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Abstract

CryoDRGN is a machine learning system for heterogenous cryo-EM reconstruction of proteins 

and protein complexes from single particle cryo-EM data. Central to this approach is a deep 

generative model for heterogeneous cryo-EM density maps, which we empirically find effectively 

models both discrete and continuous forms of structural variability. Once trained, cryoDRGN is 

capable of generating an arbitrary number of 3D density maps, and thus interpreting the resulting 

ensemble is a challenge. Here, we showcase interactive and automated processing approaches 

for analyzing cryoDRGN results. Specifically, we detail a step-by-step protocol for analysis of 

the assembling 50S ribosome dataset (Davis et al., EMPIAR-10076), including preparation of 

inputs, network training, and visualization of the resulting ensemble of density maps. Additionally, 

we describe and implement methods to comprehensively analyze and interpret the distribution 

of volumes with the assistance of an associated atomic model. This protocol is appropriate for 

structural biologists familiar with processing single particle cryo-EM datasets and with moderate 

experience navigating Python and Jupyter notebooks. It requires 3–4 days to complete.

Introduction

Proteins and their complexes exist in dynamic equilibria: assembling, disassembling, and 

undergoing conformational changes. Many of these dynamics are intrinsically linked to 

function, yet, often, they are poorly understood on a structural level. In recent years, cryo-
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EM has emerged as a powerful tool for studying protein structure1–3 and the single-molecule 

nature of cryo-EM makes it an appealing choice for studying protein motions, as millions 

of individual particles sampled from an underlying energy landscape can be visualized on 

a single grid4–9. However, studying highly heterogeneous cryo-EM datasets has proved to 

be a challenging computational problem, as most traditional approaches rely on extensive 

classification and particle averaging10–12 to produce approximately static structures, thereby 

gaining resolution while obscuring or blurring underlying structural variation8,9,13.

We have developed an approach that leverages machine learning models capable of 

embedding heterogeneous single particle cryo-EM images within a low-dimensional 

latent space and generating 3D volumes as a function of that latent embedding8. Our 

approach, named cryoDRGN, takes as inputs a particle stack and poses from a consensus 

3D refinement, and uses these data to train a neural network architecture based on 

the variational autoencoder (VAE)14,15. The overall architecture consists of two neural 

networks: an image encoder network, which assigns a latent embedding zi to each 

particle i, and a volume decoder network, which reconstructs a 3D density map Vi given 

zi. The development, theoretical foundations, and limitations of this work have been 

described previously8,15. We have applied this approach to a number of publicly-available 

datasets, and found that cryoDRGN can uncover rare structural states in assembling 

bacterial ribosomes and help visualize continuous conformational changes in spliceosome 

complexes8. CryoDRGN has also recently been applied to visualize a tilting motion of radial 

spike proteins important in dynein motors and ciliary motility7.

To illustrate the process of training a cryoDRGN model on a cryo-EM dataset and 

interpreting the resulting outputs, we present a full protocol and pipeline to analyze 

an assembling large ribosomal subunit dataset16 (EMPIAR-10076) that exhibits rich 

compositional and conformational heterogeneity and has been previously characterized8,9,17. 

The presented pipeline details: 1) the preparation of inputs for cryoDRGN given a 

particle stack and corresponding consensus reconstruction; 2) training of an initial low-

resolution cryoDRGN model; 3) filtering the input particle stack based on the results of low-

resolution training; 4) high-resolution cryoDRGN training; and 5) analysis, visualization, 

and interpretation of the resulting structural ensembles with the assistance of an atomic 

model (Figure 1).

Comparison with other methods

Traditional approaches to handle heterogeneity rely on successive rounds of user-driven 

discrete 2D- and 3D-classification, which separate particles into a few independent 

underlying structures3. Success of these approaches is strongly dependent on selection of 

the appropriate number of classes, which is unknown a priori, and initial models used for 

refinement, which can be a significant source of bias. Moreover, this strategy relies on a 

fundamental assumption that the data are well-described by a finite and identifiable number 

of true volumes. For datasets displaying conformational heterogeneity, in which particles 

exist in states sampled along one or more continuous trajectories, this assumption does not 

hold. Even for datasets that show large degrees of discrete compositional heterogeneity, 
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questions still remain about how and when to stop classifying, and how robust results are to 

classification parameters17.

More recently, alternatives to traditional global 3D classification, including multi-body 

refinement13 and focused classification18, have been developed. However, these approaches 

are inherently limited by the assumption that the structural heterogeneity can be decomposed 

into a small number of rigid bodies and that the user can identify and define these rigid 

bodies using masks. In contrast, a number of tools for modeling continuous heterogeneity 

have also emerged, including principal component analysis based approaches such as 

cryoSPARC’s 3D variability analysis9, neural network based approaches like cryoDRGN8, 

3DFlex19, and e2gmm20 aimed at generating heterogeneous ensembles of 3D-density maps, 

and analogous methods for directly inferring ensembles of atomic models21,22. 3DVA 

models heterogeneity as a linear combination of eigenvolumes, and is thus limited in its 

ability to model complex, nonlinear motions, whereas 3DFlex learns a single underlying 

structure and a set of continuous deformations of this structure and may therefore be 

challenged by discrete heterogeneity caused by either large cooperative movements, or by 

compositional variation within a complex.

CryoDRGN has broad applicability for modeling complex ensembles containing both 

continuous and discrete heterogeneity, with the ability to generate an arbitrary number of 

maps from the imaged ensemble. We have found that cryoDRGN is sufficiently powerful 

to model non-linear continuous motions and discrete changes in complex composition, 

yet, unlike many of the aforementioned methods, does not require strong structural priors 

like the number of expected classes or specification of rigid domains that are expected to 

undergo conformational changes. Here we provide a protocol detailing how cryoDRGN can 

be applied to an exemplary heterogeneous dataset and describe additional recently developed 

tools to aid in analyzing and interpreting the resulting structural ensembles.

Overview of the procedure

This protocol was developed through comprehensive experimentation and analyses of a 

variety of cryo-EM datasets across a wide variety of systems. The presented protocol 

encodes our current best practices in real application settings.

Preparing cryoDRGN inputs—Within the cryo-EM single particle reconstruction 

pipeline, cryoDRGN is applied between the steps of traditional 3D reconstruction and 

model-building (Figure 1). As inputs, cryoDRGN requires a stack of extracted single 

particles and their corresponding poses and CTF parameters, which are derived from a 

traditional consensus 3D reconstruction in which the heterogeneous particles are aligned in 

the same reference frame to a single volume. In general, one should observe well-defined 

secondary structure in portions of the refined volume as indicative of accurately posed 

images before initiating cryoDRGN training. Notably, we have found forgoing stringent 

particle filtering at this stage often expands the range of heterogeneity cryoDRGN learns. To 

improve resolution, poses and per-particle CTF parameters should be optimized, optionally 

through the use of non-uniform refinement23 or Bayesian polishing24.
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CryoDRGN’s required inputs can be generated by many single particle reconstruction 

packages, and we provide preprocessing tools to convert from cryoSPARC12 and RELION25 

output formats. During this preprocessing stage we recommend users downsample the 

particle stack to a lower resolution to facilitate rapid initial network training for dataset 

filtering. Finally, we back-project the downsampled particle stack using the cryoDRGN-

parsed inputs and compare with the refined volume to confirm that the inputs have been 

correctly prepared (Extended Data Figure 1).

Training cryoDRGN networks—A cryoDRGN model is trained by iterating through the 

dataset of particle images and updating neural network parameters with stochastic gradient 

descent on the loss function described below. One epoch of such training entails passing all 

particles through the encoder and decoder networks once. The mean squared error between 

each input image and the corresponding image reconstructed by the decoder network is 

used to estimate a ‘reconstruction loss’ that is used in conjunction with a ‘regularization 

loss’ on the latent embeddings to iteratively update the network parameters (Figure 2A). 

At the end of every iteration the updated parameters and latent space embedding for each 

particle are saved as weights.[epoch].pkl and z.[epoch].pkl, respectively. Thus, the 

output directory following 50 epochs of training will contain 50 network weights files, 50 

per-particle latent embedding z files, a config.pkl file containing the input parameters and 

settings used, and a run.log file containing information about the run.

