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Abstract: Background: Monitoring indoor environmental quality (IEQ) is important to better under-
stand occupant health. Passive IEQ monitoring with digital technologies may provide insightful
quantitative data to better inform, e.g., health interventions. Yet, many traditional approaches with
known IEQ technologies have limited utility due to high costs or coarse granularity—focusing on
the collective rather than individuals. Equally, subjective approaches (e.g., manual surveys) have
poor adherence (i.e., are burdensome). There is a need for holistic IEQ measurement techniques that
are sustainable (affordable, i.e., low-cost) and personalised. Here, the aim of this case report is to
explore the use of low-cost digital approaches to gather personalised quantitative and qualitative
data. Methods: This study deploys a personalised monitoring approach with IEQ devices coupled to
wearables, weather data, and qualitative data, captured through a post-study interview. Results: The
mixed-method, single-case approach gathered data continuously for six months with a reduced bur-
den, by using digital technologies to affirm environmental factors, which were subjectively evaluated
by the participant. Quantitative data reinforced qualitative data, removing the need for generalis-
ing qualitative findings against a collective. Conclusions: This study showed that the single-case,
mixed-method approach used here can provide a holistic approach not previously obtainable with
traditional pen-and-paper techniques alone. The use of a low-cost multi-modal device linked with
common home and wearable technology suggest a contemporary and sustainable IEQ measurement
approach that could inform future work to better determine occupant health.

Keywords: indoor environmental quality (IEQ); personalised assessment; multi-modal monitoring;
sensors; internet of things (IoT); building occupants

1. Introduction

Poorly ventilated indoor environments can cause concentrations of a wide range of con-
taminants, off-gasses, and other substances, which are harmful to respiratory systems [1–3].
Their impact can negatively affect the health (and wellbeing) of building occupants [4–6].
Monitoring indoor environmental quality (IEQ) can provide a deeper understanding of con-
ditions that can affect health, but this is complex and requires data on a multifaceted range
of quantitative and qualitative outcomes. Typically, IEQ monitoring is costly/expensive [7],
meaning measurements are either omitted completely or limited sensing modalities are
adopted (i.e., uni-modal), which are often measured from a single spatial point. The latter
means poor spatial density (of IEQ data), resulting in a one size fits all approach when try-
ing to understand the indoor conditions experienced by individual building occupants [7],
i.e., when the building is the unit of analysis rather than the individual. Accordingly, there
is often a disconnect between what is measured by IEQ equipment and what is experienced
by occupants.

Most IEQ monitoring studies focus solely on subjective data alone [2], which may be
captured by surveying a sample of building occupants and generalising the findings for all
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occupants of a building [8]. This can be problematic for multiple reasons, as respondents
may be inclined to respond according to accepted social norms or retrospectively backfill
data after failing to complete surveys on time [9]. Surveys also inherently generalise
findings to a population. For example, the ASHRAE Standard 55 [10] outlines that the
pool of occupants surveyed should be large enough to ensure subjective biases do not
form a general assessment of a building. Reducing subjective biases is important when the
building is the unit of analysis, but when focusing on how individuals are affected by a
building or how they respond to environmental change, the dilution of subjective biases
results in a lack of individualism.

A notable challenge with traditional pen-and-paper questionnaires or surveys is the
burden it can place on respondents. For point-in-time studies this may be less problematic
as the survey becomes a one-time activity. For longitudinal monitoring, regular surveying
can quickly become a burden, resulting in reduced participant adherence. Thus, longitu-
dinal capture of individualised IEQ could benefit from contemporary, digital approaches
that reduce burden by disrupting and/or supplementing traditional approaches with the
multi-modal capture of environmental conditions. However, this requires monitoring
environmental conditions that are local to the individuals under assessment.

2. Background

A body of work [7,8,11–14] has been undertaken by the authors here to explore
solutions for IEQ monitoring that are scalable enough to support the monitoring of
environments that are local to individual building occupants. A need for monitoring that
focuses on the individual was identified [7], finding that individualised measurements
could not only identify how individual occupants respond to environmental changes,
but also that they could increase the spatial density of measurements, as numerous
personalised IEQ monitors could be placed within a multi-occupied space. (Readers
are directed to [7], which provides a comprehensive literature review on technological
approaches to environmental monitoring—identifying a core knowledge gap around
longitudinal monitoring in buildings that focuses on individual occupants). A previous
study [14] was also conducted that explored technological approaches for monitoring
individual building occupants that are affordable/sustainable. That study proposed
and validated a multi-modal IEQ device [14] capable of gathering data on a wide range
of environmental outcomes (including temperature, humidity, carbon dioxide (CO2),
equivalent carbon dioxide (eCO2), total volatile organic compounds (TVOC), particulate
matter, light and noise). That affordable, multi-modal approach could be an improved
methodology to better monitor occupant health. To add further individualised focus, the
use of wearable (physiological) sensors has also been identified [7] as complementing
IEQ sensor measurements. Here, the ubiquity of affordable wearable health monitors
is deemed as an opportunity, as they have the potential to reinforce qualitative ap-
proaches for IEQ data capture [5,7,9,15]. The combined technological approach could
help link building occupants with the built environment to better understand the impact
environmental changes have on individuals.

This case report aims to explore and understand whether personalised environmental
sensing approaches can be used to address the subjectivity around environmental percep-
tions by providing quantitative context to how occupants experience building environments
and whether the triangulation of data from the immediate environment, wearables and
surveys can provide richer context compared to that traditionally found in environmental
analyses. This study will implement a mixed-method approach for using affordable digital
technologies to gather personalised, multi-modal data on environmental and physiological
conditions in tandem with traditional qualitative data capture. A suitable methodological
framework was adopted and adapted for making the individual the unit of analysis in an
n-of-1 context, longitudinally monitoring a single participant using data from localised
IEQ sensors, wearables, surveys, and interviews [8]. The n-of-1 methodology involves
repetition around the measurement of a single individual over long periods of time, but
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since n-of-1 research methods focus on a single participant only, this is often mistakenly
perceived as a limitation that results in resistance in practice [16]. However, n-of-1 methods
are commonly used in medicine, psychology, psychotherapy, and special education [17],
and are a valuable instrument for exposing time differential phenomena and causal links
between measured outcomes [18]. For the purposes of this study, their use is novel and
could potentially expose unique insights into the relationships between occupants and
indoor environments at an individual level.

n-of-1 methods could potentially better link occupants to their environments to provide
additional context to building analyses, by exploring, e.g., causal relationships between
environmental outcomes, or by exploring recognised relationships between, e.g., ventilation
and occupancy [19,20], as poor ventilation can cause contaminants to concentrate in indoor
spaces that can lead to degradation in IEQ [21–23]. This can often be attributed to carbon
dioxide (CO2), as CO2 can serve as a proxy measurement for ventilation [20], which can
result in significant associations between CO2 and health, whereby CO2 is often reported
as the main cause of building-associated sickness [24].

