblast cell migration compared to WT counterparts [105]. Considering
that trophoblast invasion is a key step for proper implantation, a reduced mobility of
these cells due to ECS dysregulations might compromise the correct blastocyst trophecto-
derm infiltration in the decidualized endometrium and the future migration into spiral
arteries [106–108].

After blastocyst contacts with the maternal endometrium, endometrial stromal cells
experience a substantial morpho-functional remodeling (decidualization), which facilitates
the placentation and hemodynamic changes [109]. Almada and colleagues recently found
that AEA reached very low concentrations in decidualizing endometrial cells [110], support-
ing the hypothesis that a low AEA tone might be important to trigger these phenotypical
changes. These in vitro findings are consistent with the oscillations in plasma levels of AEA
and metabolic enzyme expression reported in humans during the menstrual cycle, with
lowest AEA levels occurring in the receptive mid-luteal phase [80,82].

Moreover, sustained AEA signaling shows anti-proliferative and pro-apoptotic ac-
tivity in human [111] and rat [112,113] stromal cells primarily through CB1-dependent
mechanisms. AEA also interferes with the human and rat endometrial stromal-derived
cell viability and differentiation, increasing ceramide activity [113], modulating COX-2 de-
pendent pathways [52,110,114,115], and affecting estradiol-mediated signaling through an
anti-aromatase activity [116]. The latter is particularly relevant given that, besides ovarian
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estrogen, de novo synthesis of estradiol by aromatase in the uterus facilitates the stromal
cell decidualization and angiogenesis processes [117]. Finally, CB1 receptor activation by
AEA [110,111] or by the synthetic cannabinoid agonist WIN-55,212 [118] decreases the
expression of prolactin (PRL) and insulin-like growth factor binding protein-1 (IGFBP-1) in
endometrial stromal cells, partly through intracellular cyclic adenosine monophosphate
(cAMP)-dependent mechanisms, confirming the negative role of CB1-mediated signaling
in decidualization.

Nevertheless, CB1 deficiency in mice impairs decidualization, vascular remodeling,
and formation of avascular primary decidua zone [119], highlighting that appropriate CB1
signaling has to be strictly regulated for pregnancy success.

Exogenous cannabinoids might alter CB receptor-mediated signaling leading to po-
tentially adverse effects on early pregnancy processes. In line with this possibility, it is
interesting to note that recent reports have shown that synthetic cannabinoids and ∆9-THC
can impair endometrial cell decidualization trough CB1 cannabinoid receptors [118,120,121].
Furthermore, it has been reported that ∆9-THC and CBD might enhance AEA levels both in-
hibiting directly FAAH and modulating the activity of Fatty acid-binding proteins (FABPs),
intracellular carriers that deliver AEA to FAAH for hydrolysis [122].

Finally, even more relevant in this context is the potential anti-estrogenic effect of
CBD, which seems to prevent the increase in CYP19A1 gene expression and aromatase
activity in differentiating endometrial stromal cells [123]. Surprisingly, ∆9-THC did not
show significant anti-aromatase activity in these cells [123], whereas it disrupted pla-
centa steroidogenesis later during pregnancy [124], confirming that different Cannabis
constituents can modulate different signaling pathways.

Although a large part of the scientific literature has focused on AEA, a similar role
during implantation and decidualization is performed by 2-AG despite its contribution to
a successful pregnancy has been less investigated [74,125].

Together, these findings suggest that a low endocannabinoid signaling in the activated
blastocyst and the endometrial tissues at the time of implantation is a prerequisite essential
to synchronize and direct the successful early pregnancy events in healthy conditions.

4.2. Endocannabinoids Regulate Placentation

Endocannabinoid signaling during pregnancy has been reported to modulate the hu-
man cytotrophoblast proliferation, apoptosis, and activities required for the establishment
of the proper placenta architecture. Cytotrophoblasts differentiate and fuse to form the
placental syncytiotrophoblast, which represents a protective and endocrine tissue secret-
ing human chronic gonadotropin (hCG), estrogen, human placental lactogen, and leptin
and placental growth factors needed to sustain pregnancy [126]. The syncytialization is
regulated by numerous factors, whose altered expression can lead to intrauterine growth
restriction, preeclampsia, and other pathological conditions [126].

In vivo and in vitro studies demonstrated that 2-AG and AEA disrupt biochemical dif-
ferentiation of cytotrophoblasts [127,128] and promote anti-proliferative and pro-apoptotic
activities [129–133].