Training a neural network can be computationally expensive. We have recently implemented 

GPU parallelization and accelerated mixed-precision training which can lead to considerably 

faster network training, particularly for large network architectures and image sizes. 

However, care must be taken to ensure that training has converged as training dynamics 

are altered when using GPU parallelization. In this protocol, we use a single GPU and 

mixed-precision training.

We also describe intuitive heuristics to judge when neural network training has converged 

and is unlikely to benefit from additional epochs of training (Box 1, Figure 2, Extended 

Data Figures 2,4,5). For simplicity, we independently assess the convergence of the encoder 

and decoder networks and focus our assessment on particles likely to be of interest. Here, 

we define particles of interest as those in well-populated neighborhoods of latent space, 

as these neighborhoods are, by definition, well supported by the data. First, we examine 

encoder convergence as the training epoch after which particles of interest only minimally 

change their relative positions in latent space. Convergence is monitored epoch-to-epoch 

by visual comparison of UMAP embeddings (Figure 2B), and by characterizing particle 

movement in latent space during training (Figure 2C). Second, we note decoder convergence 

as the training epoch after which density maps corresponding to particles of interest no 

longer change. Here, convergence is monitored by generating volumes from a consistent set 

of particles of interest and comparing map-to-map correlation coefficients and FSC curves 

between epochs (Figure 2D–G, Extended Data Figures 2,4,5). We provide a dedicated script 

within cryoDRGN that automatically calculates and plots these criteria. Once training of the 

encoder and decoder networks has converged, a subsequent epoch can be used for filtering 

or analysis, with the caveat that we occasionally observe overfitting to noise. Thus, we 

recommend examining volumes for signs of increased noise, streaking artifacts, or other 
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pathologies in the density maps. If such pathologies are observed, an earlier epoch should be 

analyzed.

Particle filtering—Image heterogeneity within a given cryo-EM dataset can result from 

true structural heterogeneity of the particle of interest or from the presence of contaminants 

such as ice or edge artifacts. To achieve high-quality reconstructions in traditional cryo-EM 

processing workflows, these contaminants are often removed by iterative rounds of 2D- or 

3D-classification26. We have observed that the latent embeddings produced by cryoDRGN 

can distinguish between true particles and contaminants, and thus represent a powerful 

alternative method to filter particle stacks8. Because training time scales with both the 

number of particles and the box size, and because the presence of contaminants consumes 

representation capacity in the neural networks, we recommend using an initial round of low-

resolution training to eliminate contaminants before proceeding to high-resolution training. 

Here, we describe one round of particle filtering (Figure 3, Extended Data Figure 3); 

however, when working with other datasets, users may find it useful to iterate through 

multiple rounds of particle filtering.

To facilitate this process, we provide a Jupyter notebook, cryoDRGN_filtering.ipynb, 

that allows users to filter particles interactively or by using automated selections based on 

features (e.g. clusters or z-scores) of the particle embeddings (Box 2). The choice of particle 

filtering method is dataset-specific; datasets with highly featured latent representations may 

be more amenable to filtering by clustering or interactive selection, whereas datasets with 

less featured latent representations may require filtering based on z-score outliers. Particle 

images selected by any of these approaches can be visualized within the notebook, enabling 

users to examine these particles manually and adjust their selections (Extended Data Figure 

3). We also provide tools to export the selected particles to cryoSPARC or RELION to 

further assess particle subsets by 2D-classification or traditional 3D-reconstruction. Lastly, 

this notebook allows users to save a .pkl file that records which particles have been 

retained (or excluded) in the filtering process. This file can be directly passed to cryodrgn 

train_vae for additional rounds of training.

Interactively exploring cryoDRGN models—Generally, analysis of a cryoDRGN 

model involves both visualizing the latent embeddings of particle images and generating 

volumes from the latent representation to understand the structural heterogeneity within 

the dataset (Figure 4). The cryodrgn analyze command automates these tasks by: 1) 

performing principal component analysis (PCA) and Uniform Manifold Approximation 

and Projection27 (UMAP) on the latent embeddings to aid in visualization of high 

(>2) dimensional latent spaces (see Glossary); 2) generating representative volumes from 

different regions of the latent space; and 3) producing representative structural trajectories 

through latent space.

To visualize a representative set of volumes, cryodrgn analyze generates volumes after 

k-means clustering of the latent embeddings – volumes are generated at the centroid location 

of each k-means cluster. Importantly, the k-means algorithm is not used to identify clusters 

or assign particles to classes, but, instead, is used to partition the latent space into k regions 
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(by default, k=20, and the number of sampled density maps may be modified by passing the 

-- ksample argument to cryodrgn analyze).

To visualize representative structural trajectories, cryodrgn analyze generates structures 

along the first two principal component axes of the latent space, and trajectories along more 

latent dimensions can be generated using the cryodrgn pc_traversal tool. By default, 

the volumes are generated at equally spaced points between the 1st and 99th percentile 

of the data distribution projected onto each principal component. The PC trajectories can 

highlight major modes of the variability in the structure, however, the principal components 

of cryoDRGN’s latent space are not equivalent to the principal components of the volumes 

due to the nonlinear nature of the decoder. This contrasts with tools such as cryoSPARC’s 

3DVA9. Additionally, it is important to note that the described PC trajectories do not 

necessarily reflect biologically meaningful paths, and that not all volumes along these paths 

will originate from regions of the latent space that are equally well supported by data.

In addition to visualizing structures present within their dataset, users may also wish 

to interpolate between two or more such structures. The cryodrgn graph_traversal 

command provides a means of doing so by building a nearest-neighbor graph between 

all particles’ latent embeddings, finding the shortest path on the graph between specified 

particles, and generating volumes along the visited nodes. Unlike standard approaches 

that naively morph between end-point volumes or interpolate along a principal component 

of variability independent of underlying data support, all of the structures produced by 

this traversal approach are supported by data from the input particle stack, and thus may 

represent a more probable structural trajectory.

The cryodrgn analyze command also produces a Jupyter notebook, 

cryoDRGN_viz.ipynb, for interactive analysis. This notebook can be used to analyze the 

latent space in greater detail, to generate volumes at selected points of interest in the latent 

space, and to export subsets of particles for traditional 3D reconstruction and model building 

using other tools.

Interpreting structural ensembles—While cryodrgn analyze provides an initial 

characterization of the heterogeneity present within the dataset, a more systematic 

interrogation of the learned structures allows one to fully explore and quantify the 

structural states present. There are several possible approaches to perform this more 

systematic sampling and structural characterization, each leveraging cryoDRGN’s ability to 

generate large numbers of data-supported density maps. We have found supervised “subunit 

occupancy analysis”16,30 to be particularly informative for compositionally heterogeneous 

datasets. With this method, users designate structural elements of interest (e.g. RNA helices, 

protein complex subunits, polypeptide chains, or elements of protein secondary structure) 

within an aligned atomic model, and then quantify the presence or absence of each element 

across the structural ensemble produced by cryoDRGN. Hierarchical clustering of the 

resulting structural element occupancy matrix creates a highly interpretable visualization of 

the overall compositional heterogeneity across the structural ensemble, and reveals patterns 

in how these subunits are occupied, including positive and negative cooperative occupancy 

between individual structural elements.
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We note that this subunit occupancy analysis is limited by the underlying assumption that an 

appropriate atomic model exists and that subunits occupy their native conformation within 

a complex. When complexes exhibit conformational heterogeneity, it may be necessary to 

fit ensembles of atomic models using tools such as Molecular Dynamics-based Flexible 

Fitting31.

In sum, this protocol provides users with a guided framework to analyze and interpret a 

richly heterogeneous dataset, and we expect that the approaches and tools described herein 

will be broadly applicable to the analysis of other datasets.

Materials

EQUIPMENT

• The minimal compute requirements for this protocol are as follows: a Linux 

workstation or cluster equipped with at least one NVIDIA GPU (Pascal, Turing, 

Volta, and Ampere architectures have been tested), 128 GB RAM, and 250 GB 

disk space for all raw data and outputs. We note that these requirements are 

similar to those of traditional cryo-EM reconstruction software.