Since this study undertook longitudinal localised measurements, an additional consid-
eration was taken here to ensure that the investigated approaches are affordable/sustainable,
as state-of-the-art technologies have been found to be too expensive to be feasibly deployed
at an individual level [7]. It is hoped that this approach could improve/enrich tradi-
tional approaches for IEQ monitoring to better understand the effects of IEQ on the health
and wellbeing of individual building occupants, without generalising findings among a
population of occupants.

3. Methods

Due to the multi-modal nature of this exploratory study, a range of IEQ factors
and associated outcomes (in parenthesis) were captured from a single low-cost device
(approximately $50 per unit [14]) in each setting (Figure 1), namely: air quality (carbon
dioxide: CO2, equivalent carbon dioxide: eCO2, particulate matter at 2.5 microns: PM2.5),
temperature (degrees Celsius: ◦C), light (intensity: illumination/lux), humidity (percent-
age: %) and noise (levels: decibels/dBA). The environmental monitoring devices were
developed and validated by the authors in a previous study [14] and were deployed
within two different environments (buildings) common to the same (n-of-1) participant,
a home and office setting. In brief, the devices comprised a Wi-Fi-enabled microcon-
troller (Heltec WiFi Kit 32) with a multitude of attached sensors (CO2: Winsen MH-Z19;
particulate matter ≤ 2.5 microns in diameter, PM2.5: Plantower PMSA003i; eCO2: AMS
CCS-811; temperature, relative humidity and air pressure: Bosch BME280; light intensity:
ROHM BH1750; and noise: Invensense INMP441) to enable the multi-modal capture
of key IEQ outcomes from a small-form-factor device [11]. All data were captured at
0.025 Hz [8] (i.e., 40 s intervals), but it should be noted that noise data were captured at
the same frequency as other measurements taken by the device (continuous recording
of audio was not conducted, and only decibel readings were captured and stored for
ethical/privacy reasons). For the purposes of this exploration, wearable-based data were
defined as physiological-based health outcomes, including steps (count: steps/minute)
and heart rate (beats/minute: bpm).

3.1. Study Setting

The study location was a residential property in the Northeast, UK. The property
contained two buildings (a home and garden-based office) within the same property
boundaries (Supplementary Material Figure S1). During a pre-study examination of the
entire property, some observations arose that were noted, and corresponding hypotheses
were detailed as part of this exploratory study.



Int. J. Environ. Res. Public Health 2023, 20, 4897 4 of 21Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 4 of 22 
 

 

 
Figure 1. Diagram showing the general monitoring environment of the study including passive en-
vironmental sensors, wearables, voice-assisted surveys, and cloud platforms. 

3.1. Study Setting 
The study location was a residential property in the Northeast, UK. The property 

contained two buildings (a home and garden-based office) within the same property 
boundaries (Supplementary Material Figure S1). During a pre-study examination of the 
entire property, some observations arose that were noted, and corresponding hypotheses 
were detailed as part of this exploratory study. 

3.1.1. Home 
A semi-detached dwelling constructed pre-1950. The total floor area for the property 

was <100 m2 and one IEQ device was placed in the living room (25 m2). The property was 
brick-built with cavity walls, but no information could be obtained about the presence or 
thickness of cavity wall insulation. The roof was a pitched, tiled roof with 100 mm of in-
sulation in the loft space. Accordingly, an arising hypothesis was posed (Table 1). The 
house/room was heated with central heating, which was manually controlled by a ther-
mostat located in the living room. The room also had a gas fire in an existing fireplace, 
which was flued through an existing chimney. There was no air conditioning in the prop-
erty, so natural ventilation was typically used for cooling. The home was entirely double-
glazed and the windows for the living room were west-south-west facing. The room had 
several small lamps, but the primary light source was an artificial light source in the centre 
of the room. 

  

Figure 1. Diagram showing the general monitoring environment of the study including passive
environmental sensors, wearables, voice-assisted surveys, and cloud platforms.

3.1.1. Home

A semi-detached dwelling constructed pre-1950. The total floor area for the property
was <100 m2 and one IEQ device was placed in the living room (25 m2). The property was
brick-built with cavity walls, but no information could be obtained about the presence
or thickness of cavity wall insulation. The roof was a pitched, tiled roof with 100 mm
of insulation in the loft space. Accordingly, an arising hypothesis was posed (Table 1).
The house/room was heated with central heating, which was manually controlled by a
thermostat located in the living room. The room also had a gas fire in an existing fireplace,
which was flued through an existing chimney. There was no air conditioning in the property,
so natural ventilation was typically used for cooling. The home was entirely double-glazed
and the windows for the living room were west-south-west facing. The room had several
small lamps, but the primary light source was an artificial light source in the centre of
the room.

Table 1. Arising hypotheses.

Observation Hypothesis

The home had good build quality with appropriate insulation (i.e.,
insulated cavity walls and insulated loft space. In contrast, the
office was poorly insulated (i.e., none in the floor or roof and a thin
wall insulation layer only).

The home should provide a greater thermal stability when
compared to the office.

The office had no blinds (i.e., window shades) Due to the geographical positioning of the office, morning
sunlight will saturate the office.

3.1.2. Office

The office was single occupancy, in a converted summer house, located at the end
of the garden and situated near trees. The building was raised from the garden by a
height of 1 m on a decked platform and was constructed of 23 mm walls, which comprised
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15 mm solid timber panels and 8 mm of internal insulation. The roof was constructed
of 19 mm tongue-and-groove boards on timber beams, with a green mineral roofing felt
on the outer surface and no internal insulation. The floor was constructed with 19 mm
tongue-and-groove boards on timber beams and was carpeted with 9 mm underlay. In the
office there was an electric heater that was manually controlled to provide additional heat.
However, there was no air conditioning, so natural ventilation was used for cooling. The
office had east-facing doubled-glazed windows and a French patio door, i.e., the east side
of the building had a large proportion of glazing (Table 1). The office had no blinds, so the
participant was unable to block out light. There was a manually controlled artificial light
source in the centre of the room.