Similar results were also recently found by studying the effects of phytocannabi-
noids and synthetic cannabinoid agonists in two well-accepted in vitro model systems:
choriocarcinoma-derived BeWo cells, which model human placental cytotrophoblasts,
and HTR-8/SVneo cells, a model of first trimester human EVTs. Indeed, CBD [134],
∆9-THC [135], and synthetic cannabinoid agonists, such as WIN-55,212 [136], JWH-018,
JWH-122, and UR-144 [135], have been reported to disrupt cell cycle progression and
induce apoptotic cell death in BeWo cells through CB1/CB2-dependent and independent
mechanisms. On the other hand, ∆9-THC exposure has been shown to attenuate prolif-
eration, syncytialization, and mitochondrial respiration without affecting cell viability of
BeWo cells [137–139], although it decreases migration of HTR-8/SVneo cells [139], as also
observed following treatment with CBD [134].
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In addition to promoting apoptotic cell death, endocannabinoids, specially 2-AG,
reduce the secretion of hCG, the expression of leptin, and reduce the activity of phos-
phatase alkaline, impairing cytotrophoblast differentiation through cannabinoid receptor-
dependent mechanisms [127], an effect also reported after ∆9-THC treatment in BeWo
cells [137].

Finally, AEA participates in the regulation of maternal-fetal oxygen and micronutrient
exchange in a time and dose-dependent manner. For instance, acute, but not chronic,
treatment of BeWo cells with AEA decreases the transport of folic acid (FA and Vitamin B9),
whereas, surprisingly, ∆9-THC showed an opposite stimulatory effect on FA uptake [140].

Moreover, a recent study demonstrated that treatment with AEA downregulates
BCRP/ABCG2 expression and efflux activity in human placental explants and BeWo
cells through CB2-mediated inhibition of cAMP synthesis [141]. Intriguingly, in vitro and
in vivo studies found that CBD, ∆9-THC and other minor phytocannabinoids might act
both as substrates and inhibitors of BCRP/ABCG2 [142–144]. In particular, Anderson
and colleagues have recently shown a potential pharmacokinetic interaction of different
Cannabis constituents at the BCRP/ABCG2 transporter located in the intestine, disclosing a
potential mechanism by which one or more phytocannabinoids can enhance their plasma
concentrations and physiological effects when administered in the form of full-spectrum
Cannabis extracts compared to those reported after administration of individual constituents
at equivalent doses [144]. If this phenomenon occurs at the maternal–fetal interface is
still unclear, but we cannot exclude the possibility that some phytocannabinoids could
have a higher local relevance than previously suspected and that Cannabis may affect
placental permeability towards other phytochemicals and toxicants, especially in case of
polysubstance abuse by pregnant women. Being that the BCRP/ABCG2 efflux transporter
is highly expressed on the apical surface of syncytiotrophoblasts, where it modulates the
trafficking of toxicants from maternal circulation to the developing fetus during prenatal
growth [145], its downregulation could expose the fetus to detrimental effects of the
xenobiotics, including Cannabis constituents.

In line with this scenario, treatment with ∆9-THC (3 mg/Kg, i.p.) in pregnant rats from
GD 6.5 to GD 19.5 results in labyrinth specific-vascular defects and in the altered expression
of placental trophoblast glucocorticoid receptors and glucose transporter 1 [146]. This
uteroplacental vascularization insufficiency, which associates with fetal growth restriction,
could be partially explained by the ability of AEA and 2-AG to modulate the expression
of angiogenic factors, vascular endothelial growth factors and matrix metalloproteinases,
as recently confirmed in the placental HTR-8/SVneo cells [108]. Accordingly, Chang and
colleagues reported an impaired placental vasculature in pregnant women who smoked
Cannabis preparations, without tobacco and alcohol use, and a defective placental angio-
genesis in pregnant mice after daily treatment with ∆9-THC (5 mg/kg, i.p.) from GD 5.5 to
GD 18.5 [147].

These findings in rodents are supported by a recent study on the effects of chronic
prenatal cannabinoid exposure on placenta structure and functions in a translational rhesus
macaque model [148]. In this study, ∆9-THC was administered in an edible form for
4 months before conception with incremental dosing until reaching 2.5 mg/7 kg/day, then
maintained throughout pregnancy. Reduced placenta perfusion and oxygenation were
found in ∆9-THC-exposed pregnant animals, together with increased microinfarction rates
and reduced amniotic fluid volume, indicative of a dysfunctional state of the placenta. The
placental insufficiency was also associated with wide-scale alterations of transcriptional
profiling as assessed by RNA-sequencing, which primarily involved pathways related to
angiogenesis and vascular development [148].