• Performance will vary based on system configuration. For compute-expensive 

steps of the protocol, we provide approximate timings using a system equipped 

as follows:

– CPU: Dual Xeon Gold 6242R processors

– GPU: NVIDIA 3090 RTX (single GPU)

– RAM: 512 GB

REAGENTS - SOFTWARE

• CryoDRGN installation: Updated installation instructions are maintained at 

https://github.com/zhonge/cryodrgn. Installation instructions for cryoDRGN 

v0.3.5 which is used in this paper can be found in Supplementary Protocol 1.

• UCSF ChimeraX32: Installation instructions can be found at https://

www.cgl.ucsf.edu/chimera/download.html

• RELION v3.1.110: Installation instructions can be found at https://

relion.readthedocs.io/en/latest/Installation.html

• cryoSPARC (optional)12: Installation of version 2.4 from https://cryosparc.com/

download was used in this protocol.

• Occupancy analysis: installation instructions, segmented .pdb files, Python and 

shell scripts, and Jupyter notebook for analysis available at https://github.com/

lkinman/occupancy-analysis. Version 0.1.2 was used in this protocol.

REAGENTS - DATASETS

• EMPIAR-10076 particle stack: Download from EMPIAR web interface https://

www.ebi.ac.uk/empiar/EMPIAR-10076/ or via
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rsync -avzP empiar.pdbj.org::empiar/archive/10076 ./

• EMPIAR-10076 reconstruction and reconstruction metadata: Download 

00_inputs from https://doi.org/10.5281/zenodo.5164127, or follow the 

cryoSPARC reconstruction guide in Supplementary Protocol 2.

• (Optional) all results from this protocol can be downloaded via a web 

browser from https://doi.org/10.5281/zenodo.5164127. Files can alternatively be 

downloaded from the command line:

pip install zenodo_get

zenodo_get --md5 -w urls.txt 5164127

wget -c -i urls.txt

md5sum -c md5sums.txt

conda install zstd

for i in *.tar.zst; do tar --use-compress-program=unzstd - xvf $

{i}; done

Procedure

[40 minutes] Prepare cryoDRGN inputs

1. Connect to the workstation containing the cryoDRGN 

installation and all downloaded files. We will assume that 

the base directory contains the downloaded EMPIAR-10076 

particle stack at ./10076/data/L17Combine_weight_local.mrc 

and the downloaded reconstruction and reconstruction metadata 

at ./00_inputs/cryosparc_P71_J21_004_volume_map.mrc and ./

00_inputs/cryosparc_P4_J33_004_particles.cs, respectively. The 

majority of the commands in this protocol will be run within this base directory. 

Ensure the cryoDRGN conda environment is activated, which is required for all 

cryodrgn commands. Enter the following at the terminal.

cd /path/to/base/directory

conda activate cryodrgn

cryodrgn --help

The last line provides a list of possible cryoDRGN commands. To learn more 

about a particular cryoDRGN command, simply enter cryodrgn [command] 

--help.

2. Convert poses from the downloaded cryoSPARC refinement to cryoDRGN 

format as poses.pkl, specifying the refinement box size of D=320px. 

Rename the particles.cs file appropriately if you ran your own cryoSPARC 

refinement following Supplementary Protocol 2.
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cryodrgn parse_pose_csparc --help

cryodrgn parse_pose_csparc 00_inputs/

cryosparc_P4_J33_004_particles.cs -D 320 -o poses.pkl

CryoDRGN will report pose information for the first particle as well as the 

number of particles parsed (131,889).

Equivalent commands exist for preprocessing poses and CTF from RELION 

outputs as parse_pose_star and parse_ctf_star. If using a star file from 

RELION 3.1 or later, include the --relion31 flag in this command.

3. Convert CTF parameters from the downloaded cryoSPARC refinement to 

cryoDRGN format as ctf.pkl.

cryodrgn parse_ctf_csparc 00_inputs/

cryosparc_P4_J33_004_particles.cs -o ctf.pkl

CryoDRGN will report relevant imaging parameters including image size and 

pixel size.

4. Downsample the dataset to D=128px and D=256px, which we will use in the 

first and second training rounds, respectively. Here we split the particle stacks 

into 50,000 particle sub-stacks with --chunk to decrease the memory footprint. 

These chunked .mrcs files are identified by an auto-generated particles.

[px].txt file.

cryodrgn downsample 10076/data/L17Combine_weight_local.mrc -D 128 

-o particles.128.mrcs --chunk 50000

cryodrgn downsample 10076/data/L17Combine_weight_local.mrc -D 256 

-o particles.256.mrcs --chunk 50000

5. Verify that all data was parsed correctly by back-projecting the first 10,000 

particles and comparing the resulting map (backproject.128.mrc) with the 

refined consensus map cryosparc_P71_J21_004_volume_map.mrc using 

ChimeraX. Overall, the back-projected map should match the refined map well, 

albeit at lower resolution and with more noise (Extended Data Figure 1).

cryodrgn backproject_voxel particles.128.txt --uninvert-data --

poses poses.pkl --ctf ctf.pkl -o backproject.128.mrc

[5 hours] Train cryoDRGN networks

6. Run the cryodrgn train_vae command to begin training. To expedite this 

initial training run, we use a small neural network architecture (256×3) on the 
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128px downsampled particles. A description of all available training parameters 

can be displayed with cryodrgn train_vae --help. If memory utilization is 

limiting on the GPU, decreasing the --batch-size parameter (see Glossary) from 

its default value of 8 may be helpful. However, training dynamics will also be 

affected and additional training epochs may be required. Note also that the AMP 

acceleration used here is most effective for large network architectures and image 

sizes that are a power of 2.

cryodrgn train_vae particles.128.txt --ctf ctf.pkl --poses 

poses.pkl --zdim 8 -n 50 --batch-size 8 --amp --uninvert-data -o 

01_128_8D_256 > 01_128_8D_256.log &

Pausepoint: the training command will take several hours to run, depending 

on your computational hardware. You can follow training progress with tail 

-f 01_128_8D_256.log. If your job is interrupted or you otherwise want 

to restart or extend training, you can resume from any epoch by adding --

load 01_128_8D_256/weights.[EPOCH#].pkl to the above train_vae 

command. Alternatively, you can specify --load_latest to avoid providing 

the specific path to the weights .pkl file for the most recent epoch.

7. After 50 epochs of training have completed, we check if the network has 

converged such that additional training would not be beneficial.

python /path/to/cryodrgn/utils/analyze_convergence.py --help

python /path/to/cryodrgn/utils/analyze_convergence.py 

01_128_8D_256 49 --flip

The --flip flag used here changes the handedness of the map and should be set 

accordingly in all subsequent steps that generate volumes.

All outputs are saved to 01_128_8D_256/convergence.49, including plots 

of each heuristic convergence metric (Figure 2 and Extended Data Figure 2). A 

description of the purpose, implementation, and interpretation of all convergence 

heuristics is included in “Box 1: Convergence Analysis“. For each of these 

heuristics, a plateau is consistent with convergence and, although individual 

metrics can be noisy and vary in a dataset-dependent manner, we define 

convergence as the epoch upon which most of these metrics have plateaued. 

For this training job, we examine the output plots in 01_128_8D_256/

convergence.49/plots and observe convergence between epochs 29 and 39.

These plots also give insight into training dynamics and the distribution of latent 

variable embeddings. For example, the latent embedding of this dataset is highly 

featured with clearly visible clusters in the UMAP embedding plots. This will 

not be the case for all datasets, and many datasets exhibit a less featured latent 

space, yet display significant heterogeneity when volumes are visualized from 

Kinman et al. Page 10

Nat Protoc. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



distal points in the latent space. This is also a point where it may be useful 

to examine the volumes in convergence.49/vols.[EPOCH#] directly for evidence 

of “overtraining” pathologies such as increased noise or streaking artifacts. If 

overtraining artifacts are observed, users should examine earlier epochs, as these 

may lack such pathologies.

8. In the event that training had not converged, users should return to step 6 

(cryodrgn train_vae), increase the number of epochs to -n 100, and 

load the epoch 49 weights with --load 01_128_8D_256/weights.49.pkl 

to resume training. Users would then reassess convergence as above before 

proceeding with particle filtering and model analysis. In general, the number of 

epochs should be chosen with the dataset size and suitable training time in mind.