3.2. Geographical Data

The openweathermap application programming interface (API) provides data on
pollution and weather via supplied latitude and longitude coordinates, which are mapped
to the nearest weather station. Using the current weather API, the nearest weather station
to the study location was chosen. The station was <5 miles away from the study but is
located near a major traffic route. Thus, it was not possible to determine the absolute
accuracy of outdoor pollution for the given study location from the weather API. However,
it is reasonable to assume that the weather data (e.g., temperature, humidity) obtained
from this API was unlikely to deviate greatly over the distance between the dwelling and
station. Hourly weather/pollution data were extracted from the OpenWeatherMap.org
API using a free-tier account, which provided a quota of 60 calls/s, (60 geolocations/h).
The free quota was suitable since data were only updated once per hour. To merge weather
data with IEQ data, they were interpolated to replicate the hourly reading for each minute
within the hour (e.g., an hourly reading of 24.6 ◦C reading at 12:00 would be copied to all
values for that hour, i.e., 12:01, 12:02 . . . 12:59).

3.3. Ethics

Ethical consent was granted by the Northumbria University Research Ethics Commit-
tee (REF: 20481, 11 November 2019). The participant was a university employee and gave
informed written consent before participating in this study.

3.4. Protocol

Due to the individualised approach, a suitable protocol was adopted which outlines
a methodological framework (including multi-modal approaches with wearables) for
monitoring individuals and their IEQ [8]. However, that protocol is a template only and
must be suitably adapted for the needs and requirements of a participant.

3.5. Sample Size and Participant Details

As detailed in the protocol [8], this study focuses on the longitudinal investiga-
tion of a single participant in an n-of-1 context. Therefore, a single participant was
selected for this study. The criteria for the selection were that the participant was of
working age, was primarily an office-based worker and that they had a dedicated home
office (this was a necessary criterion due to the COVID lockdown restrictions preventing
work-based assessments).

3.6. Adapting the Protocol

An initial 1 h meeting was conducted with the participant to understand their expecta-
tions and to discuss the methods of data collection. Placement of quantitative IEQ devices,
qualitative survey data capture and participant involvement were discussed. In the initial
meeting, the participant was presented with an opportunity to tailor the protocol with
the researcher to ensure that the study had minimal disruption to their work and home
life/routine. This led to several protocol adjustments:
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1. To ensure the participant was present at the point of data collection, they requested
data be collected on weekdays only, during office hours (between 08:00 and 18:00).
While passive quantitative sensor data were continuously collected from the home
and office to compare, the office hours measurement window was deemed the focus
of the study.

2. The participant also requested that the daily survey capture was conducted using a
digital voice assistant to minimise the disruption to daily activities (See: Section 3.8.1).

3. The wearable was not worn at night due to charging requirements (See: Section 3.7)

3.7. Wearable

The wearable used in this study was the participant’s own Apple Watch Series 3.
The participant explained that they did not find the watch comfortable to wear when
sleeping, so they used this time to charge the device, as required daily. Accordingly, it was
not possible to capture sleep data. As identified in the protocol [8], the participant was
given instructions on how to export their Apple Watch data using the iOS Health app. A
custom, client-side, web-based application [25] was then used to process and anonymise
the health data. These data were processed by the application, which anonymised the data
and provided the participant with the option to select the outcomes they want to submit
to the study (all non-anonymised data were processed by the participant, locally on their
computer and no data were stored by the application or transmitted to the cloud).

3.8. Qualitative: IEQ Perceptions

Two approaches were used in this study for measuring IEQ perceptions, which ex-
plored and compared contemporary approaches using digital voice assistants against
traditional pen-and-paper approaches within interviews.

3.8.1. Contemporary Data Capture: Digital Voice Assistant

The first approach for capturing qualitative data on IEQ perceptions involved captur-
ing the participant’s ability to evaluate real-time environmental conditions. The participant
felt that manual data entry (paper and/or digital) surveys would be disruptive to their
work and habitual routines. Therefore, the participant requested surveys be deployed audi-
bly using a digital voice assistant. Accordingly, the surveys were conducted using Alexa via
an Amazon Echo, which was selected as the participant had experience using the Amazon
platform. In line with their requests, an Alexa Skill was created using VoiceFlow [26], which
is an online, web-based visual scripting tool for creating voice enabled applications for
smart assistants, e.g., Amazon, Google.

The Alexa Skill enabled voice-controlled events for (i) completing the survey or
(ii) halting the survey if the participant was busy. The development of the skill involved
creating logic blocks that could be chained together to create a program (Supplementary
Material Figure S2). Loops and conditions can be used to create conditional flows and
they can trigger Amazon Alexa’s text-to-speech engine to voice commands to the user.
Microphone capture nodes can be used to listen to voice samples for keywords known
as intents, which can be captured and stored as variables in Google Sheets. Of note, it is
important to fully specify which intents the capture node should listen for to ensure there
are no intent conflicts. For example, when testing this application, the question “How is
the humidity?” could be answered freely without intent specification as the responses “too
dry”, “too humid” or “comfortable” did not conflict with Alexa. However, for sound and
light answers, “too light” or “too loud” would not be captured. Given that one can control
light and sound on the Alexa device with voice intents, it was assumed that these were
reserved keywords. By specifying that a capture node should expect these responses, Alexa
allows the skill to use those keywords in that instance. Readers are directed to the study
protocol [8] for more details on the survey responses.
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3.8.2. Traditional Survey/Interview Data Capture

The second approach involved using a modified version of the ASHRAE Standard
55 thermal environment satisfaction survey (TESS) [10], to align with current practice. To
capture these data, an interview was conducted at the end of the study period, where
the participant was asked a series of questions from a modified version of the TESS.
Modifications were made to the TESS so that questions could be asked about the outcomes
under assessment (temperature, humidity light, noise and air quality) but framed to follow
the same format as the TESS. In line with the TESS, the participant was also asked when
each issue was most prevalent (morning, mid-day, afternoon, evening, night).

Since TESS prefixes thermal comfort questions with the following statement: “Please
respond to the following questions based on overall or average experience in the past
[six] month”, a further modification was made to interrogate “during the study period”
as opposed to “in the past [six] month”. Since the TESS data focus on retrospective
perceptions of IEQ, this study explored the data at a macro level, exploring averaged data
against the retrospective qualitative assessments. Averaged, objective IEQ sensor outcomes
were compared against (i) the qualitative data captured from the end-of-study interview
and (ii) the quantitative data from the weather API and wearable device. Averages were
captured for round-the-clock measurements, but the focus was on occupied hours during
the analysis. Additionally, an outline of the analysis and statistical methods is presented.

3.9. IEQ Data Synchronicity and Acquisition

While the multi-modal IEQ device captured all IEQ data at the same frequency, not
all data were synchronised, nor were the measurements taken from the wearable or the
weather API. Synchronisation was needed for parity during any like-for-like comparison
(for initial investigation and visualisation). For synchronisation, data were resampled to
1 min intervals—in line with a previous approach [14].

