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Abstract: A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction
and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative
stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In
this context, the present study showed how the peel and seed extracts of mango (Mangifera indica
L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1
adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat
accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We
showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation.
In addition, mango extracts down-regulated the adipogenic transcription factor PPARγ as well
as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA
increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced
the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a
reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted
PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and
MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1.
Collectively, these results suggest that the intake of mango extract-enriched foods in association with
a correct lifestyle could exert beneficial effects to counteract obesity.

Keywords: mango peel extracts; mango seed extracts; saturated fatty acids; 3T3-L1 adipocytes; ER
stress; AMPK; Nrf2

1. Introduction

Obesity is a multifactorial disease characterized by the accumulation of body fat
resulting from excessive food intake, reduced physical activity, environmental factors and
genetic susceptibility [1,2]. For decades now, the incidence of obesity has increased in
developing countries, representing a public health problem [1]. Hypertrophic expansion
of white adipose tissue (WAT) represents an important risk factor for the development
of several chronic diseases, including insulin resistance, type II diabetes, non-alcoholic
fatty liver disease (NAFLD), cardiovascular diseases and some forms of cancers, such as
pancreatic, colorectal, ovarian, thyroid and breast cancers [3–6].

Excess dietary fat intake has been associated with overweight and fat deposition in
mice and humans and represents a serious health risk [7–9]. However, the quality of dietary
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fats has been shown to induce differential lipid storage. In fact, evidence shows that a high
intake of saturated long-chain fatty acids (SLFAs), such as palmitic acid (PA), is associated
with obesity [10], while a diet containing monounsaturated (MUFAs) and polyunsaturated
fatty acids (PUFA), such as oleic or linoleic acid, or medium-chain fatty acids (MFAs),
including caprylic acid, capric acid and lauric acid, may have beneficial effects on body
weight and obesity [11]. This can be explained considering that certain fatty acids (FAs) are
more likely to be stored in adipose tissue versus being oxidated for energy. In particular,
SLFAs have lower oxidation rates than MUFAs, PUFAs and MFAs, leading to increased fat
storage in white adipose tissue (WAT) [12].

Fat accumulation into adipose tissue due to high consumption of LSFAs produces
hypertrophic and dysfunctional adipocytes, leading to a state of chronic low-grade in-
flammation [13] that contributes to the development of obesity-related diseases [14]. PA
induces hypertrophy by increasing lipids droplet (LDs) content, and causes DNA damage
in adipocytes in vitro [15]. Moreover, high consumption of PA increases the expression of
pro-inflammatory cytokines (TNFα, IL-6, IL-1β) in adipose tissue [16]. The mechanisms
through which high levels of LSFAs induce adipocyte disfunction and inflammation in
WAT are different. When a large amount of PA is present, adipocytes metabolize it into
lysophosphatidylcholine, diacylglicerol (DAG) and ceramides [17]. These compounds have
been shown to induce PKC activation, endoplasmic reticulum (ER) stress induction and
NF-kB activation [18–20].

Several studies suggest that increased oxidative stress is positively correlated with
obesity [21]. Obese patients exhibit an abnormal oxidant/antioxidant status with higher
levels of oxidative stress markers such as hydroperoxides and carbonyl proteins, while
their antioxidant defenses are lower than those of their normal-weight counterparts [22].
The increased presence of reactive oxygen species (ROS) causes extensive oxidative dam-
age to proteins, lipids and DNA, promoting metabolic dysfunction and lipotoxicity in
adipocytes [23]. High-fat diets promote oxidative stress in adipose tissue [24]. It has been
shown that PA increases ROS production in adipocytes by increasing NADPH oxidase 4
(NOX4) activity [23–25]. Moreover, it has been suggested that the elevated bioavailability of
FAs can overwhelm the mitochondrial respiratory chain and oxygen consumption, leading
to mitochondrial dysfunction and ROS production [26]. Interestingly, oxidative stress and
inflammation appear to be closely interlinked in obesity. ROS may activate redox-sensitive
transcription factors, such as NF-κB, that transactivate pro-inflammatory cytokines, such
as IL-6 and TNF-α [27]. These, in turn, may further induce ROS production, generating a
vicious circle between inflammation and oxidative stress [27].

Several studies showed that caloric restriction or increased physical activity lowered
fat mass with a consequent reduction of oxidative stress and inflammation-associated
obesity [28,29]. In addition, there is an increasing interest in natural antioxidant compounds,
such as polyphenols contained in plants, due to their effectiveness against obesity and the
related chronic diseases [30,31].

Mango (Mangifera indica L.) is a tropical plant belonging to the Anacardiaceae family
whose cultivation has recently spread to the coastal areas of Sicily (Italy), where the
favorable climatic conditions stimulate the growth of the plant and the ripening of the
fruit [32]. Mango fruit is appreciated for its nutritive and nutraceutical properties [32,33]. It
has been shown that different parts of the plant and of the fruit exert anti-inflammatory,
anti-oxidant and anti-tumor effects in in vitro as well as in vivo models because of the
presence of a wide range of polyphenols [34–36].