[30 minutes] Filter particles

9. Run the cryodrgn analyze command to perform an automated analysis of the 

trained cryoDRGN model at epoch 49:

cryodrgn analyze 01_128_8D_256 49 --flip --Apix 3.275 

This command runs PCA and UMAP on the embedded latent space, generates 

volumes at 20 k-means cluster centers, and creates interactive Jupyter notebooks 

for further visualization and analysis. Note that the user should provide the 

pixel size in angstroms after accounting for downsampling (--Apix). If the user 

wishes to change the number of k-means cluster center volumes generated, this 

can be accomplished using the --ksample flag. The --flip flag is set to invert 

volume chirality, as described above. Note that all volumes generated in this 

protocol are generated from “on-data” positions in latent space (see Glossary).

10. A new directory named analyze.49 was created within 01_128_8D_256 

by cryodrgn analyze. The directory contains subdirectories pc1, pc2, 

and kmeans20, along with plots of the latent space (umap.png and 

z_pca.png) and the Jupyter notebook files cryoDRGN_filtering.ipynb 

and cryoDRGN_viz.ipynb. View the contents of this folder to verify that the 

analysis script ran correctly.

11. Before proceeding to high-resolution training, we will eliminate contaminating 

particles including edge artifacts and ice. Here, we demonstrate one possible 

filtering approach using a combination of k-means and Gaussian mixture model 

(GMM) clustering of latent space. Additional approaches involving manual 

selection or filtering on outlying latent values are implemented within the 

notebook, and may be more appropriate for other datasets (Box 2: Particle 

filtering; Extended Data Figure 3).

Open the cryoDRGN_filtering.ipynb notebook within Jupyter Lab. See 

Supplementary Protocol 3 for notes on how to access this Jupyter notebook 

remotely if you are running this protocol on a compute cluster.
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12. Check that EPOCH=49 in the third cell is set and run all cells up to the “Filter by 

cluster” header.

13. Examine the volumes generated by k=20 k-means clustering using ChimeraX32 

by opening all volumes in the 01_128_8D_256/analyze.49/kmeans20 

directory. Comparing the centroid locations of these clusters in UMAP space, 

as visualized within the notebook, to their corresponding volumes suggests 

that for this dataset the central teardrop-shaped UMAP cluster containing k-

mean centers 11–19 contains primarily poor-quality particles (Figure 3A–B). 

This conclusion is based on the appearance of the volumes, with the volumes 

that fall within the “junk cluster” showing significant noise (11) or much 

weaker density than the other volumes (12–19) at a uniform isosurface level. 

Note that due to random initialization each time cryoDRGN and UMAP are 

run, users may find this cluster differently shaped, comprised of different k-

means classes, and in a different area of their UMAP space. We note that 

the number and latent distribution of junk particles is highly dataset-specific, 

and identification of which particles should be filtered often requires detailed 

inspection of the volumes by the users, and is typically verified by subsequent 

inspection of representative particles and corresponding cryoDRGN volumes, 

and by traditional 2D classification or 3D reconstructions using these particles 

stacks.

14. To exclude these particles from further analysis, move to the GMM clustering 

section of the notebook. Run GMM clustering with G=5 or G=6 such that the plot 

of UMAP space colored by GMM cluster shows a clean separation of the junk 

cluster (here, the central teardrop-shaped cluster) from the rest. Due to GMM’s 

random initialization, this may take several iterations and may separate as one or 

two GMM clusters (Figure 3C). Alternatively, this cluster may be specified by 

the corresponding k-means clusters (here, 11–19), or by selection with a lasso 

tool in the interactive selection section of the filtering notebook (Box 2).

15. In the subsequent cells, define ind_selected as an array of GMM cluster 

labels which exclude the junk particle cluster (for our initialization, cluster 3), 

such as ind_selected = [0, 1, 2, 4, 5].

16. Under the “Save selection” header, run all cells to save the filtered particle 

indices as a .pkl file that can be fed directly to cryodrgn train_vae. We 

expect to have included ~100,000 particles and excluded ~30,000. Alternatively, 

download the filtered particle indices from precomputed-01_128_8D_256.tar.zst 

as described in Materials.

17. Optionally, a .star file corresponding to these filtered indices can be created at the 

command line for import into traditional reconstruction software. For example, 

export both good and bad particles to assess particle filtering by 2D-classification 

in cryoSPARC (Extended Data Figure 3) using the write_star.py script found 

within the cloned cryoDRGN software directory:
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mv 10076/data/L17Combine_weight_local.mrc 10076/data/

L17Combine_weight_local.mrcs

cryodrgn write_starfile 10076/data/L17Combine_weight_local.mrcs 

ctf.pkl --poses poses.pkl --ind 01_128_8D_256/

ind_keep.96478_particles.pkl -o ind_keep.star

cryodrgn write_starfile 10076/data/L17Combine_weight_local.mrcs 

ctf.pkl --poses poses.pkl --ind 01_128_8D_256/

ind_bad.35421_particles.pkl -o ind_bad.star 

[1 day] Train high-resolution cryoDRGN networks

18. Train a new model using the particles selected above at higher resolution 

(D=256px) and using a larger network architecture (1024×3). Training this 

model is the most computationally expensive step in this protocol, and using 

--amp decreases training times. If your workstation is equipped with less than 

128 GB RAM, you may encounter out-of-memory errors. These errors can be 

circumvented by the addition of --lazy to the following command, allowing 

on-the-fly image loading from disk at a significant cost of performance.

cryodrgn train_vae particles.256.txt --amp --ctf ctf.pkl --poses 

poses.pkl --zdim 8 -n 50 --uninvert-data --enc-dim 1024 --enc-

layers 3 --dec-dim 1024 --dec-layers 3 -o 02_256_8D_1024 –ind 

01_128_8D_256/ind_keep.96478_particles.pkl > 02_256_8D_1024.log &

Pausepoint: as in step 6, this training step will require many hours to complete.

19. Verify that the new model has converged by running:

python /path/to/cryodrgn/utils/analyze_convergence.py 

02_256_8D_1024 49 --flip

We find that the network has satisfactorily converged by the end of training 

according to the criteria described in step 7 above (Extended Data Figures 4,5).

[30 minutes] Interactively explore cryoDRGN models

20. Run cryodrgn analyze at the desired epoch. Here, we will analyze epoch 49 

based on the convergence criteria described above.

cryodrgn analyze 02_256_8D_1024 49 --Apix 1.6375 --flip

21. Launch Jupyter Lab to explore the cryoDRGN_viz.ipynb file located in 

02_256_8D_1024/analyze.49. Run the cells sequentially, verifying that 

epoch number 49 is entered in the third cell. This notebook produces a series 
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of figures, some of which allow for interactive visualization of the distribution 

of poses, CTF parameters, or defocus values in latent space. Comparing these 

distributions allows us to check if the latent variable is capturing variation in 

non-structural heterogeneity, such as imaging parameters or viewing direction. 

Other figures include global pose distribution within the dataset and the latent 

space colored by k-means clusters with center points of clusters annotated 

(Extended Data Figure 6).

22. Visualize the k-means cluster center volumes generated by cryodrgn analyze 

in ChimeraX by opening all volumes in the 02_256_8D_1024/analyze.49/

kmeans20 folder. Compare these volumes to the annotated k-means cluster 

centers in the latent space graphs (umap.png and umap_hex.png in the 

same directory). The latent space for this dataset is highly structured, with 

clusters visible by UMAP that correspond to assembly states of the ribosomal 

large subunit originally identified by Davis et al16. Selected volumes and their 

corresponding particles are shown in Figure 4.

23. To help understand the major modes of motion within the dataset, 

visualize the volumes generated along the first two principal components 

in ChimeraX (Supplementary Movies 1 and 2). These volumes are 

located in the 02_256_8D_1024/analyze.49/pc1 and 02_256_8D_1024/

analyze.49/pc2 subdirectories, respectively. Note that the first principal 

component encodes variable density in the base of the ribosome, whereas the 

second principal component encodes variable density in the central protuberance.