To collect, store and aggregate data, a cloud, internet-of-things platform called ThingSpeak™

was used, which was identified as being fit-for-purpose for real-time, multi-modal capture
of low-frequency IEQ data [11]. Data were downloaded from ThingSpeak™ and labelled for
easy identification. Data from the two IEQ devices (home and office) were then merged into
a single CSV file using the timestamp (generated by ThingSpeak™, when data were sent
from sensors) as the common field to join the two datasets. In short, each of the files were
parsed from CSV format into a Pandas DataFrame, which was then resampled according to
the frequency of the initial data capture.

A multi-step process was used to create a single dataset suitable for conducting an
exploratory analysis. Since the multi-modal sensors sampled every 40 s, mean resampling
was used to create a dataset for both sensors with the resulting dataset containing fewer
cases than the original sets, but with each newly created case equating to the mean value for
each minute (Figure 2). In line with the protocol [8], these processes allowed for a complete
dataset to be generated where missing data were accounted for, since missing data can cause
biases in n-of-1 results [27]. Interpolation and resampling also aided bivariate analyses, as
cases did not need to be removed where missing data were present.
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3.10. Quantitative: Wearable

Data were extracted from the wearable using a bespoke application/app [25]. The app
created individual CSV files for each outcome, which were processed before analysis to
ensure they could be analysed in the same context as the IEQ data. For example, the step
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count was recorded by the Apple Watch for a given period of sustained activity/walking. To
enable minute-by-minute comparison, data were divided into 1-min bins, e.g., 50 steps for
12:05 and 12:06, then 25 steps for 12:07. Where no steps were recorded for a given minute,
those data were padded with a 0. Like step events, HR was also captured at random
times. Since Apple Watch heart rate measurements are frequent, but not continuous,
heart rate data were recorded with variable measurement increments. For example, on
occasion, multiple heart rate measurements were taken in 1 min, followed by gaps in the
measurements between 2–20 min.

While it was possible to pad measurement intervals in the steps data with zeroes,
as step events would only be recorded after a bout of steps, the same could not be done
with HR. This is because 0 bpm would not be a valid measurement of heart rate. To
remedy this, interpolation of heart rate was required to fill in the data missing due to
measurement intervals.

3.11. Interpolation of HR Data

Linear interpolation methods produced a valid range in the data but resulted in an
unrealistically smoothed dataset. In contrast, non-linear interpolation contained values
that were invalid due to not only being significantly outside the extrema of the original
data, but were outside the extrema of acceptable (e.g., −50 bpm). To overcome unrealistic
values, a piecewise cubic Hermite interpolating polynomial (PCHIP) was used, which
produces polynomial interpolants that are bound by the extrema of the original data [28].
Since PCHIP interpolants were representative of existing data, the interpolants between
two points were restrained by those points. This provided that anomalous events would
not be generated by the process. However, this also meant that transient events, such as
sudden spikes/drops in the heart rate would not be captured. However, since the Apple
Watch would record transient events and create a measurement for such instances, this was
not deemed a concern.

3.12. Visual Analysis

A combination of SPSS and Excel (v2112, Microsoft) were used to generate pivot tables,
graphs, and statistics. This enabled broad descriptive statistics (minimum, maximum, mean
values, and standard deviation) and visualisations. Bivariate analyses of data pairs were
generated from SPSS, so that key data pairs could be evaluated. The primary statistical
approach for this paper is visual analysis, conducted by graphing variables for comparison
over averaged time frames.

3.13. Data Validation

An initial check was conducted that confirmed that the sensors were reporting data
within the expected range of the sensors and were performing within the expected norms
according to their evaluation in a previous validation study [14] (Supplementary Material
Table S1). This check also identified the scale of missing data. The process of collecting data
from the weather API and the Apple Health Data Parser meant data were already padded
to include missing values; therefore, these variables had a maximum valid N (listwise) of
205,016. When collecting data from the multi-modal devices (home and office), those data
were not interpolated, resulting in approximately 20% data loss.

4. Findings

To conduct the visual analysis of the outcomes, TESS responses were first explored
to identify areas of interest within the data. Qualitative findings provided intriguing, yet
subjective, points of view. These provided ‘windows’ into the data to act as a starting point
within the visual analysis. To conduct the analysis, data were graphed to help visualise
bivariate relationships, or links between qualitative and quantitative findings. This section
will present each of the core outcomes that were explored in the TESS survey (temperature,
humidity, light, noise and air quality).
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4.1. Temperature

TESS-based qualitative findings for temperature indicate that there is a link between
the office temperatures and outdoor temperatures (Figure 3). It was identified that the office
building lacked sufficient insulation and it was hypothesised that the thermal conditions
of the building would be impacted by outdoor conditions. By inspecting the data from
the IEQ devices in the home and office against outdoor weather data (Figure 3), the
temperature from the office IEQ device demonstrates a large degree of variation (range: 15
to 29 ◦C) during day and night cycles, and these readings strongly correlated with outdoor
temperatures. When compared to the data from the home (range variation: 24 to 26 ◦C),
this highlights that the office was significantly less insulated than the home. This also
confirmed the hypothesis that the home should provide greater thermal stability due to the
increased insulation.
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Figure 3. Average hourly temperatures (per weekday) from each temperature source (home, office,
and outdoor). Qualitative findings are displayed alongside the quantitative data for context.

As the participant highlighted, the source of heating between the two properties
differed. While the home used central heating, controlled by a thermostat, the office heat
was controlled by an electric heater. This heater was only used when the office was occupied
and only when it was cold. Central heating systems work by using a heating element
to heat water which flows through the radiators, and radiators can store heat after the
heating source is turned off [29]. This could indicate why the temperature was dropping
off so suddenly in the office, since the office was heated with an electrical element heater.
However, since the home was controlled by a central thermostat, that kept the property at
a given set-point temperature. However, as Figure 3 highlights, the temperature drops in
the home were much less sudden than that of the office, further confirming the hypothesis
around the home’s thermal stability.

4.2. Humidity

The participant felt that the office was always more humid than the home. However,
the sensor data (Figure 4) imply the opposite. One possible explanation for this is that the
human body is better able to manage core temperature within stable thermal environments
and transient conditions can significantly affect thermal sensations [30]. This means that
people are better able to provide qualitative assessment of the environment under stable
thermal conditions. Given that qualitative assessment through self-reporting is one of
the primary mechanisms for the assessment of building performance [2,7], this raises
questions over the efficacy of these methods. Therefore, the lack of thermal stability in the
office environment may be an influencing factor as to why the participant was unable to
provide an accurate self-reported assessment of the humidity (in the office). These findings
present the case for augmenting quantitative data into building performance and comfort
assessment, to support and/or validate the findings obtained from subjective assessment.
This comparison also provides further evidence of insufficient insulation in the office.
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Figure 4. Average hourly humidity (per weekday) from each humidity source (home, office, and
external). Qualitative findings are displayed alongside the quantitative data for context.