Together, these data confirm a key role of endocannabinoid signaling in regulating fetal
cytotrophoblast differentiation, uteroplacental vascularization, and micronutrient exchange
across the maternal–fetal interface. These processes depend on a low endocannabinoid tone
throughout pregnancy. At the end of gestation, AEA levels significantly increase and direct
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the timing for onset of labor and parturition, likely by hormone-dependent mechanisms, as
recently discussed by Kozakiewicz and colleagues [149].

In conclusion, the data discussed here support the hypothesis that the ECS, interacting
with other local mediators, such as sex hormones, performs a complex role in a successful
pregnancy. In line with this possibility, a growing number of preclinical and clinical
studies have reported detrimental effects of Cannabis, or its constituents, on most phases
of gestation.

Even more interesting is the role that the ECS and Cannabis might perform in the
immune adaptations occurring during pregnancy, both in physiological and under inflam-
matory conditions. However, to date, a limited number of studies has addressed this topic.
Supplementary Table S1 summarizes previous studies about the role of the ECS on early
pregnancy processes.

5. The Role of Endocannabinoids in Low-Grade Inflammation and Maternal
Immune Tolerance

All immune cells express CB1 and CB2 cannabinoid receptors, and all metabolic
enzymes required for the biosynthesis and degradation of endocannabinoids, as confirmed
both in cell and murine models (for a review on this topic, see [150]). The expression of
cannabinoid receptors significantly varies between immune cell subtypes, with the highest
levels in B lymphocytes, followed by natural killer (NK) cells, monocyte/macrophages, and
T lymphocytes [151]. Moreover, immune cells express other non-canonical cannabinoid
receptors, such as TRPV1, GPR55, and PPARα and γ [150].

Therefore, the modulatory effects of ECS on fertilization, blastocyst implantation,
placentation, labor, and parturition might be partially mediated by the regulation of the
innate and adaptive immune response at the interface between embryo and decidua, en-
riched in immune cells [152]. Indeed, the maternal decidua hosts numerous populations of
immune cells, such as decidual NK cells, macrophages, dendritic cells, cytotoxic, regulatory
and helper T lymphocytes, and B lymphocytes, that dynamically change in a gestational
stage-dependent manner, and show distinct signatures from their counterparts in other
tissues or in the bloodstreams [153,154]. These immune cells represent the first line of
defence against the pathogen colonization of the placenta [155] and are responsible for
the establishment of maternal immune tolerance, a modulation of the immune response
necessary to avoid the allogeneic risk due to the foreign paternal antigens expressed on the
fetal tissues [156]. In physiological conditions, upon seminal fluid contact and blastocyst
implantation, female tissues initiate an acute and regulated inflammatory response thought
to be beneficial for pregnancy [157]. A massive infiltration of immune cells characterizes
this initial inflammatory reaction, followed by a shift to an anti-inflammatory profile effi-
ciently maintained during pregnancy through modulatory mechanisms primarily mediated
by maternal regulatory (reg) T lymphocytes, decidual NK cells, and M2-like decidual
macrophages [153,157,158]. These immune cells secrete many factors that stimulate the pro-
liferation and invasion of fetal trophoblasts in the endometrium. In turn, fetal trophoblasts,
together with maternal decidualizing stromal cells, promote the tolerogenic dendritic cell
differentiation, M2-like macrophages polarization, CD4+FOXP3+ Treg expansion, and
secretion of a plethora of immunosuppressive molecules that sustain an intrauterine tolero-
genic microenvironment, including granulocyte-macrophage colony-stimulating factor
(G-CSF), interleukin (IL)-10, and tumor growth factor (TGF) β [159–161].