[2 hours] Interrogate structural ensembles using an atomic model

Now that we have a sense of the types of variability present in this dataset, we seek to 

more systematically sample and analyze this structural heterogeneity. We use a supervised 

“subunit occupancy analysis”, as we identified extensive compositional heterogeneity in the 

observed k-means cluster center volumes. Here we will generate 500 volumes using k-means 

clustering and interpret their structural heterogeneity using an aligned atomic model. These 

500 volumes can be generated directly by re-running the cryodrgn analyze command 

with the optional argument --ksample 500, or through the cryoDRGN_viz.ipynb 

interactive Jupyter notebook as described in steps 24–25 below.

24. To focus our subunit occupancy analysis on assembling large subunit particles, 

we first filter the small number of contaminating 70S particles that appear as 

outliers in the latent space (Figure 4). The criteria defining these particles may 

change from run-to-run; here, we distinguish these particles as those with UMAP1 

> 10. Create a new cell in the cryoDRGN_viz.ipynb notebook and enter 

the following to perform k-means clustering with 500 cluster centers on the 

remaining particles. Users may adjust the definition of the sub dataframe in the 

first line to reflect their own criteria to exclude the 70S particles.

sub = df[df[UMAP1’] < 10]
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sub_z = z[sub.index]

K = 500

kmeans_labels, centers = analysis.cluster_kmeans(sub_z, K)

centers, centers_ind = analysis.get_nearest_point(sub_z, centers)

centers_ind_df = sub.index[centers_ind]

sub.loc[:, ‘Kmeans500’] = kmeans_labels

sub.to_csv(‘kmeans500_df.csv’)

utils.save_pkl(centers_ind_df, ‘kmeans500_labels.pkl’)

Note that the last three lines save the information about which particles belong 

to which k-means cluster, and which particles within each cluster represent the 

cluster center. We use this information below.

25. Navigate to the ‘Generate volumes’ section of the same Jupyter notebook and 

change the vol_ind definition to vol_ind = centers_ind_df. Additionally, 

several cells below this, set Apix = 1.6375 and set flip = True. After 

making these changes, run the cells in this section in order, generating 500 

volumes corresponding to the on-data centers of the 500 k-means clusters 

identified in the previous step (Extended Data Figure 7).

26. Subunit occupancy analysis requires an aligned atomic model segmented into 

chains indicating the structural elements of interest. The segmented PDB files 

for this dataset are available at https://github.com/lkinman/occupancy-analysis, 

in the protocol_examples folder (Materials), and Supplementary Protocol 4 

details how to generate them. Chain assignments for each residue are provided 

in Supplementary Table 1. Note that the segmented PDB models must be aligned 

with an example cryoDRGN map prior to use; while the PDB models included in 

protocol_examples folder have been pre-aligned to the consensus refinement 

at 00_inputs/cryosparc_P4_J33_004_particles.cs, instructions on how 

to align these models to an arbitrary volume in ChimeraX are provided in 

Supplementary Protocol 5.

For the remaining workflow, we will assume you have stored all the downloaded 

occupancy analysis scripts in a subdirectory of your base directory called 

03_occupancy_analysis. This subdirectory will be your new working 

directory for steps 27–33. We also assume that the aligned .pdb files, 

along with the reconstruct_000000 folder containing all 500 volumes 

sampled from latent space, are stored in /path/to/base/directory/

03_occupancy_analysis/00_aligned/.

27. Navigate to your working directory (/path/to/base/directory/

03_occupancy_analysis). If the cryodrgn conda environment is not already 

active, activate it as before and use the provided gen_mrcs.sh shell script 

to convert the segmented and aligned PDB files into .mrc files aligned to 

an example cryoDRGN map. This script is a wrapper for chimerax, thus 

ChimeraX must be activated in your current environment (i.e. which chimerax 

should return the path to the ChimeraX executable on your system).
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conda activate cryodrgn

bash protocol_examples/gen_mrcs.sh

This shell script may be adapted to use for other datasets by changing the names 

of the PDB files, the chains within each file, and the resolution, where the 

resolution used should be approximately the global FSC= 0.143 resolution of 

the consensus reconstruction. The output of this shell script is a directory called 

01_PDB_mrc containing a separate converted .mrc file for each of the 136 chains 

defined in the segmented PDB files.

28. Create masks from each of the .mrc files generated in the last step 

using RELION and the gen_masks.py script. This script is a wrapper for 

relion_mask_create, thus RELION must be activated in your current 

environment (i.e. which relion_mask_create should return the path to the 

relion_mask_create executable on your system).

for i in 01_PDB_mrc/*.mrc; do python gen_masks.py --mrc $i --

outdir 02_mask; done

This script produces a pixel size warning that can be ignored.

29. Calculate the reference-normalized occupancies of each defined subunit in each 

of the 500 electron density maps sampled from latent space using the provided 

calc_occupancy.py script.

python calc_occupancy.py --mapdir 00_aligned/reconstruct_000000 --

maskdir 02_mask --refdir 01_PDB_mrc

30. Launch Jupyter Lab and open the provided occupancy_analysis.ipynb 

template notebook. Change the occupancies variable in the 

second cell to indicate the location of the occupancies.csv file 

generated in the previous step (e.g. (‘/path/to/base/directory/

03_occupancy_analysis/occupancies.csv’).

If using this notebook on a different dataset or with different segmented atomic 

models, change the num_volumes variable and chains dictionary as necessary. 

The keys for the chains dictionary should be the names of the atomic model 

files, and the corresponding values should describe the identity of the chains in 

that file, in alphabetical order of the chains.

31. After changing the necessary variables, run the cells in order through the 

‘Normalization’ section. Here, we implement a normalization method in which 

the values are re-scaled to span a range from the tenth to ninetieth percentiles 

of the original data. The most appropriate normalization method may vary be 

dataset and users will likely need to try several methods of normalizing data 
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to determine which best facilitates visual analysis interpretation of the resulting 

heatmap.

32. Hierarchical clustering allows us to group volumes that exhibit similar patterns 

of subunit occupancy. We define density map classes by setting a threshold 

distance on the dendrogram of the rows. In applying such a threshold to the 

dataset shown here, we observe classes of particles at varying stages of assembly, 

as evidenced by the presence and absence of various structural features in these 

different classes (Figure 5A,C). Applying a threshold to the dendrogram of the 

columns identifies structural blocks consisting of rRNA or protein elements that 

show similar occupancy patterns.

Coloring the atomic model by these structural blocks improves the 

interpretability of the clustermap and assists in visualizing cooperative blocks 

that may be present (Figure 5A,B). Clustering can be performed within the 

provided Jupyter notebook by running the ‘Hierarchical clustering’ cells.

33. Run the ‘Extract classes from clustering’ section of the notebook to 

automatically extract the volume classes and structural blocks at the thresholds 

you defined in step 32. The subsequent two sections of the notebook, 

‘Visualize volume classes in ChimeraX’ and ‘Visualize structural blocks in 

ChimeraX’, produce a series of .py scripts that can be opened in ChimeraX for 

direct visualization of the subset of kmeans500 electron density maps within 

each volume class, and the atomic model colored by the structural blocks, 

respectively.

[30 minutes] Visualize data-supported structural transitions

34. Return to the cryoDRGN_viz.ipynb analysis notebook to generate on-data 

centroid volumes for each class. Here, we provide the indices we define as the 

centroid of each of our classes in Supplementary Table 2. See Supplementary 

Protocol 6 for detailed instructions on how to define these indices independently.

35. Having identified representative centroid indices for the varying assembly 

states of the 50S ribosome (Extended Data Figure 8), we can generate an 

on-data graph traversal using these points as anchors and the cryodrgn 

graph_traversal command. The graph traversal we highlight here showcases 

the B→D1→D2→D3→D4→E3→E5 assembly pathway described in Davis et 
al.16 (Extended Data Figure 9, Supplementary Movie 3). Note that the italicized 

anchor indices corresponding to the cluster centroids will vary run-to-run and 

should be calculated using your data as described in step 34.

cryodrgn graph_traversal 02_256_8D_1024/z.49.pkl --anchors 

89122 37896 53298 81097 66910 95314 73537 51189 51011 

-o 02_256_8D_1024/analyze.49/path01.txt --out-z 02_256_8D_1024/

analyze.49/z.path01.txt 

cryodrgn eval_vol 02_256_8D_1024/weights.49.pkl -c 02_256_8D_1024/
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config.pkl --flip --zfile 02_256_8D_1024/analyze.49/z.path01.txt 

-o 02_256_8D_1024/analyze.49/path01

[1 hour] Validating minor states with traditional tools

36. While the coarse clustering described above is useful for surveying the 

broad landscape of structural heterogeneity within the dataset, it may obscure 

interesting intra-class variation. It is therefore useful to check each class 

individually for low-population states that differ from the rest of the class. For 

example, in this dataset we observe a set of volumes in class 11 with high H68 

occupancy and low central protuberance occupancy. These particles correspond 

to the C4 class of particles identified previously by our group using cryoDRGN8 

but which were overlooked using traditional 3D classification approaches16.