4.3. Light

The participant expressed a clear dissatisfaction with the lighting in the office, re-
marking that it was “often too light in the morning” and “always lighter than the home”
(Figure 5). Figure 5 shows that the measurement ranges for each light sensor were vastly
different and light in the office was consistently, significantly greater than that of the home.
Figure 5 also shows that the office consistently measured high levels of light intensity
during the morning period, which is in line with the findings from the qualitative data and
with the expectations in the identified hypotheses.
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Figure 5. Average home/office light intensity categorised by day > hour. Qualitative findings are
displayed alongside the quantitative data for context. Two vertical axes are used here due to scale
differences; therefore, colour-coded arrows are used to highlight the scale used by each parameter.

It was also posed that geographical positioning was the primary cause of the reported
phenomena. The window for the home environment faced due west-south-west, whereas
the windows in the office faced due east. A sun map was created using Autodesk Revit
(v.2022.2.1, Supplementary Material Figure S3) to track the sun movements during a
randomly selected day during the study period. The sun map shows that after midday the
sun would move behind the office and begin to cast light on the home. However, the shape
of the home, and the treeline meant that the sun did not have a direct line-of-sight until
around 18:00, by which time it was setting.

Light data from the IEQ devices show a demonstrable consistency with self-reporting
data obtained from the qualitative assessment in this study and the modelled sun maps.
The qualitative assessment did identify that the participant was dissatisfied with the light
in the space, but it did not indicate the extent of the problem. Quantitative data, in this
instance, were extremely useful for identifying times when the light intensity would be
disruptive to work and the specific levels of light intensity. This presents a strong case
for the longitudinal capture of localised, quantitative data in building performance and
comfort assessments.
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4.4. Noise

The participant explained that there was a train line that passed close to the office
building (Figure 6). Due to the proximity of the railway, averaged data for sound were
explored to see if high sound pressure levels (SPLs) were noticeable that may indicate
the regularity of trains. However, the frequency of data capture (0.025 Hz) meant that
this inquiry could not be observed at this level of interrogation. Figure 6 shows that the
average noise levels were regularly between 5 dBA and 15 dBA louder in the office than
in the home. Daily average trends also show that the highest average values in the office
were always during office hours, indicating occupancy-related noise levels. Comparatively,
the highest average values in the home were recorded in the evening, outside of office
hours. This indicates that sound sensors could also serve as a proxy measure for occupancy.
However, the use of audio recording equipment for detecting human occupancy could
raise issues of ethics, privacy, and trust, whether voice is recorded or not. It is also worth
noting that the noise level ranges in the home were within building standards (25–40 dBA),
but the office noise ranges were more aligned to outdoor acoustic environments [31]. This
further highlights that the construction of the office (lack of insulation) could also impact
the acoustic properties of the space.
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Figure 6. Average home/office noise levels categorised by day > hour for Monday to Friday. Qualita-
tive findings are displayed alongside the quantitative data for context.

In this study, no audio was recorded, and sound pressure levels were measured at the
same sample rate as other measurements captured by the multi-modal device (40 s). So,
while it may be possible to detect occupancy, it would not be possible to understand spoken
words or determine who was present in a space. If a greater sampling rate is required, it is
important to consider the ethical implications this may have, especially if the resulting data
could be deciphered in such a way where spoken words could be observed.

4.5. Air Quality

To obtain quantitative measurements of air quality, PM2.5 was used to measure the
presence of dust, pollution and odours, and carbon dioxide was used as a proxy measure
for ventilation and subsequently used to determine occupancy and air circulation.

4.5.1. Particulate Matter (PM2.5)

The recorded highs for particulates within the home were consistent with mealtimes
(Figure 7), which may indicate that that the sensor was affected by cooking from the
kitchen which neighboured the living room. It also may explain the participant’s comments
regarding odours in the property, as PM2.5 sensors can be highly sensitive to certain types
of cooking, especially when frying or cooking with oils or fats [32], so this finding is
in line with expectations. The highest averages were recorded typically around 18:00,
which is consistent with when an evening meal would be cooked—based on the average
time the participant left the office. Therefore, it is important to consider the proximity
of PM2.5 sensors from pollution sources. While the data highlight links between cooking
and PM2.5, Figure 7 does not indicate baseline values that would suggest the office was
dustier than the home, nor did the PM2.5 averages indicate regularity in the data that would
suggest correlations with timetabled train services. However, if the dust in the office was
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predominantly caused by airborne debris from passing trains, it is likely that the diameter
of the micro particles was larger than the PM2.5 sensor could measure.

Int. J. Environ. Res. Public Health 2023, 20, x FOR PEER REVIEW 12 of 22 
 

 

spoken words or determine who was present in a space. If a greater sampling rate is re-
quired, it is important to consider the ethical implications this may have, especially if the 
resulting data could be deciphered in such a way where spoken words could be observed. 

4.5. Air Quality 
To obtain quantitative measurements of air quality, PM2.5 was used to measure the 

presence of dust, pollution and odours, and carbon dioxide was used as a proxy measure 
for ventilation and subsequently used to determine occupancy and air circulation. 

4.5.1. Particulate Matter (PM2.5) 
The recorded highs for particulates within the home were consistent with mealtimes 

(Figure 7), which may indicate that that the sensor was affected by cooking from the 
kitchen which neighboured the living room. It also may explain the participant’s com-
ments regarding odours in the property, as PM2.5 sensors can be highly sensitive to certain 
types of cooking, especially when frying or cooking with oils or fats [32], so this finding is 
in line with expectations. The highest averages were recorded typically around 18:00, 
which is consistent with when an evening meal would be cooked—based on the average 
time the participant left the office. Therefore, it is important to consider the proximity of 
PM2.5 sensors from pollution sources. While the data highlight links between cooking and 
PM2.5, Figure 7 does not indicate baseline values that would suggest the office was dustier 
than the home, nor did the PM2.5 averages indicate regularity in the data that would sug-
gest correlations with timetabled train services. However, if the dust in the office was pre-
dominantly caused by airborne debris from passing trains, it is likely that the diameter of 
the micro particles was larger than the PM2.5 sensor could measure. 

 

“On average, the office 
never has more odours 
than the home, due to the 
proximity of the living 
room [where sensors were 
placed] to the kitchen.” 

Figure 7. Average outdoor air pollution vs indoor particulates categorised by day > hour. Qualita-
tive findings are displayed alongside the quantitative data for context. 