5.1. Cannabinoids and T Lymphocytes

T lymphocytes (or T cells) are adaptive immune cells, comprising several functional
subgroups, each with distinct signatures, including memory T cells, CD8+ cytotoxic T
cells, CD4+ regulatory T cells, and effector CD4+ T helper (Th) cells, of which, three main
subtypes are currently known: Th1, Th2, and Th17 cells [162]. At the periimplantation time,
CD4+ Th1 cells are infiltrated in the maternal decidua where they regulate the trophoblast
invasion of endometrium promoting vascular remodeling and angiogenesis by a pro-
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inflammatory response [162]. Progressively, the density of Th1 cells decreases in favor of
Th2 cells, which become predominant up to parturition. CD4+ Th2 cells and Treg cells
are the main responsible for the allograft tolerance during pregnancy promoting an anti-
inflammatory state until the onset of a parturition-associated inflammatory reaction, which
contributes to uterine contraction and delivery at the end of pregnancy [163]. Therefore,
appropriate balance and temporal dynamics between different T lymphocyte subtypes at
the maternal–fetal interface from periconception to parturition appear to be essential for a
healthy pregnancy. Several decidual immune types, such as macrophages and NK cells, also
participate to induce and maintain the Th1/Th2 ratio during pregnancy. Perturbations of
their relative density and activity can adversely impact fertility and pregnancy health. For
example, an excess of Th1/Th17 subtype cells has been reported in women with preterm
birth [164] and recurrent miscarriage [165]. Of interest, both these pathological conditions
are characterized by inflammation and high endocannabinoid levels [166,167]. It has been
found that cytokines can influence endocannabinoid tone modulating FAAH enzymatic
activity in human lymphocytes. In particular, anti-inflammatory Th2 cytokines, such as
IL-4 and IL-10, promote FAAH catalysis, whereas pro-inflammatory Th1-derived mediators
(IL-12, IFNγ) were shown to exert inhibitory effects, increasing AEA tone [168].

Interestingly, it is known that phytocannabinoids, such as ∆9-THC, can exert signif-
icant anti-proliferative and immunosuppressive functions on peripheral T lymphocytes,
regulating the CD8+ and CD4+ cell balance, and cytokine production [169,170]. Part of
these functions is mediated by CB2-signaling, whose stimulation was found to drive T
lymphocyte differentiation toward Treg phenotype in a mouse model of inflammatory
bowel disease [171]. More recently, Angelina and colleagues showed that the synthetic
cannabinoid agonist WIN55,212–2 promotes human functional FOXP3+Treg cell expansion
during inflammation by inducing tolerogenic dendritic cells via autophagy and metabolic
reprogramming [172]. A better understanding of the mechanisms by which endo- and
exo-genous cannabinoids regulate the Th1/Th2 ratio, Treg cell expansion, and the interplay
with other local immune cells, especially at the maternal–fetal interface, is needed and
this knowledge may help to develop novel strategies for the treatment of inflammation
during pregnancy.

5.2. Cannabinoids and NK Cells

Decidual natural killer (NK) cells are the dominant immune cell population in the
decidua during early pregnancy, where they contribute to immune tolerance, tissue re-
modeling, angiogenesis, and trophoblast invasion, interacting with EVT, stromal cells,
macrophages, and T lymphocytes [173]. Unlike peripheral NK cells, decidual NK cells
show lower cytotoxicity, and produce proangiogenic factors and chemoattractants for EVTs.
The number of NK cells increases during the luteal phase of the menstrual cycle, further
increases in early gestation, then progressively decreases before term [153], despite there
are some conflicting data [174]. The recruitment, proliferation, and functions of NK cells
in the uterus are partly regulated by ovarian-derived hormones, such as progesterone
and estrogens [175]. Progesterone is also the major hormone involved in decidualization,
regulating the expression of decidual markers in differentiating endometrial stromal cells,
such PRL and IGFBP-1 [176,177].

Interestingly, Fonseca and colleagues recently found that the decidual NK cell-conditioned
medium from women suffering from miscarriage induced a significant increase in AEA pro-
duction in decidualizing endometrial stromal cells and, at the same time, downregulated
cAMP-stimulated PRL and IGFBP-1 production [178].

In line with these findings, other studies have shown that treatment of human endome-
trial stomal cells with AEA [111] or the synthetic cannabinoid agonist WIN-55,212 [118]
decreases PRL and IGFBP-1 expression via CB1-dependent mechanisms. The authors
hypothesized that NK-induced increase in AEA and its effects on the decidualization of
stromal cells were promoted by the pro-inflammatory state characteristics of women suffer-
ing from miscarriage, specially by tumor necrosis factor alpha (TNFα), whose levels were
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found upregulated in the decidual NK cells-conditioned medium derived from miscarriage
samples [178]. Together, these data suggest that endocannabinoids are possible mediators
for the regulation of decidualization of endometrium by NK cells under inflammatory
conditions. Further investigations are needed to support this possibility and to under-
stand if and how the ECS interferes with the several functions of this essential immune
cell population.