37. Using the Jupyter notebook generated by cryodrgn analyze, you can extract 

particles corresponding to structural states of interest to conduct homogeneous 

refinement with tools such as cryoSPARC and RELION. Here, we select 

particles belonging to the C4 class k-means clusters, which are represented 

by maps 270, 283, 284, 285, and 286 in our analysis (Extended Data Figure 

10). The map indices will vary from run to run; users should determine which 

particles belong to class C4 for their run by looking for maps with high H68 

occupancy and low occupancy of the central protuberance block.

df = pd.read_csv(‘kmeans500_df.csv’, index_col = 0)

c4 = [270, 283, 284, 285, 286]

df_c4 = df[df[‘Kmeans500’].isin(c4)]

Having defined our selection, we can now set ind_selected = df_c4.index 

in the ‘Save the index selection’ cell, and run this cell to save a .pkl file with 

the indices of these particles. This .pkl file can be used to filter the original .star 

file for import into cryoSPARC or RELION with the cryodrgn write_star 

script, as described above during particle filtering (Figure 5D).

This concludes a preliminary cryoDRGN analysis, however users are encouraged to continue 

exploring their data using the tools we’ve described, and additional functionalities within 

these notebooks that are beyond the scope of this protocol. We encourage users to embrace 

the iterative, interactive approach to cryoDRGN analyses described herein, and hope users 

will find these tools valuable as they develop testable hypotheses aimed at understanding 

dynamic macromolecular complexes.
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Troubleshooting

Step Problem Possible reason Possible solution

4 Out of memory error when running 
cryodrgn downsample

The particle stack is too 
large to fit into memory

Add the --chunk flag to 
the cryodrgn downsample 
command

5 Back projection is noisy, 
discontinuous, or does not resemble 
consensus refinement

Incorrect pose and 
CTF metadata were 
supplied, or pose and 
CTF parameters were 
incorrectly mapped to 
particles. Noisy maps 
may also result from 
using a small number 
of particles used in 
the back projection 
(default: 10,000). Users 
may also have not 
applied the correct --
uninvert-data 
convention, which 
determines whether the 
data is light-on-dark or 
dark-on-light

Verify that the correct pose and 
CTF parameters were supplied during 
parsing and that the particle stack 
originated from, and contains the same 
particle index/order as the pose and 
CTF parameter metadata. If the volume 
is very noisy, re-run cryodrgn 
backproject_voxel with a 
larger number of particles using 
--first flag. Check whether 
the correct --uninvert-data 
convention for the dataset is 
followed by running cryodrgn 
backproject_voxel with 
and without --uninvert-data

6, 18 Out of memory error shortly 
after starting cryodrgn 
train_vae

The particle stack is too 
large to preload into 
memory

Append --lazy to the 
cryodrgn train_vae 
command to allow on-the-fly image 
loading, further downsample particles, 
or train on a subset of the particle 
stack.

6, 18 CUDA out of memory error during 
cryodrgn train_vae

Batch size may be 
set too large for 
your GPU’s memory 
capacity

Manually decrease batchsize with 
the --batchsize flag in 
the cryodrgn train_vae 
command

6, 18 Assertion error during cryodrgn 
train_vae similar to assert 
(coords[…,0:3].abs() - 
0.5 < 1e-4).all()

Infrequent issues with 
numerical instability 
using --amp may 
cause this assertion to 
fail

Restart cryodrgn 
train_vae without --amp

7, 9, 
19, 
22–
23

Volumes generated after training 
appear non-continuous or hollow in the 
center of the box

Users failed to 
apply correct --
uninvert-data 
flag

Run cryoDRGN 
backproject_voxel with 
and without the --uninvert-
data flag and determine which 
convention is applicable, then re-run 
cryodrgn train_vae as 
necessary

7, 9, 
19, 
22–
23

Volumes generated after training all 
resemble junk

Volumes may 
be displayed at 
too permissive 
an isosurface. 
Alternatively, data may 
have been parsed 
incorrectly in the 
preprocessing steps.

Increase the isosurface threshold 
for display. Run cryodrgn 
backproject_voxel to 
determine whether poses and CTF 
parameters were correctly parsed.

7, 9, 
19, 
22–
23

Volumes generated after training all 
appear homogeneous

For datasets other than 
EMPIAR-10076, this 
may be caused by too 
much upstream filtering 
prior to cryoDRGN 
training.

Restart cryoDRGN training with an 
unfiltered dataset.

All Jupyter notebooks aren’t behaving as 
described in the protocol

Cells may have been 
run out of order or 
may reference outdated 
variables

Restart the kernel and run the notebook 
again in order from top to bottom
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Timing

The required time to run this protocol is dependent on the hardware users have available. 

We provide approximate timings in each section of the protocol based on our hardware 

described in Materials. For users who seek to employ this protocol on their own datasets, 

the primary determinant of the timing will be how long the cryoDRGN model training steps 

require, as these steps are the most expensive in terms of both time and computational 

resources. We generally recommend training “high-resolution” cryoDRGN models at a 

boxsize of 256 pixels, as computational time can become prohibitive with significantly 

larger boxes. For very large datasets or datasets with large boxsizes, users may find it useful 

to employ the cryodrgn preprocess command instead of cryodrgn downsample, as 

this command changes some of the preprocessing steps to minimize downstream memory 

usage and obviates the need for using on-the-fly image loading via the --lazy flag, which 

significantly increases training times. Instructions for how to use cryodrgn preprocess 

are available at https://github.com/zhonge/cryodrgn.

Anticipated Results

This protocol describes the training of a cryoDRGN model on a highly heterogeneous 

exemplar dataset (EMPIAR-10076), as well as the systematic characterization of the 

resulting structural ensemble. Following the protocol, users produce the following principal 

outputs:

1. A latent embedding for each particle in the input stack.

2. A decoder network able to generate an arbitrary number of volumes from 

embeddings across latent space. This decoder network can then be used, as 

shown in this protocol, to explore the structural landscape of the dataset by 

sampling the 3D volumes found in different positions of latent space.

3. A representative ensemble of volumes sampled from across latent space using 

the decoder network, which can be directly visualized and used for downstream 

landscape analysis.

4. A matrix of occupancy values for each structural element in each sampled 

volume, which can be clustered and represented as a heatmap, and which can 

be used for quantitative analysis of the sample’s structural heterogeneity.

Though the precise nature of the heterogeneity uncovered is dataset-dependent, and aspects 

of the analysis – notably how clustered or featured the distribution of latent embeddings is 

– may differ from the analysis of this example dataset, users should be able to follow this 

protocol on their own datasets to produce a similar set of outputs.
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Extended Data

Extended Data Figure 1. Assessing cryoDRGN input parsing.
Comparison of 10,000 back projected cryoDRGN-parsed particles at D=128px (left) with 

the unsharpened map from cryoSPARC’s homogeneous refinement (right).
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Extended Data Figure 2. Assessing convergence of representative cryoDRGN density maps 
during network training.
a) Particle sets of interest A-J identified in epoch 49 by the “UMAP local maximum” 

method are mapped to prior epochs’ UMAP embeddings. The on-data median latent value 

of each particle set is embedded into UMAP space and annotated for each epoch. Note that 

each annotated point maps to the same high occupancy region of UMAP space following 

convergence. b) Corresponding volumes generated from each on-data median latent value at 

five epoch intervals as shown in panel a. Note that the volumes’ gross morphology stabilizes 

by epoch 14–19, though some additional details in maxima I and J require 24–29 epochs. c) 
FSC plots correlating each local maximum volume at epochj and at epochj-5.
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Extended Data Figure 3. Visualizing particle filtering.
a) Representative particles filtered by ind_keep.star, selected for further training, and 

corresponding 2D-classification using default cryoSPARC parameters. b) Representative 

particles filtered by ind_bad.star, excluded from further training, and corresponding 

2D-classification using default cryoSPARC parameters. c) Three-way Venn diagram of 

“junk” particles identified by one of the following methods: two classes from k=6 gaussian 

mixture model latent-space classification (red, 35,421 particles); ten classes from k=20 

k-means latent-space classification (green, 29,080 particles); or latent encoding magnitude 

(z-norm) exceeding 0.5 standard deviations larger than the mean (blue, 30,879 particles). 

d) Corresponding CryoSPARC 2D-classification results using “junk” particles identified 

through the GMM (top), k-means (middle), or z-norm (bottom) filtering approaches. e) 
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UMAP embedding or f) PCA projections highlighting location of junk particles identified by 

GMM (red), k-means (green), or z-norm (blue) methods.