In addition, several studies demonstrated that mango also exerts anti-obesity and an-
tidiabetic effects. Mangifera indica L. leaf extracts have been shown to reduce adipogenesis in
3T3-L1 adipocytes by decreasing the expression of genes involved in lipid metabolism [37].
In addition, mango juice intake decreases adiposity and inflammation in high-fat-diet-fed
obese rats [38], while mango fruit powder reduces insulin resistance and steatosis [39].
Furthermore, it has been shown that fresh mango consumption improves postprandial
glucose and insulin responses in obese adults [40]. Arshad et al. demonstrated that the
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consumption of mango peel powder reduced oxidative stress and dyslipidemia in obese
subjects [41]. These studies highlighted the potential of mango as a functional food for the
treatment of obesity and related diseases.

The edible part of mango is only the pulp. However, it has been reported that mango
peel and seed, which are the main bio-wastes of mango processing, contain high levels
of bioactive compounds [42,43]. We previously demonstrated that extracts of mango peel
and seed cultivated in Sicily exert anti-adipogenic effects by reducing the differentiation
of 3T3-L1 fibroblasts into adipocytes. These effects results from the down-regulation of
adipogenic factors such as PPARγ and SREBP as well as the activation of AMPK [43].

Keeping in view the potent health benefits of these mango extracts, the present study
was designed to evaluate the ability of mango peel extracts (MPE) and mango seed extracts
(MSE) to counteract lipotoxicity induced in adipocytes by SLFAs. To this end, we used
an in vitro model in which mature 3T3-L1 adipocytes were treated with high doses of PA,
resulting in artificially hypertrophied mature adipocytes. In our model, we examined the
effect of mango extracts on PA-induced hypertrophy and oxidative stress. Our data provide
evidence that MPE and MSE reduced lipid accumulation and exerted anti-oxidant effects by
reducing lipogenesis, inducing lipolysis and counteracting ER stress and ROS increase. The
activation of the AMPK and Nrf2 pathways seems to suggest that MPE and MSE reduced
lipotoxicity induced by PA in adipocytes.

2. Results
2.1. MPE and MSE Reduce PA-Induced Toxicity in 3T3-L1 Adipocytes

The present study aimed at investigating whether peel and seed extracts of mango
were capable of reducing lipotoxicity exerted by high doses of PA on differentiated 3T3-L1
adipocytes. The compositions of both MPE and MSE have been previously characterized by
HPLC-ESI-MS analysis [35,43]. Data showed that both the extracts are rich in polyphenols
with antioxidant properties [35,43]. In particular, methyl digallate, methyl gallate, gallic
acid and glucosyl gallate were the main phenolic compounds. A representative picture
of the main phenolic compounds of MPE and MSE is shown in Figure 1. Moreover, our
previous studies demonstrated that 100 µg/mL of MPE or MSE counteracted the adipocyte
differentiation of 3T3-L1 cells [43].
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Figure 1. The main phenolic compounds in mango peel and seed extracts. The compositions of MPE
and MSE were characterized by HPLC-ESI-MS analysis. Methyl-digallate ester isomer, methyl gallate,
gallic acid and glucosyl gallate are the most representative polyphenols in both the extracts.

In this study, we used an in vitro model in which differentiated 3T3-L1 adipocytes were
treated with high doses of PA to generate artificially hypertrophied mature adipocytes [44].
Firstly, 3T3-L1 pre-adipocyte cells were differentiated into adipocytes as reported in Section 4
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and then treated for 48 h with different doses of PA (100–750 µM) to evaluate their effect on cell
viability, in accordance with other authors [45]. Data obtained by MTT assay demonstrated that
PA inhibited cell survival in a dose-dependent manner with a reduction of cell viability of 50%
with 500 µM PA (Figure 2A). Notably, the addition of 100 µg/mL MPE or MSE increased cell
viability by 46% and 77%, respectively, in comparison with PA-treated adipocytes (Figure 2B).
Microscope images highlighted that the number of cells was reduced in PA-treated adipocyte
cells with respect to adipocytes co-treated with PA and MPE or MSE (Figure 2C). In addition,
signs of toxicity were observed after PA treatment alone that disappeared after the addition
of mango extracts (Figure 2C). Thus, in the following experiments, 100 µg/mL MPE or MSE
was used to investigate the mechanism underlying the protective effects of mango extracts on
lipotoxicity induced by 500 µM PA.
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Figure 2. MPE and MSE counteract PA-induced toxicity in 3T3-L1 adipocytes. Differentiated 3T3-L1
adipocytes were exposed for 48 h to different doses of PA alone or in the presence of 100 µg/mL MPE
and MSE. (A) MTT assays showing the reduction of cell viability induced in differentiated 3T3-L1
adipocytes by different doses of PA. (B) MTT assays showing the ability of 100 µg/mL of MPE or MSE
to counteract the cytotoxic effect of 500 µM PA in differentiated 3T3-L1 adipocytes. (C) Representative
phase contrast microscopy images showing the morphological changes induced by 500 µM PA alone
or in the presence of 100 µg/mL MPE or MSE in differentiated 3T3-L1 adipocytes. (A,B) The values
reported are the mean ± SD of three independent experiments. The statistical differences between
groups were evaluated using a one-way ANOVA test. * p < 0.05, ** p < 0.01 and *** p < 0.001 were
significant with respect to differentiated 3T3-L1 adipocytes treated with only vehicle BSA.