5.3. Cannabinoids and Decidual Macrophages

Decidual macrophages are specialized innate immune cells that reside at the maternal–
fetal interface, where they participate in the phagocytosis of dying invading trophoblasts
and senescent stromal cells, fetal-antigen presentation, angiogenesis, and inflammation/
infection response, as extensively studied and reviewed elsewhere [179–181]. Their local
density varies during the menstrual cycle and the different stages of pregnancy. In par-
ticular, the number of macrophages increases from the follicular to the secretory phase
of the menstrual cycle and continues to increase during the first trimester of pregnancy,
representing the second more abundant decidual leukocyte population after NK cells in
the early pregnancy [153,182]. From the functional point of view, decidual macrophages
show high phenotypical and functional plasticity during pregnancy [180]. These cells
progressively shift from an early pro-inflammatory M1-like phenotype towards a more
immunosuppressive M2-like state under the influence of local stromal cells and invading
trophoblasts to sustain maternal-fetal tolerance once implantation is complete [158]. Un-
like M1-like macrophages that promote a pro-inflammatory immune response, M2-like
macrophages favor a Th2 and Treg bias in CD4+ T cells [183] and attenuate the decidual
NK cytotoxicity [184]. Interestingly, it has been reported that macrophages accumulate
rapidly in the endometrium at the periimplantation window of the menstrual cycle, sug-
gesting that these hematopoietic cells perform a role in endometrial receptivity [185]. After
blastocyst implantation, decidual M1-like macrophages progressively migrate away from
the implantation chambers, reducing the risk of inflammatory response towards the fetal
semi-allogeneic tissues [186]. It remains unclear by which mediators the uterus regulates
immune cell infiltration and migration in the primary decidual zone encircling the im-
plantation chamber. Some evidence suggests that this process might be regulated by the
ECS, whose components are entirely expressed by macrophages [150]. In fact, Li and
colleagues recently found a significant retention of macrophages in the primary decidual
zone of pregnant double CB1−/−CB2−/− mutant mice on GD 6, encircling the implantation
chamber. The phenotype observed in double mutant mice was also recapitulated in CB1
deficient dams, but not in CB2−/− mice, indicating an important role for CB1-mediated
signaling in the local macrophage recruitment during early pregnancy [119].

However, how the multifaceted regulation of macrophage biology is partly mediated
by endocannabinoids remains elusive. In this sense, a potential mechanism of action
by which endocannabinoids regulate macrophage activity during early pregnancy could
be linked with their inhibition of adenylate cyclase activity, and secondarily of cAMP
signaling [187].

Some recent studies have also highlighted a potential role of T cell immunoglobulin
and mucin (TIM)-3 signaling, a transmembrane surface protein identified in Th1 cells [188],
decidual macrophages [183], and NK cells [189], in the regulation of both innate and adap-
tive immunity. In particular, it was shown that EVT-induced TIM-3+CD14+ macrophages
can promote the Th2 bias and Treg expansion in CD4+ T lymphocytes at the maternal–
fetal interface, favoring immune tolerance in normal pregnancy [183]. On the contrary,
in women suffering from miscarriage, TIM-3 expression was found downregulated and
associated with pro-inflammatory conditions [183,188,189].

Intriguingly, there is evidence that endocannabinoids can regulate the TIM-3 signaling
pathway by CB2 receptors in the microglia [190]. In addition, Yun and colleagues have
shown that TIM-3 expression was increased by cAMP/PKA-dependent signaling in the
human Jurkat T cell line [191].
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Although these findings refer to pathological conditions and were obtained in models
different from those that can be used to study the maternal–fetal interface during preg-
nancy, we cannot automatically exclude that similar pathways might mediate the effects
of endocannabinoids on the gestational dynamics. Further studies are needed to confirm
this hypothesis.

Furthermore, it was demonstrated that endocannabinoids or synthetic and natural
cannabinoid compounds promote an anti-inflammatory activity in central and peripheral
macrophages [152,192,193], disclosing a complex immunomodulation by these pleiotropic
bioactive lipid messengers.

Overall, these findings suggest that endocannabinoids are lipidic signals that regulate,
partly via cAMP, the endometrial decidualization in conjunction with progesterone and
PGE, acting not only on stromal cells and trophoblasts, but also on local immune cells.
Endocannabinoids might also modulate endometrial stromal cell differentiation and the
ability of local NK cells, macrophages, and T lymphocytes to assist angiogenesis, spiral
artery remodeling, and immune tolerance necessary to permit blastocyst development, and
the term of pregnancy. Future studies should aim to clarify the role of endocannabinoids,
and at which concentrations and by which pathways these lipid mediators promote or
impair the adaptive and innate response during pregnancy [152]. The organ-on-chip
technologies and other in vivo-like in vitro models might offer new tools to shed light on
the role of endocannabinoids and the effects of Cannabis on the intricate crosstalk among the
numerous and highly specialized cell populations residing in the maternal–fetal interface.