Extended Data Figure 4. Training and assessing convergence of high-resolution training.
a) Representative plot of average total loss at each epoch. b) Median per-particle movement 

through latent space, characterized by vectors connecting each particle’s latent embedding 

in successive epochs. Resulting vector dot products (left), magnitude (center) and cosine 

distance (right) are shown. c) Identification of representative latent embeddings via the 

“UMAP local maxima method”. The UMAP embedding of epoch 99 is binned into a 2-D 

histogram, smoothed, annotated with local maxima, and overlaid with the maxima. The 

on-data median UMAP location of each maximum and its neighboring 8 bins is shown. 

Label order corresponds to decreasing particle count in each local maximum. d) Map-map 

correlation and e) FSC at Nyquist frequency calculated between representative volumes 

generated as defined in c at five epoch intervals. Epochs for which the encoder network has 

not converged are noted with dotted lines.
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Extended Data Figure 5. Assessing convergence of representative cryoDRGN density maps 
during high-resolution training.
a) Particle sets A-J identified by the “UMAP local maximum” method (Glossary) mapped 

to prior epochs as illustrated in Extended Data Figure 2. b) Corresponding volumes 

generated from labeled positions in panel a. Note that the volumes’ gross morphology 

stabilizes by epoch 19–29, though maximum I stabilizes as a 70S ribosome around epoch 

39. c) FSC plots between volumes from each local maximum offset by 5 epochs of training, 

as in Extended Data Figure 2. The map-to-map FSC stabilizes by epoch 39.
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Extended Data Figure 6. Assessing results of high-resolution training.
a) The UMAP representation of the latent space resulting from 50 epochs of high-resolution 

training, colored by indicated imaging parameters. b) Angular and translational pose 

distributions. c) PCA of the latent space, colored by the 20 k-means cluster centers 

automatically generated by cryodrgn analyze. Numbered black dots indicate the 

locations in latent space of each k-means cluster center volume.
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Extended Data Figure 7. Sampled points from latent space used in subunit occupancy analysis.
UMAP representation of the latent space resulting from 50 epochs of high-resolution 

training with contours colored with darker blues as particle density increases. Sampled 

points correspond to the centers of 500 k-means clusters and are indicated with white circles.
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Extended Data Figure 8. Confusion matrix of published class labels and classes assigned by 
subunit occupancy analysis.
K-means 500 cluster center maps were assigned to 15 classes by subunit occupancy analysis. 

Particles within a given k-means 500 cluster are assigned to the same subunit occupancy 

class as the center map. Published particle labels were drawn from Davis et al.16 and the 

fractional correspondence is plotted as a heat map. Note that published classes A and F 

corresponded to 70S and 30S particles, respectively.
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Extended Data Figure 9. Graph traversal through latent space for the 
B→D1→D2→D3→D4→E3→E5 assembly pathway.
Centroid volumes from the subunit occupancy classes were aligned and compared to 

the previously published assembly intermediate structures16 to determine approximate 

equivalences between published classes and subunit occupancy classes. The volumes 

corresponding to intermediates B, D1, D2, D3, D4, E3, and E5 were provided to cryodrgn 

graph_traversal as anchor points; the resulting path through latent space is shown. 

Non-anchor points are indicated with white circles, whereas anchor points and their 

corresponding class ID are shown with colored circles. Volumes resulting from the complete 

graph traversal are shown in Supplementary Movie 3.
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Extended Data Figure 10. Selection of particles corresponding to the C4 minor class.
Particles (1,149) in the C4 class were identified by subunit occupancy analysis and are 

highlighted in orange.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Glossary

Network architecture
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the arrangement of hidden layers and nodes in each neural network. For example, a 256×3 

network architecture has 3 hidden layers each containing 256 nodes. These descriptions do 

not include the number of nodes in the input or output layers, as these are determined by the 

image size and by the dimensionality of the latent space.

Encoder network
the neural network that encodes each particle image in a low-dimensional latent space. By 

default, we use an 8-dimensional latent space, though users can specify higher or lower 

dimensions.

Decoder network
the neural network that generates a 3D density map, given a latent embedding.

Epoch
the passage of an entire particle stack through the encoder and decoder networks. The 

networks are iteratively trained through multiple epochs.

Minibatch
Particles are passed through the encoder and decoder networks in groups called mini-batches 

of 8 images by default; changing the mini-batch size affects memory utilization, training 

dynamics, and training speed.

PCA
a linear dimensionality technique used in this protocol to visualize the latent space. Axes 

produced by PCA are orthogonal and ordered by maximum variance along each axis, and 

we typically inspect the first 2–4 axes. In practice, we find that PCA is useful for identifying 

outliers in the latent embedding distribution and summarizing major modes of heterogeneity, 

however we find that useful local structure in the distribution is often lost due to the linear 

projection.

UMAP
a non-linear dimensionality technique used in this protocol to embed the latent space into 

an easily visualized 2D space. UMAP tends to highlight local neighborhood structure at the 

expense of preserving global structure. As a result, distance metrics in UMAP-space such 

as inter-cluster distance are not generally meaningful. We find that UMAP embeddings are 

useful in segmenting structurally disparate groups of particles and that high particle densities 

within a UMAP cluster meaningfully represent dense particle neighborhoods in latent space.

Z-score
the number of standard deviations above the mean. Used during particle filtering to identify 

particles with a z-score > 2 (by default), meaning a latent embedding whose magnitude is 2 

standard deviations above the mean magnitude across all particles.

On-data
volumes generated by the described cryoDRGN analysis scripts are always generated from a 

position in the latent space directly corresponding to the latent embedding of some particle 
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within the input stack – i.e. “on-data”. Specifically, we always generate a volume from the 

closest on-data point to a given query in latent space.

UMAP local maxima method
our approach to identify a set of latent coordinates representing diverse particles in areas of 

latent space that are well-supported by data. This method aims to automatically reproduce 

how a user might interactively select a subset of dense clusters from a UMAP embedding. 

Briefly, latent values for all particles from the final epoch of training are embedded in 2D 

UMAP space. This space is then binned with 30 bins per axis and the resulting 2D histogram 

is smoothed with a gaussian of width = 1 bin. All local maxima are identified, then greedily 

pruned such that the lower amplitude maximum of two local maxima within a defined radius 

of each other is removed. A final filtering step returns the 10 largest local maxima. Particles 

within a 3×3 grid of bins centered on each local maximum are labelled as corresponding 

to local maxima A-J, and their on-data median latent coordinate is returned for volume 

generation. Note that maxima are labeled A-J in order of decreasing particle count.
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Box 1:

Convergence Analysis

Here, we include several heuristic metrics to assess convergence of cryoDRGN network 

training. Each metric queries convergence of different elements of the network (i.e. the 

encoder, the decoder, or the entire network). Although alternative heuristics exist, we 

have found that these metrics are useful in judging when cryoDRGN networks have 

been sufficiently trained across a variety of datasets. The motivation, implementation, and 

example interpretation of each convergence metric are detailed below.

• Total network loss: This metric is the loss function guiding network learning 

during training8. Total loss per epoch is expected to decrease as the network 

trains. Smooth asymptotic behavior is indicative of stable network training.

• UMAP latent embeddings: In a converged network we expect the distribution 

of latent embeddings to be insensitive to further training. To visualize high 

dimensional latent distributions, we calculate UMAP embeddings of the latent 

at set intervals during training. Note that UMAP is subject to artifacts like 

rotation, mirroring, or inconsistent mapping of particles on cluster boundaries. 

