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Abstract: Mutations in MeCP2 result in a crippling neurological disease, but we lack a lucid picture of
MeCP2′s molecular role. Individual transcriptomic studies yield inconsistent differentially expressed
genes. To overcome these issues, we demonstrate a methodology to analyze all modern public data.
We obtained relevant raw public transcriptomic data from GEO and ENA, then homogeneously
processed it (QC, alignment to reference, differential expression analysis). We present a web portal to
interactively access the mouse data, and we discovered a commonly perturbed core set of genes that
transcends the limitations of any individual study. We then found functionally distinct, consistently
up- and downregulated subsets within these genes and some bias to their location. We present this
common core of genes as well as focused cores for up, down, cell fraction models, and some tissues.
We observed enrichment for this mouse core in other species MeCP2 models and observed overlap
with ASD models. By integrating and examining transcriptomic data at scale, we have uncovered the
true picture of this dysregulation. The vast scale of these data enables us to analyze signal-to-noise,
evaluate a molecular signature in an unbiased manner, and demonstrate a framework for future
disease focused informatics work.

Keywords: MeCP2; data portal; Rett syndrome; MeCP2 duplication syndrome; RNA-seq; differential
expression analysis; meta-analysis; mouse models

1. Introduction

Experimental reproducibility is a key issue in the life sciences. Big data integration
and analyses can uncover valuable insights otherwise missed in individual studies [1], but
curating, processing, and analyzing data at scale is challenging. Researchers could aggre-
gate publicly available processed results, but doing so will inevitably yield inconsistencies
between datasets. Handling a meaningful quantity of raw high-throughput data requires
extensive time, experience, and computational resources, and it would be wasteful for
every researcher to do this themselves.

Databases with abundant biological data exist but either do not focus on transcriptome
perturbation (GTEx) [2] or require significant time and energy to extract and format data
specific to a particular disease (ARCHS4) [3]. Similarly, many databases focus on specific
model organisms and allow filtering by disease, such as Flybase [4] and the Rat Genome
Database [5], but do not offer substantial disease-focused analysis. While there are some
molecular-focused databases for well-studied diseases such as cancer (TCGA) [6], cBio
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Portal [7], and Alzheimer’s disease (AMP-AD) [8], there are no analogous databases for
less-common diseases. The massive success of TCGA, in particular, makes the utility of
disease databases clear.

Rett syndrome (RTT) is a severe neurodevelopmental disorder in girls caused by
mutations in the X-linked gene for methyl-CpG binding protein 2 (MECP2). Develop-
ment proceeds normally until 6–18 months, at which point it stalls and then regresses [9].
Symptoms and progression can vary substantially between individuals, and despite re-
cent advances, we still do not completely understand MeCP2′s molecular role. MECP2
duplication syndrome (MDS) is an overexpression in the same gene, and patients have
substantial overlap in phenotype with RTT [10]. The pool of sequencing data for these
diseases will only grow with time, and there is currently no centralized resource for it. Exist-
ing MeCP2-related disease databases are either primarily patient registries (Rett Database
Network) [11], or they focus on mutation information, such as the IRSA North American
Database [12] and RettBASE [13]. To fill this need, we created MECP2pedia, a database
for molecular MeCP2. MECP2pedia is a uniformly processed and expansive collection of
MeCP2 transcriptomic data, with readily accessible processed mouse data (expression, qual-
ity information, genomic tracks, and differential expression) that researchers can compare
across any set of studies or data characteristics.

In this study, we demonstrate a comprehensive approach by curating a vast resource
of transcriptomic data and then unbiasedly analyzing and interpreting the results to under-
stand expression dysregulations. We derived a consensus common core of misregulated
genes, which we delineated into consistently up- and downregulated. We validated this
separation through unbiased clustering and discovered distinct functional characteristics
between the up and the down cores. We further confirmed this robust core with enrich-
ment across species and comparisons to other disease models. Finally, power analysis
showed how high of a false-negative rate the average individual transcriptomic profile
incurs through a low sample number, and the presence of strong batch effects in these data
demonstrates another problematic hurdle for researchers.