5.4. Endocannabinoids Regulate Nitric Oxide System in the Intrauterine Microenvironment:
Insights from Inflammatory Conditions

Nitric oxide (NO) is a lipid-soluble gaseous free radical produced by the oxidation
of L-arginine to L-citrulline in a reaction catalyzed by NO synthase (NOS). This mediator
is the main vasodilator agent in the placenta, where it regulates the hemodynamic flow
in addition to virtually any gestational process, including oogenesis, ovulation, implan-
tation, placentation, uterine muscle contractility, and parturition [194]. Three main NOS
isoforms have been identified in the uterus: the constitutional neuronal NOS (nNOS),
the calcium/calmodulin dependent endothelial (eNOS), and the inducible NOS (iNOS)
isoforms. The eNOS and iNOS isoforms are highly regulated in the implantation sites of
the receptive endometrium of rodents, where NO was shown to affect the expression of
the metabolic enzymes of AEA, reducing the NAPE-PLD/FAAH ratio, and, consequently,
dampening endocannabinoid tone [195]. In turn, endocannabinoids were also shown to
modulate NOS activity and NO production in murine decidua in a manner dependent
on blastocyst presence [196]. Therefore, the NO system might interact with endocannabi-
noids to promote endometrial receptivity and pregnancy progression in physiological
condition. Moreover, being NO a key regulator of inflammation [197], a mutual inter-
play between these two systems might be relevant under inflammatory conditions, as
previously suggested [198]. In this respect, iNOS is predominantly expressed by M1-like
decidua macrophages, which over-produce NO and nitric-reactive species in response to
pro-inflammatory conditions, such as acute atherosis [199], endometriosis [200], preeclamp-
sia [201], and in lipopolysaccharide (LPS)-induced maternal immune activation [202]. In
particular, systemic administration of LPS to pregnant mice reduces plasma level of pro-
gesterone and it induces a significant increase in NOS activity and iNOS+ macrophage
infiltration in the maternal decidua, leading to a high rate of embryo resorption [202–205].
Additionally, LPS exposure increases plasma levels of N-acylethanolamines in pregnant
mice, including AEA, PEA, and OEA, in a progesterone-dependent manner [205]. LPS
was also found to enhance AEA levels by inhibiting FAAH activity in human and rat
macrophages [206]. Therefore, it is possible that LPS stimulation reduces progesterone
levels rescuing the AEA tone that, in turn, promotes NO production. Indeed, reduced
progesterone signaling in the periimplantation period was shown to promote implanta-
tion failure and resorption, together with an increased Th1 differentiation and reduced



Int. J. Mol. Sci. 2023, 24, 5220 13 of 27

anti-inflammatory Th2-cytokine secretion in progesterone-induced blocking factor (PIBF)-
deficient pregnant mice [207]. Moreover, no modifications in decidual NOS activity and a
weaker inflammatory response to LPS were observed in CB1-/- mice when compared to WT
controls [205], suggesting a CB1-dependent modulation of the LPS-induced NO synthesis
under inflammatory conditions [208]. A similar role for CB1 was found by Aban and
colleagues, who demonstrated that pharmacological inhibition of CB1 receptors reduces
the stimulatory effect induced by AEA on the NOS activity in normal and preeclamptic
tissues [102].

In addition, Bariani and colleagues (2017) showed that in vivo treatment of pregnant
Balb/c mice with LPS led to an increase in pro-inflammatory mediators, including iNOS,
COX-2, and PGE2 and altered endocannabinoid tone [209]. Finally, endocannabinoids are
involved in the premature decidual senescence following endotoxin exposure, which was
associated with high risk of inflammation-induced preterm birth [166]. Together, these
experimental findings support a complex interplay between the ECS and the NO system,
offering another potential mechanism through which endocannabinoids regulate the in-
trauterine microenvironment, and in particular hemodynamic flux and the inflammatory
state [210]. However, if phytocannabinoids alter this dynamic process remains unclear
and needs to be further investigated. It has been shown that chronic administration of
∆9-THC before LPS exposure at GD 15 significantly reduced LPS-induced preterm births
and increased gestational duration, an effect reversed by the CB1 antagonist AM281, and
NOS inhibitor administration [211]. ∆9-THC and CBD were also found to be effective in al-
leviating the LPS-induced cytokine storm in human macrophages trough the modulation of
NPRL3 inflammasome and STAT3 signaling [212]. The apparent inconsistency in the effects
mediated by exogenous and endogenous cannabinoids during pregnancy might depend
on their relative tissue concentration and/or involve different biological pathways [210].