The visual inspection of PM2.5 data showed that both the office PM2.5 and outdoor 
pollution increased around midday. Due to the scaling in Figure 7, the extent of this is not 
clear, but these trends can be seen more clearly when the home is removed from the graph 
(Figure 8). Since temperature and humidity were affected by poor insulation, it was ex-
pected that the indoor pollution could be influenced by outdoor conditions as well. How-
ever, the influence outdoor pollution had over indoor measurements was less significant 
than either temperature or humidity. However, it is possible that this was due to the dis-
tance between the study location and the weather station. 

0
1
2
3
4
5
6
7
8

0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18 0 6 12 18

Monday Tuesday Wednesday Thursday Friday

Po
llu

tio
n 

(µ
g/

m
3 )

Average home PM25 Average office PM25 Average of main.aqi

Figure 7. Average outdoor air pollution vs indoor particulates categorised by day > hour. Qualitative
findings are displayed alongside the quantitative data for context.

The visual inspection of PM2.5 data showed that both the office PM2.5 and outdoor
pollution increased around midday. Due to the scaling in Figure 7, the extent of this
is not clear, but these trends can be seen more clearly when the home is removed from
the graph (Figure 8). Since temperature and humidity were affected by poor insulation,
it was expected that the indoor pollution could be influenced by outdoor conditions as
well. However, the influence outdoor pollution had over indoor measurements was less
significant than either temperature or humidity. However, it is possible that this was due to
the distance between the study location and the weather station.
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Figure 8. Average outdoor air pollution vs office particulates categorised by day > hour. Qualitative
findings are displayed alongside the quantitative data for context.

4.5.2. Carbon Dioxide (CO2)

Qualitative data surrounding air circulation indicated that the home had better
circulation than the office. Given that the home is slightly more than double the square
meterage of the office, the participant’s comment on the circulation was not unexpected.
Figure 9 shows that even during the evenings, when the home environment was occupied,
the maximum average CO2 never exceeded that of the office despite the participant
sharing that space with their partner, while being the sole occupant of their office.

Given that the participant felt that the room was stuffier when the door to the office
was closed, it is worth exploring the links between occupancy and CO2 levels, as CO2
sensors are useful indicators of occupancy and can be used as a surrogate measurement
to determine the level of ventilation within indoor environments [14,19,20]. As already
seen in Figure 9, patterns can be observed that indicate transitions from the home to the
office during office hours. During these times CO2 can be seen to increase in the office,
while decreasing in the home.
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Figure 9. Average home/office CO2 categorised by day > hour. Qualitative findings are displayed
alongside the quantitative data for context.

4.6. Linking the Occupant to the Environment

Since CO2 is regarded as being the main cause of building-associated sickness [24], it
is worth exploring the relationships between physiological responses and CO2. Since links
between CO2 and working hours have already been observed here, occupancy and physio-
logical responses will be observed from wearable data within the context of CO2 data.

4.6.1. Occupancy Analysis

By inspecting the averaged CO2 data of a single day (Figure 10), it is possible to see
transitions between the home and office more clearly. Inverse relationships between office
CO2 and home CO2 can be observed, which are also aligned with office hours and the
qualitative accounts of working hours provided by the participant. Interestingly, Figure 10
also shows that on average the CO2 shows a significant drop on Friday afternoons. This
could indicate that the participant regularly left the office during these times.
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Figure 10. Average home/office CO2 categorised by day > hour for an average Friday. Qualitative
findings are displayed alongside the quantitative data for context.

It was hypothesised here that if the CO2 levels observed here are indicative of occu-
pancy, there could be a relationship between CO2 measurements and participant activity. To
investigate this, step data were included and overlayed over the CO2 averages (Figure 11).
In doing so, it was possible to see that there were a series of inverse relationships between
the CO2 averages and summed step count. As the participant transitioned from walking
to resting (step count rising and falling) CO2 levels in the office would begin to rise. Con-
versely, as the CO2 levels in the office began to fall, an increase in step count could also be
seen. By plotting these events, it is possible to see events when the participant may have
entered and exited the office. This demonstrates that the combination of step data and CO2
can be used to detect occupancy, but it is anticipated that this phenomenon can only clearly
be observed in a single-occupancy space.

This link between CO2 and activity can be further affirmed by looking at the average
heart rate for the same period (Figure 12). CO2 has been shown to rise when steps decrease,
and fall when steps increase, and the same is true for heart rate. This would indicate that
the CO2 being measured in the office is linked to the sedentary behaviour of the participant.
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Figure 11. Average home/office CO2 overlayed with sum of steps and key event markers. Vertical
black lines signify the point when CO2 rises or falls.
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Figure 12. Average home/office CO2 overlayed with average heart rate and key event markers.
Vertical black lines signify the point when CO2 rise or falls.

These findings provide demonstrable evidence towards the value of including wear-
able data within environmental assessments, but they also provide further evidence towards
the capabilities of CO2 sensors as proxy measurements for ventilation and occupancy. This
has been identified in previous work [14], where metal oxide sensors were identified as
having the potential to serve as a lower-cost, proxy measurement for ventilation, as they
can measure the oxidation of a wide range of gasses (typically labelled as total volatile
organic compounds (TVOC), or equivalent carbon dioxide (eCO2)), which can concentrate
within the air in indoor spaces. Therefore, it is worth also exploring these data within
this context [14]. By including the eCO2 measurements (from the office), similar trends
(Figure 13) can be seen as those observed in previous work [14]. The eCO2 sensors provided
more erratic measurements when compared to CO2, yet the measurements also provided a
similar indicator of office-based occupancy.
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Figure 13. Average home/office CO2 categorised by day > hour.

When the eCO2 data from the home is also included (Figure 14), the movement in
eCO2 data becomes much more exaggerated. If this were used as a proxy measure for
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ventilation it would be safe to assume that the participant left the home at around 6:00 am
but did not enter the office until 9:00. There is also a degree of crossover at around 15:00.
Consequently, the same assumptions cannot be drawn from Figure 14 as can be drawn from
Figure 10. Given that eCO2 sensors are highly sensitive to a wide range of environmental
conditions, pollutants, and gases [33], the erratic behaviour of the sensor could indicate that
the increased quantity of fixtures, fittings and furnishings (present in a home environment) are
saturating the indoor eCO2 sensors with an increased concentration of airborne pollutants.
Thus, these sensors may be less useful for providing a proxy measure of ventilation in
environments with high concentrations of pollutants.
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Figure 14. Average home/office CO2 vs eCO2 categorised by day > hour.

4.6.2. Daily Voice Assisted Surveys

Throughout the 142-day study period the participant only successfully managed to
complete 48 surveys, due to work commitments or forgetting to revisit the survey after
delaying the data capture. This highlights that while this was the participant’s preferred
method for daily data capture, there are persistent challenges surrounding participant
adherence when active participant involvement is required in studies.