2.2. MPE and MSE Reduce Lipid Accumulation in Adipocytes Exposed to High Doses of PA

Excessive lipid availability has been related to adipose tissue hypertrophy [46]. To
examine the anti-lipogenic effect of MPE and MSE, differentiated 3T3-L1 adipocytes were
treated for 48 h with 500 µM PA in the absence or presence of 100 µg/mL MPE or MSE.
Microscope images highlighted that the treatment of mature 3T3-L1 adipocytes with PA
increased the content of lipids, as demonstrated by the presence of larger lipid vacuoles
with respect to differentiated control 3T3-L1 adipocytes (Figure 2C). Notably, the content of
these vacuoles was markedly reduced by MPE and MSE (Figure 2C). These observations
were confirmed by staining the cells with Oil Red O (Figure 3A). In comparison with
differentiated control adipocytes, 48 h treatment with 500 µM PA resulted in an increase in
lipid droplets (LDs) in adipocytes. The addition of 100 µg/mL MPE or MSE to PA-treated
adipocytes lowered lipid accumulation in comparison with PA-treated adipocytes. A mod-
est reduction of LDs was also observed in adipocytes not exposed to PA and treated with
the extracts alone (Figure 3A). These data were confirmed by microscopic quantification of
the Oil Red O staining area (Figure 3B) as well as by measuring the absorbance of the solubi-
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lized Oil Red O at 490 nm (Figure 3C). As shown in Figure 3B,C, the addition of 100 µg/mL
MPE or MSE to PA-treated adipocytes reduced both the staining area and the absorbance
of the stained cells by about 30% and 47%, respectively in comparison with PA-treated
adipocytes alone. Such a reduction in lipid accumulation was also sustained by measuring
the TAG content (Figure 3D). The results showed that the intracellular TAG accumulation
increased in PA-treated cells by 80% with respect to untreated differentiated adipocytes. In-
terestingly, the addition of MPE or MSE to PA-treated cells significantly decreased the TAG
content by 23% and 34%, respectively compared with PA-treated adipocytes (Figure 3D).
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Figure 3. MPE and MSE reduce 3T3-L1 adipocyte hypertrophy induced by high concentrations of
PA. 3T3-L1 differentiated adipocytes were treated for 48 h with 500 µM PA alone or in the presence
of 100 µg/mL MPE or MSE. (A) Representative Oil red O staining microscopy images showing the
increase in LDs after treatment with 500 µM PA alone and their reduction when 100 µg/mL MPE
or MSE was added (200× original magnification). (B) LD content was ascertained by analyzing the
percentage area of Oil Red O stained by ImageJ. (C) Quantitative Oil red O staining was measured by
a spectrophotometer at 490 nm. (D) Cellular TAG content was quantified by spectrophotometer at
546 nm. The results are the mean of three independent experiments ± SD. The statistical differences
between groups were evaluated using a one-way ANOVA test. ** p < 0.01 and *** p < 0.001 were
significant with respect to differentiated 3T3-L1 adipocytes and ## p < 0.01 with respect to PA-treated
3T3-L1 adipocytes.

2.3. MPE and MSE Inhibit PPARγ and Activate AMPK

To investigate the molecular basis for the anti-obesity effect of MPE and MSE, we
first evaluated whether mango extracts are capable of reducing the level of PPARγ, the



Int. J. Mol. Sci. 2023, 24, 5419 6 of 19

master regulator of adipogenesis [47]. Our data supported the conclusion that PPARγ
signaling sustained PA-induced hypertrophy in adipocytes. In fact, we observed an increase
of 50% of PPARγ levels in adipocytes treated for 48 h with 500 µM PA, with respect to
untreated adipocytes (Figure 4). A concomitant increase in the perilipin-2 levels (80%),
a lipid droplet coating protein [48], was observed in PA-treated adipocytes (Figure 4).
Notably, the addition of MPE or MSE to PA-treated adipocytes reduced the increase in
PPARγ to only 18% and 23%, respectively as well as that in perilipin-2 to only 15% and
30%, respectively, in comparison with PA-treated adipocytes (Figure 4).
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Next, we examined whether MPE and MSE affects AMPK activation, a kinase pro-
moting catabolic pathways in adipocytes [49]. As shown in Figure 4, the expression of
the phosphorylated and active form of AMPK lowered in PA-treated differentiated 3T3-L1
adipocytes compared with control adipocytes. Interestingly, MPE or MSE alone and in
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the presence of PA significantly enhanced the phosphorylated form of AMPK (p-AMPK)
(Figure 4). This is in line with our previous study demonstrating that MPE and MSE
activate AMPK during adipocyte differentiation [43]. Moreover, the addition of MPE or
MSE in control adipocytes as well as in PA-treated adipocytes increased the levels of the
phosphorylated and inactive form of acetyl-CoA-carboxylase (p-ACC) (Figure 4), the key
enzyme of fatty acid synthesis, which is inactivated by phosphorylation by AMPK [49].

Finally, our data also demonstrated that MPE and MSE markedly increased the phos-
phorylated and active form of hormone sensitive lipase (p-HSL), the enzyme activating
lipolysis in adipocytes [50], by 30% and 65%, respectively (Figure 4).