6. From Parent to Offspring: When Cannabis Threatens the
Neurodevelopment Trajectories

In the previous sections, we have provided evidence that Cannabis use during preg-
nancy might have significant negative effects on proper placental development by affecting
several maternal- and fetal-origin cell populations. Therefore, the increased popularity of
Cannabis use for treating symptoms associated with pre- and postnatal distress by preg-
nant women might represent a serious challenge to both a successful pregnancy and the
offspring’s health.

Several studies suggest that maternal Cannabis use during pregnancy might result in
adverse neonatal outcomes, including spontaneous preterm birth, fetal growth restriction,
low birth weight, and more frequent intensive neonatal care unit admissions [27,213–216].

Moreover, phytocannabinoids can easily cross the BBB and directly target the fetal
ECS, potentially affecting neurotransmission, synaptogenesis, and microglia activity in the
offspring’s developing brain [217–225]. These neurochemical alterations might contribute
to the higher susceptibility to develop neurodevelopmental and psychiatric disorders in the
children of mothers who used Cannabis during pregnancy [28,29,222,224]. This conclusion
is supported by many studies performed in animal models, in which a wide spectrum of
behavioral and neural alterations have been reported in the offspring of dams prenatally
exposed to Cannabis [226–239]. Interestingly, Rompala and colleagues recently found that
emotional dysregulations in children whose mothers were Cannabis users are associated
with increased stress hormone levels in the hair and, intriguingly, reduced immune-related
gene expression in the placenta, suggesting that the atypical behavioral traits induced by
prenatal Cannabis exposure might be partly linked to the immunosuppressive effects of
cannabinoids [240].

Multiple biological mechanisms are hypothesized to participate to the vertical trans-
mission of Cannabis effects from mother to fetus (Figure 2). Some of these effects might
be consequent to placenta dysfunctions, others linked to the immunomodulatory role of
phytocannabinoids at the maternal–fetal interface or may be associated with direct action
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of cannabinoids on the fetal developing tissues. Moreover, Cannabis exposure might impact
epigenetic mechanisms occurring in key reproductive and brain tissues during sensitive
windows of development (e.g., gestation and adolescence) [241]. Consistent with this view,
several studies both in humans and rodents have begun to reveal the long-term impact
of plant-derived or synthetic cannabinoids in both parental reproductive physiology and
offspring’ neurodevelopment, focusing on epigenetic modifications [6].
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Thus, it was recently found that ∆9-THC exposure before conception is associated with
widespread changes in DNA methylome in rat sperm (F0) [242–244], including changes
in genes important for neurodevelopment and synaptic plasticity [244,245]. Some of these
epigenetic changes persist following drug cessation [243] and they are inherited through
the germline from parents to offspring [243,244].

In line with these observations, additional studies have shown that periconceptional
exposure of female and/or male rats (F0) to plant-derived (e.g., ∆9-THC) or synthetic
(e.g., WIN55,212) cannabinoids increases the vulnerability to stress [246] and induces
long lasting neurobehavioral changes in the offspring (F1) [229]. These neurobehavioral
alterations were associated with altered global DNA methylation profiles in the prefrontal
cortex [246] and striatum [247]. DNA and histone methylation changes associated with
detrimental behavioral outcomes have also been observed in the offspring born from
dams prenatally exposed to natural cannabinoids [219,235,248–250]. Finally, Innocenzi and
coworkers have also shown that paternal chronic exposure to JWH-133, a highly selective
CB2 receptor agonist, before conception affects spermatogenesis in rats and alters placenta
and embryonic development [251]. These defects were associated with altered DNA
methylation profiles at imprinted genes, e.g., Peg10 and Plagl1, in sperm from JWH-133
exposed males, which were conserved in the placenta after fertilization [251].

https://www.biorender.com/
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Despite evidence in humans is more limited, preliminary studies demonstrated that
Cannabis is able to induce significant changes in spermatic count and sperm DNA methy-
lation profile, involving genes with an important role in development [242,252]. Drug
abstinence for at least one spermatogenic cycle allows partial neutralization of the Cannabis-
associated methylation changes in sperm [252].

What still needs to be clarified is whether the maternal gamete epigenome is affected
by periconceptional Cannabis exposure. Currently, there is evidence that endocannabinoids
and ∆9-THC impact ovarian morphology, folliculogenesis, and oocyte maturation [253–255].
Moreover, some recent studies showed that phytocannabinoids significantly alter the global
DNA methylation in human granulosa cells [256,257]. Therefore, it cannot be excluded that
Cannabis affects the oocyte epigenome in the ovarian niche, although further studies are
needed to confirm this possibility.