The limitations placed on the survey capture to reduce burden (limited outcomes,
three-point responses) resulted in data that significantly lacked context. For example, the
participant responded “too hot” when it was 14 ◦C in the office, but cold when it was 31 ◦C
and responded comfortable between 17 ◦C–31 ◦C (Table 2).

Table 2. Snapshot of participant’s perceptions towards temperature alongside indoor and
outdoor measurements.

Date/Time (UTC) * Perceived Temp Office Temp (◦C) Outdoor Temp (◦C)

2021-16-03 10:53 comfortable 28.66 4.62
2021-17-03 10:56 comfortable 19.08 7.14
2021-18-03 10:38 comfortable 17.81 7.86
2021-19-03 11:20 hot 26.76 7.70
2021-19-03 15:42 hot 28.72 8.37
2021-22-03 10:31 cold 18.23 3.52
2021-24-03 10:30 cold 26.68 6.73
2021-29-03 09:32 comfortable 21.67 7.70
2021-30-03 15:18 comfortable 26.80 11.23
2021-31-03 09:31 comfortable 28.20 6.07
2021-22-04 09:31 comfortable 32.84 5.32
2021-27-04 09:44 comfortable 31.18 6.10
2021-28-04 09:31 comfortable 22.33 7.86
2021-29-04 10:13 comfortable 25.45 11.63
2021-30-04 09:31 hot 14.30 7.67
2021-04-05 11:06 hot 31.73 9.81
2021-05-05 09:31 cold 31.08 6.04

* UTC offsets resulted in timestamps that were 1 h earlier than when the survey was conducted.
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The methods to reduce burden resulted in a lack of contextual data regarding, e.g.,
clothing, heating/ventilation status, times of meals/activities, sleep quality, hormonal/stress
levels, etc. However, increasing the line of questioning to include such data would be more
burdensome than traditional approaches. Despite the low adherence, and lack of context,
the voice assistant survey capture mechanism became the focus of attention within the
closeout interview, highlighting novel research themes for future inquiries in this field.

4.7. Supplementary Qualitative Data

The closeout interview provided the participant with the opportunity to provide
feedback on their level of involvement, where the conversation became focused on the
use of Alexa for survey data capture. The participant found the Alexa to be a preferable
experience overall stating:

“I almost created a little relationship with Alexa, which I presume was a sort of indirect
relationship with you as the researcher, where it was like I’m going to do that thing today
I’m going to do it for Graham for part of his survey”

This was apparent while the participant was talking about Alexa, as they regularly
personified the device making statements such as:

“Occasionally, she would interrupt me in the middle of a meeting and ask is I was ready
to do the survey.”

The participant also went on to say that the experience of conducting the survey
vocally allowed them to engage with the survey without having to switch tasks, reflecting
on the personability of the device and the relationship with the researcher throughout:

“[when asked if able to do survey during a meeting] I would say no to her, but I think the
majority of the time I always made the effort to pick up on our survey and do it later. I
don’t know if I would have done that if it had been an online or written survey, ( . . . )
partly because there was less effort involved on my part to fill the survey in, I could do
it whilst I was doing other things, but also that relationship of talking to a voice almost
created an incentive to not let that person down and complete that task right.”

This provides an interesting angle on the problem of reducing the burden towards
participants. The three-point assessment conducted daily was originally chosen to comple-
ment the TESS approach conducted at the end, to evaluate whether shorter surveys that
quantified experience could reduce the burden experienced during longitudinal assessment.
The participant highlighted that:

“If I had to do an online questionnaire or written questionnaire every day, I would be
pretty cheesed off by now, but now I am not as it has been quite an exciting process and I
was discussing with my family yesterday saying, ‘Graham is coming round tomorrow,
he’s been collecting my data’ and I was quite enthusiastic about it”

This highlights that the method of data collection had a more notable reduction of
burden on the participant than the reduction of responses within the survey. In fact, the
participant stated:

“If there was an option to add additional information, if you really wanted to, in a free-text
way, that would have been useful because I could have said ‘it’s raining really heavily
outside’ or ‘I’m not feeling well today’ ( . . . ) that will give you additional information
( . . . ) but also it does get a little bit annoying when you have got somebody repeating the
same words to you every day.”

This highlighted that the use of the three-point assessment made the participant feel
like they could not provide justifications as to why they were responding in a particular way.
They expressed desire throughout for a natural language system, where their responses did
not need to be scripted, allowing for qualitative data capture. This provides an interesting
line of inquiry, as it could have provided a mechanism for the participant to provide the
additional context required to add statistical value to the data being captured. However,
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this would also require conversational natural language processing that would exacerbate
existing privacy concerns surrounding digital voice assistants [34]. Consequently, this
would also require additional ethical governance and data management protocols since
spoken voice recordings can be used both for biometric verification and for training artificial
intelligences to impersonate a target to bypass verification [35].

5. Discussion

This study sought to investigate whether contemporary and affordable approaches for
individualised IEQ monitoring can be used to address the subjectivity around environmen-
tal perceptions. If sensors are deployed longitudinally, with multiple sensing modalities,
they can be used to address the subjectivity around retrospective environmental perceptions
by providing quantitative context to how occupants experience building environments.
The subjective, open-ended responses offered in the TESS format provide a valuable oppor-
tunity to gain insights on individual experience, without overloading participants with an
unrealistic and burdensome line of questioning within longitudinal assessments. For the
purposes of this paper, the TESS questions were rephrased from “in the past [six] months”
to “during the course of the study”, so that the subjective responses gathered from the
participant were based on generalised opinions over the course of the study and not based
on any real-time, or point-in-time measurement, which is more aligned to the averaged
data from quantitative measurements.

The qualitative data capture provided a useful mechanism for highlighting areas
of interest within the longitudinal data. By focusing on the qualitative data first, the
quantitative data could be explored in relation to qualitative findings. For example, the
comparisons the participant highlighted regarding light intensity provided an interesting
line of inquiry that could be explored using a combination of quantitative sensor data,
knowledge of the study location and its buildings, and seasonal data. This inquiry not only
provided quantitative affirmation of the participant’s perceptions, but it also highlighted
the value of technologically enhanced qualitative data capture. By conducting the study
as presented here, multi-modal quantitative data capture has demonstrable utility in
supporting traditional qualitative capture methods. The findings show that the responses
from an individual do not need to be categorised as in-or-out of a 95th percentile, but
instead the opinions and perceptions of individuals can be treated as valid data for analysis,
regardless of their subjectivity. This has practical implications as not only could this provide
a more thorough understanding of how individuals respond to indoor environments, but it
could also reduce the number of occupants required to assess a building (where the building
is the unit of analysis). Localised monitoring could be used to remove subjective biases so
that generalisation of qualitative responses is not required, thus preserving individuality in
the data.