2.4. MPE and MSE Reduce PA-Induced ER Stress in 3T3-L1 Adipocytes

Elevated levels of FAs, in particular saturated fatty acids (SFAs) such as PA, have been
shown to produce ER stress in a number of cell types, including adipocytes [51]. The acti-
vation of ER stress, in turn, represents a potential molecular mechanism of lipotoxicity [52].
We thus examined whether high doses of PA induce ER stress in mature adipocytes and
the ability of MPE and MSE to counteract it. Interestingly, we observed an increase in ER
stress protein markers, evidenced by an up-regulation in the expression of PERK, GRP78
and CHOP, as well as in JNK phosphorylation following the treatment of mature 3T3-L1
adipocytes with 500 µM PA for 48 h (Figure 5). These results suggest that the ER-associated
unfolded protein response (UPR) pathway is activated by PA [53]. Notably, the addition
of 100 µg/mL MPE or MSE to PA-treated differentiated adipocytes reduced the levels of
all ER stress protein markers (Figure 5), thus suggesting the ability of mango extracts to
counteract ER stress.
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GRP78 and CHOP, as well as for phosphorylated JNK (p-JNK). Equal loading of protein (30 µg) was
verified by immunoblotting for γ-Tubulin. The bar graphs represent the means of three independent
experiments ± SD. The statistical differences between groups were evaluated using a one-way
ANOVA test. * p < 0.05, ** p < 0.01 and *** p < 0.001 were significant with respect to differentiated
3T3-L1 adipocytes. ## p < 0.01, ### p < 0.001 were significant with respect to PA-treated differentiated
3T3-L1 adipocytes.
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2.5. MPE and MSE Prevent PA-Induced ROS Production

It has been reported that free FAs generate ROS in different cell types, including
adipocytes [19,54]. Thus, to evaluate whether PA increased intracellular ROS production,
differentiated 3T3-L1 adipocytes were incubated with H2DCFDA, a specific fluorescent
probe that visualizes intracellular ROS [55]. H2DCFDA-associated fluorescence was ele-
vated by 65% after incubation with 500 µM PA for 48 h compared with untreated differenti-
ated 3T3-L1 adipocytes (Figure 6A,B). Interestingly, the addition of 100 µg/mL MPE or MSE
markedly reduced ROS content to 35% and 23% compared with adipocytes only treated
with PA (Figure 6A,B), thus highlighting that mango extracts counteract ROS production
and oxidative stress induced in adipocytes after PA treatment.
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Figure 6. MPE and MSE reduce PA-induced oxidative stress in 3T3-L1 adipocytes, reducing ROS
production. Intracellular ROS detection was performed by redox-sensitive fluorochrome H2DCFDA.
Differentiated 3T3-L1 adipocytes were treated with 500 µM PA for 48 h in the presence or absence of
100 µg/mL MPE or MSE, as reported in Section 4. Then, cells were incubated with 10 µM H2DCFDA
solution for 30 min at 37 ◦C. The oxidation of the fluorochrome-generated green fluorescence was
visualized by a Leica microscope equipped with a DC300F camera using a FITC filter. (A) Represen-
tative images of fluorescence microscopy were taken at 200× magnification. (B) ROS content was
ascertained by analyzing the percentage area with Image J. *** p < 0.001 was significant with respect
to differentiated 3T3-L1 adipocytes, and ## p < 0.01, ### p < 0.001 were significant with respect to
PA-treated 3T3-L1 adipocytes.

In addition, propidium iodide (PI) staining of cells confirmed the induction of cytotoxic
effects in PA-treated differentiated adipocytes. PA treatment increased cell death by about
35% compared with control adipocyte cells (Figure 7A,B). These effects were counteracted
by the addition of 100 µg/mL MPE or MSE that markedly reduced cell death by about 57%
and 65%, respectively, with respect to PA-treated adipocytes.
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Figure 7. MPE and MSE reduce the cytotoxic effects of PA in 3T3-L1 adipocytes. Propidium iodide
(PI) staining of differentiated 3T3-L1 adipocytes treated with 500 µM PA for 48 h in the presence or
absence of 100 µg/mL MPE or MSE. (A) Representative fluorescence microscopy images were taken
at 200×magnification by a Leica microscope equipped with a DC300F camera using a PE filter. (B) PI
content was ascertained by analyzing the percentage area with Image J. (C) Western blotting analysis
of the procaspase-3 levels. An equal loading of protein (30 µg) was verified by immunoblotting for
γ-Tubulin (D). The bar graphs represent the means of three independent experiments± SD. * p < 0.05,
** p < 0.01 and *** p < 0.001 with respect to differentiated 3T3-L1 adipocytes. # p < 0.05, ## p < 0.01,
### p < 0.001 were significant with respect to PA-treated 3T3-L1 adipocytes.