Together, these studies provide compelling evidence about the ability of cannabinoids
not only to affect the brain and reproductive physiology of the exposed generation, but
also potentially impact the epigenetic signatures and neurobehavioral functions in the
F1 generation [6]. More research is needed to better understand the potential vulnerability
of specific group of genes to Cannabis in male and female gametes, if these changes are
inherited in the future generations, even in those that are not exposed to Cannabis directly or
by exposure of germ cells, and if different cannabinoids induce distinct pattern of epigenetic
signatures, potentially affected by other environmental stimuli.

7. Conclusions

We have summarized the main clinical and preclinical data available on the effects
of prenatal exposure to cannabinoids at the maternal–fetal interface. Due to the poten-
tial Cannabis-induced neurodevelopment defects in children can be detected only after
birth, often in adolescence—too late to prevent potentially lifelong dysfunctions—a better
understanding of the impact of prenatal Cannabis should remain an important focus of
medical research. Currently, further studies are needed to evaluate the long-term effects
associated with the use of Cannabis-derived preparations by pregnant women. The efforts
should be directed toward the understanding of the multiple mechanisms by which endo-
cannabinoids and Cannabis constituents regulate placenta and fetal development. In this
regard, the use of innovative organ-on-chips technologies to model the microarchitecture
and functions of maternal–fetal interface could provide interesting opportunities to study
the pharmacokinetics and the effects of cannabinoids at this vital organ, their impact on
different cellular maternal and fetal populations, both in physiological and inflammatory
conditions, and will help the development of new and more personalized therapeutic
strategies to counteract the deleterious effects of prenatal Cannabis exposure. Consider-
ing the increased accessibility, social acceptability, and legalization of Cannabis use, more
research in this field will help physicians, healthcare organizations, and governments to
make evidence-based decisions to safeguard the general population health.
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Abbreviations

2-AG 2-arachidonoylglycerol
ABHD α,β-domain hydrolase
AEA N-arachidonoylethanolamine (or Anandamide)
BBB Blood–brain barrier
BCRP/ABCG2 Breast cancer resistance protein/ATP-binding cassette subfamily member 2
cAMP cyclic Adenosine monophosphate
CB G protein-coupled cannabinoid receptors (protein)
CBD Cannabidiol
CD4 Cluster of differentiation 4
CD8 Cluster of differentiation 8
Cnr Cannabinoid receptor (gene)
COX-2 Cyclooxygenase-2
CYP19A1 Cytochrome P450 family 19 subfamily A member 1
DAGL Diacylglycerol lipase
ECS Endocannabinoid system
eNOS endothelial Nitric oxide synthase
EU European Union
EVT Extravillous trophoblasts
FA Folic acid
FAAH Fatty acid amide hydrolase
FABP Fatty acid binding protein
FOXP3 Forkhead box 3
G-CSF Granulocyte-macrophage colony-stimulating factor
GD Gestational day
GPR G protein-coupled receptor
hCG Human chorionic gonadotropin
ICM Inner cell mass
IFNγ Interferon γ

IGFBP-1 Insulin-like growth factor binding protein-1
IL Interleukin
iNOS inducible Nitric oxide synthase
LOX Lipoxygenase
LPS Lipopolysaccharide
MAGL Monoacylglycerol lipase
NAPE N-acylphosphatidylethanolamine
NAPE-PLD N-acylphosphatidylethanolamine specific phospholipase d-like
NAT N-acyltransferase
NK cells Natural killer cells
nNOS neuronal Nitric oxide synthase
NO Nitric oxide
NOS Nitric oxide synthase
NPRL3 Nitrogen permease regulator-like 3
OEA N-oleoylethanolamide
PEA N-palmitoylethanolamide
Peg10 Paternally expressed 10
PGE Prostaglandin E
PIBF Progesterone-induced blocking factor
PKA Protein kinase A
Plag1 Pleiomorphic Adenoma Gene-Like 1
PPAR Peroxisome proliferator-activated receptor
PRL Prolactin
Reg Regulatory
STAT3 Signal transducer and activator of transcription 3
TGFβ Tumor growth factor β
Th cells T helper cells
TIM3 T cell imunoglobulin and mucin 3
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TNFα Tumor necrosis factor α
TRPV1 Transient receptor potential vanilloid-1
US United States
VEGF Vascular endothelial growth factor
WT Wild-type
∆9-THC ∆9-tetrahydrocannabinol
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