The use of wearables in this context provided a valuable mechanism to align the
individual with the environment through synchronous measurement of environmental and
physiological data. The wearable data provided additional context to the data captured
from passive IEQ monitoring devices and they provided evidence of causal relationships
between environmental changes and physiological responses. However, while the IEQ
devices were able to monitor continuously, the Apple Watch 3 required regular charg-
ing cycles that meant it would not be possible to measure around the clock, even if the
participant were to have worn it at night. Many personal fitness trackers (PFTs) have
extended battery lives (>1 week) and short charging cycles (<1 h) meaning that they can
be used to monitor health outcomes day and night. However, smart watches integrate
many additional features, which increase adoption rates but significantly impact battery
life, requiring daily charging. Since sleep was not defined as an outcome of this study, this
did not impact the collection of data required for this investigation.

Overall, this study longitudinally observed a single participant between their home
and office environments using n-of-1 methods. While n-of-1 methods are often perceived
as a limitation [16], the longitudinality coupled with individuality of the data obtained
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created valuable context that would otherwise be unavailable with traditional measurement
approaches. While their adoption in this study served as an exploratory first step into the
use of n-of-1 methods in this domain, their value warrants further exploration in the field.
However, there were specific deployment challenges and technical considerations that can
impact longitudinal studies of this nature, that readers should be aware of.

5.1. Technical Considerations
5.1.1. Addressing Problems in the Field

Visits to the study location beyond routine data collection were required. The first arose
when a pet knocked the office based IEQ device off the table, damaging the microcontroller.
This resulted in data loss for several days due to the need for the participant to be at home
to enable access to the property. However, the IEQ devices were designed so components
could be substituted in the field, enabling a speedy repair. Additionally, there were issues
with SIM card connectivity throughout this study. Although contingencies were put in place
(based on the lessons learned from a previous study [13]) to restart the sensors in the field
(using smart power strips to remotely restart devices when they became unresponsive), the
smart functionality of the power strips was halted in the event of a data outage. However,
the participant was able to restart the 4G router by manually turning the smart switch off
and on, which removed the need to make multiple visits to the study location. Due to the
data outages, the study ran from 15 March 2021 until 4 August 2021 (>20weeks, 142 days)
to ensure sufficient data were captured.

5.1.2. Data Capture: Sampling Frequency

As identified in previous work [13,14], high-frequency sample rates could be problem-
atic in a multi-modal device, such as the one proposed, as it would mean the processor
of the microcontroller Unit (MCU) would potentially be continuously blocked by sound
pressure level calculations. Multicore MCUs could enable high-frequency data capture
and synchronous, e.g., SPL, calculations, but the processing bottleneck would be pushed
to the networking functionality (WiFi/Bluetooth/BLE/Zigbee, etc.) instead, when data
are transmitted to the cloud [14]. Moreover, to record this level of data, a large amount of
storage would be consumed in a short space of time and bandwidth/messaging quotas
would also be rapidly consumed. The 40 s sample period may not have been able to
address specific lines of enquiry (relating to noise levels) at this stage of the investigation,
but this data capture frequency meant that both the unit costs and the running costs of the
multi-modal were low.

5.1.3. Amazon Alexa

The skill was distributed using an Alexa Routine so that the survey prompt was deliv-
ered to the participant at 10:30 am Monday–Friday (in accordance with the participant’s
request). The process of deploying the application to Amazon was inhibited by Amazon’s
beta testing policy, which prevented long-term deployment of the skill to third-party users.
Such limitations were not present for the developer account (the amazon account owner),
so a dedicated Amazon account was setup whereby the participant was the developer,
giving them full, uninhibited access to the skill. Amazon provides the capability for skills to
be hosted privately and distributed in the same way as public skills. However, this feature
is only available to business organisations. Therefore, small research groups may need
to consider publishing the skill publicly if larger sample groups were recruited outside
of business use. The VoiceFlow application also allows applications to be distributed to
Google Nest voice assistants, which may not be as limiting. However, this was not explored
within this study.

5.2. Limitations

This participant identified transport infrastructure as a potential source of pollu-
tion. However, data related to cars on the road, train timetables, engine types, etc., were
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not planned for nor used in this study. Given the findings, such outcomes could po-
tentially be useful when conducting similar research. The inclusion of, e.g., traffic cam-
era/timetabling data could be beneficial when exploring residential indoor air quality near
transport infrastructures.

5.3. Future Research

This study has highlighted that personalised environmental sensing approaches can
be used to address subjectivity around environmental perceptions, if the individual is
the unit of analysis and the measurements are longitudinal in an n-of-1 context. This
study focused specifically on a single participant to explore whether richer context could
be gained from the participant, building or both. However, low-cost technologies were
selected for this study to ensure that this research has pragmatic implications beyond this
research. It is envisioned that future researchers could expand upon this research in two
ways. Firstly, while n-of-1 methods are specifically designed for a single participant, tandem
n-of-1 studies can be conducted to measure larger sample sizes to determine if individual
findings are general to a population [17]. Secondly, future researchers could explore
portable environmental monitoring devices that are capable of monitoring environmental
conditions as wearers transition environments. However, it is envisioned that further
research would need to be explored into the effect environmental transitioning (traveling
from indoor to outdoor spaces) has on sensors.

6. Conclusions

This study conducted an exploratory, mixed-method investigation of personalised
environmental monitoring, by triangulating data from surveys/interviews, environmental
data, and wearables. In doing so, this paper was able to highlight the value in augmenting
traditional data capture instruments with emergent technologies. The explored methods
provided a useful mechanism to address subjectivity in qualitative data capture in building
studies. Subjectivity is a natural expectation when evaluating perceptions, but this study
outlines a means of elevating the opinions of individuals within the analysis, rather than
generalising those opinions within a population. By making the individual the unit of
analysis, qualitative data can be enriched by quantitative data from wearables, APIs and
environmental sensors. The quantitative data provided direct affirmations of individual
perceptions, while providing additional context that could not be achieved with traditional
approaches of data capture, which largely focus on qualitative data alone due to the cost
and complexity of traditional measurement equipment. This was enabled using validated,
affordable (low-cost) emergent hardware, which provided a means to explore environ-
mental changes local to an individual using localised sensors in an affordable/sustainable
manner. Not only did this enable the results outlined in this paper, but this also highlighted
a solution for localised environmental monitoring that is scalable and feasible outside
of research environments. Thus, this paper provides a valuable extension to traditional
methods of building performance assessments, which could be useful to future researchers
and industry practitioners.
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