For our application, the important criteria are that the number, size, and 

relative distribution of clusters remains constant. For datasets with less 

featured UMAP embeddings, locally monitoring dense regions within UMAP 

clusters or relying on alternative metrics can be useful.

• Latent embedding shifts: This metric examines the “movement” of particles 

through latent space during training, with the expectation that converged 

networks will exhibit movement that is small and randomly directed 

within local minima. Movement is monitored by the size (magnitude) and 

consistency of direction (dot product and cosine distance) of a given particle’s 

motion over epochs. Specifically, we consider the n-dimensional vectors 

connecting its latent embedding in epochi, to epochi+1, and in epochi+1, to 

epochi+2. The magnitude of each vector, as well as the dot product and cosine 

distance of this pair of vectors, are calculated and the median values for these 

three parameters across all particles are plotted per epoch. Similar to the 

total loss plot, an elbow and subsequent stabilization in each of these plots 

is consistent with convergence. Less featured latent spaces can result in more 

“noise” in these plots; in such cases, a rolling average of these values can be 

used.

• Correlation of generated volumes: This approach assesses the convergence 

of the decoder by examining whether volumes sequentially generated from 

related positions in latent space stabilize during training. These positions are 

calculated as the on-data median latent values of particles in well-supported 

clusters identified using the UMAP local maxima method (Glossary). 

The median latent encoding of each cluster’s particles is updated, and a 

corresponding volume generated, every five epochs. Volumes generated in 

this way should trend towards high correlation with the previously generated 
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volume during convergence, as particles map to increasingly consistent 

regions of latent space and the decoder produces increasingly consistent 

corresponding volumes. Stabilization is measured by map-to-map real-space 

correlation and map-to-map FSC. For this dataset, which produces structures 

whose resolution are Nyquist-limited, we find in addition to examining FSC 

at all spatial frequencies, specifically visualizing the increasing correlation at 

the Nyquist limit is informative.

In general, strict cutoffs for convergence are difficult to identify. These heuristics 

are intended to be used in a holistic fashion when assessing convergence. Typically, 

additional training beyond convergence provides diminishing returns while increasing the 

likelihood of overtraining artifacts as described above.
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Box 2:

Particle Filtering

Several methods to filter particles are implemented in cryoDRGN. The optimal method 

for particle filtering is dataset-specific, and users are encouraged to try several methods 

to determine which is the best-suited for their particular data. We recommend that 

all particle filtering pipelines, regardless of method employed, start with visually 

inspecting k-means cluster center volumes generated automatically by cryodrgn 

analyze, and cross-referencing these to the UMAP plots of the k-means clusters in 

the cryoDRGN_filtering.ipynb notebook. Volumes from within clusters containing 

particle picking artifacts often appear noisy or have particularly weak density. When 

users have determined which regions of latent space appear to represent such artifacts, 

they can proceed to use any of the following methods in the Jupyter notebook to exclude 

particles belonging to these regions:

• Filtering by clustering: In cases where users are able to clearly 

identify undesired clusters using the k-means cluster center volumes, 

they can directly select these clusters to be filtered out within the 

cryoDRGN_filtering.ipynb notebook. Gaussian mixture model (GMM) 

clustering can also be used, as described in this protocol.

• Filtering by interactive selection: If there is a clearly-defined region of 

undesired particles within latent space, users may find it easiest to use 

the interactive widget in the cryoDRGN_filtering.ipynb notebook to 

manually select this region of latent space via a lasso tool and filter out all 

particles contained within it.

• Filtering on magnitude of the latent embeddings: In some datasets, “junk” 

particles can be easily distinguished by outlying latent embedding values. 

This may be particularly valuable for datasets with less featured latent 

spaces, where the regions corresponding to particle picking artifacts are 

less amenable to separation by clustering or interactive selection. With the 

filtering notebook, users can compute the magnitude of the latent embedding 

and eliminate particles for which the magnitude is more than a defined 

number of standard deviations above the mean.

Particle filtering efficacy can be assessed by several metrics, including generating more 

volumes from regions enriched of latent space enriched for retained or discarded particles 

and confirming the presence of good volumes and poor volumes, respectively. Users can 

also directly view particles in the cryoDRGN_filtering.ipynb notebook to see if they 

contain ice or edge artifacts, or other protein contaminants unrelated to the complex of 

interest. Finally, retained and discarded particles can be exported and further inspected 

via traditional 2D classification or 3D reconstruction in other processing software such as 

cryoSPARC or RELION. See Extended Data Figure 3 for a comparison of these particle 

filtering methods using the EMPIAR-10076 dataset; note that all three filtering methods 

identify largely overlapping particle sets for this dataset.
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Figure 1. The cryoDRGN workflow.
Steps (center) of the cryoDRGN analysis workflow are noted, with typical inputs to each 

step (left) and insights gained (right) illustrated. Each noted step corresponds to a subsection 

of the provided protocol, with numbered steps of the protocol listed.
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Figure 2. Training and assessing convergence of cryoDRGN networks.
a) Representative plot of total loss at each epoch. Decreasing loss reflects gains in neural 

network performance. b) Representative density heatmaps of the particle embeddings 

at noted epochs of training. In each density heatmap, UMAP27 was used to embed 

each 8-D latent distribution in a 2-D space. Note the shape of the resulting heatmap 

stabilizes in later epochs, consistent with encoder network convergence. c) Illustration of 

a hypothetical particle’s embedding in successive epochs of training. Difference vectors 

between successive epochs are colored blue (left). Such vectors’ dot product, magnitude, 

and cosine distance are computed, and the median value at each epoch is shown (right). 

The asymptotic behavior of these curves is consistent with encoder network convergence. d) 
Identification of representative latent embeddings via the “UMAP local maxima method”, 

Kinman et al. Page 38

Nat Protoc. Author manuscript; available in PMC 2023 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(Glossary). e) Volumes generated by the decoder network at the local maxima positions 

(A-J) defined in d. Note the diversity of low-resolution structures. f) Map-to-map correlation 

and g) FSC at Nyquist frequency calculated between volumes generated from local maxima 

identified as defined in d at five epoch intervals. Epochs for which the encoder network was 

not assessed to have converged are noted with dotted lines.
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Figure 3. Particle filtering.
a) UMAP visualization of latent space embeddings at epoch 49, colored by k-means 

clustering with k=20. Cluster centers are annotated. b) Volumes generated at each k-means 

cluster center, rendered at an isosurface level of 0.25. Map colors correspond to those in a. 

Note volumes generated from clusters 11–19, labeled in red, are poorly resolved, consistent 

with the presence of poor-quality particles. c) UMAP embedding highlighting particles 

selected for further training in orange. Poor-quality particles excluded from further training 

are shown in grey.
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Figure 4. Analysis of a cryoDRGN model trained on high-resolution particle images.
a) 8D latent space visualized in 2D using UMAP (top) or PCA (bottom). K-means clustering 

of the latent space embeddings with k=20 was applied, and notable clusters are colored and 

annotated. b) Representative volumes generated by the decoder network from notable cluster 

centers, with colors and annotation corresponding to those in a. Key structural elements of 

the bacterial ribosome are noted.
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Figure 5. Atomic model-based analysis of cryoDRGN-generated structural ensemble.
a) “Occupancy analysis” heatmap illustrating low (white) and high (blue) occupancy 

proteins or rRNA helices (columns) in various cryoDRGN generated density maps (rows). 

Using a fixed threshold linkage distance, dendrograms are colored according to structural 

blocks (top) and volume classes (right). A red arrow indicates the position of H68 in the 

heatmap. b) Atomic model (4YBB) colored by structural blocks as defined in a. c) Centroid 

volumes of the occupancy analysis classes, generated at the closest on-data point to the 

median position in latent space for each class. Volumes are outlined for comparison to the 

mature 50S ribosomal subunit (class 1, in red). d) C4 class example volume generated by 

cryoDRGN (top) compared to the cryoSPARC homogeneous refinement (bottom) using the 

1,149 particles identified through occupancy analysis. Particle group rows within class 11 

and H68 column are noted with red arrows.
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