The cytotoxic effects induced by PA in adipocytes seem to be related to apoptosis
induction. Pro-caspase-3 is a master apoptosis protein marker cleaved in active form during
this process [56]. PA treatment decreased the level of pro-caspase-3 by 43% (Figure 7C,D)
and promoted the appearance of the cleaved active form of caspase-3. Notably, caspase
activation was counteracted by the addition of MPE or MSE (Figure 7C,D). Our previous
studies provided evidence that MPE and MSE contain factors capable of exerting ROS
scavenger effects during 3T3-L1 adipocyte differentiation [43]. These effects have been
correlated with the ability of mango extracts to increase Nrf2, the main antioxidant tran-
scription factor [57], during adipocyte differentiation [43]. In accordance with our previous
data, we demonstrated that in PA-treated adipocytes, MPE or MSE increased the level of
Nrf2 by about 40% and 60%, respectively (Figure 8). Our data also showed that the levels
of MnSOD and HO-1, two scavenger enzymes transcriptionally regulated by Nrf2 [57,58],
markedly increased after treatment with MPE or MSE. In particular, the increase in MnSOD
in the presence of MPE or MSE was estimated to be 46% and 50%, while that of HO-1 was
estimated to be 12% and 28%, respectively.
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Figure 8. MPE and MSE increase the expression levels of the anti-oxidant molecules. Differentiated
3T3-L1 adipocytes were treated with 500 µM PA for 48 h in the presence or absence of 100 µg/mL
MPE or MSE. Cell lysates underwent Western blotting analysis for Nrf2, MnSOD and HO-1. An equal
loading (30 µg) of proteins was verified by immunoblotting for γ-Tubulin. The bar graphs represent
the means of three independent experiments ±SD. The statistical differences between groups were
evaluated using a one-way ANOVA test. * p < 0.05, ** p < 0.01 and *** p < 0.001 were significant with
respect to differentiated 3T3-L1 adipocytes. ## p < 0.01 was significant with respect to PA-treated
differentiated 3T3-L1 adipocytes.

3. Discussion

The current study was designed to investigate whether extracts of mango peel (MPE)
and seed (MSE) could ameliorate PA-induced lipotoxicity in adipocytes. Peel and seed are
the main bio-waste products of mango processing. In an earlier study, we demonstrated
that MPE and MSE have the ability to reduce the number of adipocytes by preventing
adipocyte differentiation of 3T3-L1 pre-adipocyte cells [43]. In the present study, we
provided evidence that MPE and MSE are also capable of lowering adipocyte hypertrophy
induced by high doses of PA, the main saturated long fatty acid present in the diet [59].
Notably, we demonstrated that MPE and MSE reduced PA-induced fat accumulation, as
evidenced by the decrease in LD and TAG content in differentiated 3T3-L1 adipocytes
co-treated with PA and MPE or MSE.

The ability of MPE and MSE to reduce lipid content in PA-treated adipocytes results
from both stimulation of lipolysis and inhibition of lipogenesis. PPARγ is a transcription
factor that has been reported to play a critical role in adipocyte hypertrophy under high fat
diets [60]. We provided evidence that the PPARγ level increased under PA-treatment in
differentiated 3T3-L1 adipocytes. Notably, this effect was markedly counteracted by the
addition of MPE or MSE to PA-treated adipocytes. These results are in line with our previ-
ous data demonstrating that MPE and MSE counteract 3T3-L1 adipocyte differentiation by
reducing the level of PPARγ and its target FABP4 [43].

Furthermore, our data showed that MPE and MSE significantly enhanced the phos-
phorylation of AMPK and its substrate acetil-CoA carboxylase (ACC) in both controls and
PA-treated adipocytes, thus suggesting a role of AMPK activation in reducing lipogenesis
induced by MPE and MSE. AMPK is an important regulator of lipid metabolism [61].
Activation of AMPK by phosphorylation increases lipolysis and fatty acid oxidation, while
inhibiting lipogenesis [62]. AMPK inactivates by phosphorylation ACC, the key enzyme
of fatty acid synthesis [63], leading to the reduction of fatty acid synthesis [64]. Different
phenolic compounds contained in plants and fruits, such as quercetin, curcumin, resveratrol
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and gallic acid, exert anti-obesity effects by activating AMPK [61]. We previously character-
ized the composition of peel and seed extracts of Sicilian mango fruits by HPLC/MS and
demonstrated the presence of different polyphenols, among which methyl digallate and
methyl gallate are the most represented components [34,43]. These compounds could be
responsible for the anti-lipogenic effects of the mango extracts. In line with this conclusion,
Fang et al. [65] demonstrated that gallotannin derivatives from mango counteract adipogen-
esis by activating AMPK. In addition, Lu, et al. showed that gallic acid reduced lipogenesis
and improved liver steatosis by activating AMPK [66]. This effect could result by a direct
interaction of gallic acid with AMPKα/β subunits, as evidenced by computational docking
analysis [66]. Finally, mangiferin, a polyphenol derived from Mangifera indica promotes
browning of adipocytes by activating AMPK [67].

In this study, we also provided evidence that MPE and MSE increased the level of
the phosphorylated and active forms of hormone-sensitive lipase (HSL), the key lipase
activating lipolysis of TAGs in adipocytes, in PA-treated adipocytes [68]. Different lipolytic
agents activate HSL by increasing cAMP levels, with the consequent activation of cAMP-
dependent protein kinase (protein kinase A; PKA). This enzyme in turn phosphorylates
and activates HSL [69]. MSE and MPE could activate HSL because of their content of
polyphenols. In line of this conclusion, it has been shown that different polyphenols
are able to increase cAMP by inhibiting phosphodiesterase, the enzyme that degrades
cAMP [70,71].

A high content of SLFAs has been associated with lipotoxicity in adipocytes as a
consequence of ER stress induction [72]. Notably, when present at a high level, PA is metab-
olized into saturated DAG and saturated lysophosphatidylcholine [19]. These PA-derived
metabolites accumulate in the ER, causing destructive changes in its structure and the
activation of ER stress sensors [19]. In line with these observations, we demonstrated that
PA treatment enhanced the ER stress markers GRP78, PERK and CHOP as well as activated
JNK by increasing its phosphorylated form in differentiated 3T3-L1 adipocytes. ER stress
is a protective cellular mechanism that initiates the unfolded protein response (UPR) to
restore cellular homeostasis [73]; however, in severe ER stress, the adaptive response fails
and apoptotic cell death is induced [73]. In obese animals, elevated ER stress is present in
different organs [74,75]. In this condition, ER stress-induced UPR activates JNK, which in
turn promotes apoptosis by inhibiting the mitochondrial respiratory chain and activating
caspases [76]. Our data confirmed that PA causes lipotoxicity in differentiated adipocytes,
as evidenced by cell viability reduction, increased PI-positive cells and caspase-3 activation.
Interestingly, MPE and MSE counteracted PA-induced ER stress by lowering all ER stress
markers, GRP78, PERK and CHOP, as well as p-JNK. Concomitantly, mango extracts re-
stored cell viability, reduced PI-positive cells and the activation of caspase-3 induced by
PA treatment, thus suggesting their protective effects against lipotoxicity induced by high
levels of SFAs in adipocytes. Furthermore, we demonstrated that PA treatment increased in
3T3-L1 adipocytes the level of ROS, as evidenced by staining adipocytes with H2DCFDA.
This finding is in line with previous reports demonstrating that high levels of fatty acid
increase oxidative stress in adipocytes [77]. It has been reported that ceramide and DAG,
which are fatty acid-derived lipid metabolites, activate NADPH oxidase (NOX), enhancing
the ROS level in adipocytes [78]. In addition, dysfunction of the mitochondrial respiratory
chain in obesity can amplify oxidative stress and inflammation [79]. ROS production has
been shown to activate JNK, which mediates activation of NF-κB and AP-1 [80] with the
consequent enhanced expression of pro-inflammatory cytokines, such as IL-6 and TNFα.
Notably, we showed that the production of ROS in PA-treated adipocytes was markedly
reduced by the addition of MPE and MSE. This effect could be a consequence of the
high content of polyphenols in mango extracts. This is in line with the observation that
methyl-gallate, the main component of MPE and MSE, protects the cells against oxidative
damage through its ROS scavenger ability [81]. Furthermore, the lowering in ROS content
induced by MPE and MSE could be a consequence of the up-regulation of Nrf2 and its
transcriptional targets MnSOD and HO-1, two important antioxidant enzymes [34,43]. The
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activation of Nrf2, the main transcriptional factor against exogenous and endogenous
oxidative stress injury [82,83], has been reported in different dietary polyphenols, including
resveratrol, gallic acid and caffeic acid [84]. The mechanisms underlying Nrf2 activation
include increased Nrf2 nuclear translocation, inhibition of Keap1-Nrf2 interaction and
enhanced Keap1 ubiquitination [84]. Finally, MPE and MSE could reduce ROS levels
and oxidative stress in adipocytes by activating AMPK. In line with this hypothesis, the
deregulated activity of AMPK has been associated with an inflammatory state in in vivo
models of obesity and obese patients [85]. Indeed, the activation of AMPK signaling has
been shown to protect against oxidative stress by suppressing NOX [86] and mitochondrial
dysfunction [87].

4. Materials and Methods
4.1. MPE and MSE Preparation

Peel and seed extracts were obtained from mango fruits (Mangifera Indica L.) cultivated
in Sicily (Italy), as reported before [43]. In particular, after washing with distilled water,
the peels and seeds of mango fruits were cut and lyophilized (Hetosicc Lyophilizer Heto
CD 52-1). Then, an ethanol:PBS 1:1 solution was used in order to solubilize the lyophilized
products by keeping them overnight at 37 ◦C under constant shaking. The final concentra-
tion of both the extracts was 75 mg/mL. Then, we centrifuged both the extracts of MPE and
MSE at 120× g for 10 min. The obtained supernatants of MPE and MSE were centrifuged
again at 15,500× g for 10 min and then the extracts (supernatants) were frozen at −20 ◦C
until use. MPE and MSE working solutions were prepared by diluting them to the final
concentration in culture medium. The final concentration of ethanol in the extracts showed
no toxicity on differentiated 3T3-L1 adipocytes.

4.2. PA Solution Preparation

PA was solubilized in an EtOH 10% solution (25mM) in a heated and stirred water
bath at 65 ◦C for 15 min. Once completely solubilized, a 500 µM working dilution was
appropriately prepared in culture medium containing 5% BSA and incubated at 37 ◦C for
1 h under constant shaking to ensure their conjugation before adding it to differentiated
3T3-L1 adipocytes. Vehicle containing 5% BSA was used as control (differentiated 3T3-L1
adipocytes, Diff).

4.3. Cell Cultures

A mouse 3T3-L1 pre-adipocyte cell line from the American Type Culture Collection
(ATCC) was maintained in culture as monolayer in flasks of 75 cm2, at 37 ◦C and in a 5% CO2
humidified incubator in DMEM (Euroclone, Pero, Italy), supplemented with 10% (v/v) heat-
inactivated fetal bovine serum (FBS; Euroclone, Pero, Italy), 2 mM L-glutamine (BioWest
SAS, Nuaillé, France), 100 U/mL penicillin and 50 µg/mL streptomycin (Euroclone, Pero,
Italy). Once 80% of confluence was reached, 3T3-L1 pre-adipocytes were detached from
the flasks using trypsin-EDTA (0.5 mg/mL trypsin and 0.2 mg/mL EDTA) and seeded
according to the experimental conditions. All compounds and reagents used for our
experiments, unless otherwise stated, were purchased from Sigma-Aldrich (Milan, Italy).

4.4. Adipocyte Differentiation, Reagents and Treatments

Differentiated 3T3-L1 adipocytes were obtained from 3T3-L1 pre-adipocyte cells (un-
differentiated cells) as previously reported [43]. In particular, 3T3-L1 cells were seeded
at 0.2 × 105/well in 24-well plates or 0.8 × 105/well in 6-well plates and kept until the
confluence was reached. Then, after two days post-confluence, undifferentiated cells were
incubated with a differentiation culture medium constituted by DMEM supplemented
with 10% (v/v) heat-inactivated FBS, 2 mM L-glutamine, 1% Non-Essential Amino Acids,
100 U/mL penicillin and 50 µg/mL streptomycin, containing the pro-differentiative agents
0.5 mM 3-isobutyl-1-methylxanthine (IBMX), 1 µM dexamethasone and 10 µg/mL insulin.
After another three days, the differentiation medium was removed and maintenance cul-
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ture medium (DMEM supplemented with 10% (v/v) heat-inactivated fetal bovine serum,
2 mM L-glutamine, 1% Non-Essential Amino Acids 100 U/mL penicillin and 50 µg/mL
streptomycin containing 10 µg/mL insulin) was added and left for 5 days. Complete
differentiation was reached at day 8 when the cells showed typical features of mature
adipocytes, such as LD formation and TAG accumulation. PA alone or in the presence of
100 µg/mL MPE or MSE was added to differentiated 3T3-L1 adipocytes and kept for 48 h.

4.5. Cell Viability Assessment

Cell viability was evaluated by measuring mitochondrial dehydrogenase activity
using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), as reported
before [88]. For the cell viability assay, undifferentiated 3T3-L1 cells were seeded in 96-well
plates (8 × 103 cells/well) until complete differentiation. Then, differentiated 3T3-L1
adipocyte cells were exposed to different concentrations of PA alone or in the presence
of 100 µg/mL MPE or MSE for 48 h. Then, 20 µL of MTT reagent (11 mg/mL diluted
in PBS) was added to each well and incubated for another 2 hours at 37 ◦C. The colored
crystals of the formazan produced by viable cells were dissolved by adding 100µL of
lysis buffer containing 20% sodium dodecyl sulphate in 50% N,N-dimethylformamide,
pH 4.0 and the absorbance was measured by a microplate reader (OPSYS MR, Dynex
Technologies, Chantilly, VA, USA) at 540 nm with a reference wavelength of 630 nm. Cell
viability was measured as the percentage of the optical density (OD) values found in treated
cells compared with those found in untreated cells as control.

The cytotoxic effects of PA on differentiated 3T3-L1 adipocyte cells were also eval-
uated by propidium iodide (PI) staining. Differentiated cells were treated with 500 µM
PA alone or together with 100 µg/mL MSE or MPE. After 48 h of treatment, cells were
washed and stained with PI. After a short incubation at the dark, the fluorochrome in
excess was removed and the cells were analyzed by fluorescence microscopy using ex-
citation and emission wavelengths appropriate for PI fluorescence (λex = 488 nm and
λem = 610/620nm).

4.6. Oil Red O Staining of Treated Mature 3T3-L1 Adipocytes

Oil Red O staining (Sigma-Aldrich, St. Luois, MO, USA) was performed for evaluating
LD accumulation. Oil Red O stock solution was prepared by solubilizing 0.35 gr in 100 mL
isopropanol 100%. Once differentiated in a 24-well plate, differentiated 3T3-L1 adipocytes
were fixed by incubation in 10% formaldehyde for 30 min, washed with PBS and rinsed
with 60% isopropanol for 5 min until they were completely dry. Fixed cells were then
stained with Oil Red O working solution (3:2, stock solution—dH2O) for 10 min and then
washed with dH2O several times. Red pixel areas, stained by Oil Red O, detecting LDs,
were divided by the total area scanned. The whole bottom surface of a single well from
a 24-well plate was analyzed for the establishment of LD production. A Leica DM-IRB
microscope was used and pictures were taken by a Leica DC300F digital camera with a
Leica IM50 software, as representative images of the experimental conditions. The pictures
were analyzed in ImageJ, converted into high-contrast black and white images to visualize
LDs and scored as the percentage area per field. Finally, Oil Red O quantification was
performed by measuring its absorbance at 490 nm after extraction of the dye by 100%
isopropanol for 10 min. The percentages of the OD values found in treated cells were
compared with those found in untreated differentiated 3T3-L1 cells as control.

4.7. ROS Detection

ROS production was detected through the oxidation of the cell-permeant 2′,7′-dichloro
dihydrofluorescein diacetate (H2DCFDA) (Molecular Probe, Life Technologies, Eugene,
OR, USA) dye, as reported before [89]. Differentiated 3T3-L1 adipocytes were treated with
500 µM PA in absence or presence of 100 µg/mL MPE or MSE for 48 h. Then, the cells were
washed in PBS and incubated with 10 µM H2DCFDA dye for 30 min in the dark and in
the presence of 5% CO2 at 37 ◦C. At the end of incubation, the fluorochrome in excess was



Int. J. Mol. Sci. 2023, 24, 5419 14 of 19

removed washing in PBS and the fluorescent 2′,7′-dichlorofluorescein (DCF), produced
by intracellular oxidation, was analyzed by fluorescence microscopy using excitation and
emission wavelengths appropriate for green fluorescence (FITC filter with λex = 485 nm
and λem = 530 nm).

4.8. TAGs Evaluation

Differentiated 3T3-L1 adipocytes were treated with 500 µM PA in absence or presence
of 100 µg/mL MPE or MSE for 48 h. Then, the cells were lysed with 5% NP-40 and the
number of TAGs in the supernatants was quantified by a spectrophotometric commercial kit
for triglyceride determination (SENTINEL C H. SpA, Milan, Italy) [43]. A standard curve
with different TAG concentrations, normalized to total cellular protein content measured
by Bradford assay, was used for quantifying the samples’ TGA concentrations.

4.9. Western Blot Procedures

Protein levels were detected by western blotting analysis. Differentiated and treated
cells were lysed as reported before [90]. Bradford Protein Assay was used to quantify
protein concentration (Bio-Rad Laboratories S.r.l., Segrate, Milan, Italy). Afterwards, the
same number of proteins (30 µg/sample) was loaded and underwent sodium dodecyl
sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE). Finally, gels were blotted onto a
nitrocellulose membrane (Bio-Rad).

Immunodetection was then performed, incubating the filters with specific primary an-
tibodies against PERK (ab65142) purchased from Abcam (Cambridge, UK), namely, GRP78
(sc-166490), phosphorylated-JNK (sc-6254), CHOP (sc-793), PPARγ (sc-7273), MnSOD
(sc-133254) and caspase-3 (sc-65487), all purchased from Santa Cruz Biotechnology (Santa
Cruz, CA, USA). Phosphorylated-ACC (#07-303) was purchased from EMD Millipore Cor-
poration (Temecula, 40 CA, USA), phosphorylated-AMPKα (#2535) and phosphorylated-
HSL (#4126) were purchased from Cell Signaling (Danvers, MA, USA); Nrf2 (NBP1-32822)
and Perilipin-2 (NB110-40877SS) was purchased from Novus Biologicals (Bio-Techne SRL,
Milan, Italy); additionally, HO-1, Heme Oxygenase 1 (orb5455) was purchased from Biorbyt
Ltd. (Cambridge, UKi). Immunoreactive signals, developed through HPR-conjugated
secondary antibodies (Amersham, GE Healthcare Life Science, Milan, Italy), were de-
tected using enhanced chemiluminescence (ECL) reagents (Cyanagen, Bologna, Italy) and
obtained with ChemiDoc XRS (Bio-Rad, Hercules, CA, USA).

A quantification of the signal was performed by Quantity One 1-D Analysis software
(Bio-Rad) and γ-Tubulin (T3559; Sigma-Aldrich) was used for loading normalization.

4.10. Statistical Analysis

All the experiments and their determinations were performed in triplicate. Data were
represented as mean ± S.D and the statistical significance was provided. Data analysis
was performed using the GraphPadPrismTM 4.0 software (Graph PadPrismTM Software
Inc., San Diego, CA, USA). The differences between groups were evaluated using Tukey’s
test following one-way ANOVA test. A p-value < 0.05 was considered the threshold for
statistical significance. When not specified, the data were not significant with respect to the
related control.

5. Conclusions

In conclusion, the present study demonstrated that MPE and MSE protect against
PA-induced lipotoxicity in differentiated 3T3-L1 adipocytes by reducing lipid content
and oxidative stress. These anti-obesity effects of MPE and MSE might partly involve
the inhibition of lipogenesis, the activation of lipolysis and the induction of antioxidant
effects. A representative picture of the anti-lipolytic and anti-oxidative effects of MPE
and MSE is reported in Figure 9. In light of the chemical data providing evidence of MSE
and MPE composition, we wondered about the putative phytochemicals responsible for
the effect observed in 3T3-L1 adipocytes exposed to MPE or MSE treatment. A possible
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candidate seems to be methyl gallate. This is a phenolic compound that is the most
represented phytochemical in our tested mango extracts. Our hypothesis is also sustained
by experimental evidence reported by Roh et al. [91] demonstrating that methyl gallate
is able to counteract the lipid accumulation in 3T3-L1 cells and could represent a good
candidate as an anti-obesity agent. However, we cannot exclude that the ability of MPE
and MSE to counteract PA lipotoxicity, and as hypertrophy and ER stress induced by
PA exposure could be ascribed to a combined or synergistic effect among the different
phytochemicals identified in mango. To better elucidate this aspect, in our future studies
we will test mango phytochemicals as compounds alone and their combinations on 3T3-
L1 cells.
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