Data integration is worthwhile but non-trivial. Batch effects, lack of power, repro-
ducibility, and robustness are major hurdles for research. Big data helps mitigate these
issues. Our approach to transcriptomic disease research yields results that are better
and more complete than those attainable by conducting an individual experiment. Our
demonstrated methodology can be applied broadly to other biological questions.

2. Results
2.1. Comprehensive Resource of MeCP2 Transcriptomes

The MECP2pedia portal can be accessed at http://www.mecp2pedia.org/. To generate
this resource, we queried the National Center for Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO) [14] on 7 August 2019 for “MeCP2” and then filtered the
results for “expression profiling by high throughput sequencing”. This search resulted in a
preliminary list of 47 GEO entries. We filtered this list for entries dated 2015 or later and then
further filtered for entries with at least two RNA-Seq wild-type samples and a treatment
labeled either “knockout”, “Rett”, “point mutation”, “transgenic”, “overexpression”, or
“MeCP2 duplication”. We retained 27 GEO entries, which we downloaded and processed
with a uniform, streamlined Python pipeline (Figure 1A). In total, our processing yielded
546 sequence read archive (SRA) files, 753 FASTQ files, and 493 BAM (alignment) files.
The total disk space used for processing was about 6 TB, and processing took about
2400 computing hours. The number of mouse samples per study is detailed in Figure
S1 (see Supplementary Materials). For each of the processed samples, we generated raw
read quality, alignment quality, and track information. For each study, we collected meta
information and data characteristics (Figure 1B), and then, we aggregated all samples
with matching characteristics into “contrasts” (a comparison of the expression between
two groups) for differential gene analysis. Mouse studies typically contained one to two
contrasts, with the exception of four studies that, respectively, contained 3, 4, 6, and
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10 contrasts (bar width in Figure 1B). The 27 GEO entries provided a total of 58 contrasts,
with 43 from mouse studies, 10 from humans, and 5 from other species. As this work
grew, to both stay up to date with data and diversify our sources, both ArrayExpress and
European Nucleotide Archive (ENA) were queried on 13 September 2022 for “MeCP2”.
Identical inclusion criteria were applied, and 6 mouse studies comprising 11 contrasts were
retained, all from ENA. All analysis, core, and figures were made with only the initial GEO
data. A list of mouse contrasts and their metadata is provided in Table S1.
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Figure 1. Overview of data and workflow. (A) Workflow for portal data and analysis. Processing
is uniform and unbiased. Quality, track, and DEG analysis results are available in an intuitive and
comparable manner through our portal. (B) Sankey plot on major characteristics per contrast of the
collected mouse data (date, cell fraction, strain, tissue, first author). Metadata were collected with
sequence data and then standardized.

Portal users can quickly and easily compare across studies the expression of specific
genes of interest (Figure S7). Queries can be carried out individually or as a multi-gene
search. Bar and scatter plots are available for each gene to show significance and fold
change, and these results can be filtered across the uniformly annotated data characteristics.
TPM (Transcripts Per Kilobase Million) is shown to allow the comparison of expression be-
tween contrasts [15]. Users can browse genome tracks by individual study, and studies can
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be compared to one another. Metadata for each contrast, raw read quality, and alignment
quality are all available for each study. A “significant genes” tab allows users to filter genes
using an FDR (false-discovery rate) and log2 fold change thresholds for each contrast, and
this information is also downloadable.

2.2. MeCP2 Transcriptomics in Mice Reveal a Common Core of Misregulated Genes

Our collected data are noteworthy for comprehensiveness and heterogeneity (Figure
S2A). Tissue, mutation, and cell fraction are all highly variable across the breadth of col-
lected RNA-Seq, giving users the most complete picture possible of MeCP2′s transcriptomic
role. To understand these changes per study, we examined fold change and FDR from
the differential gene expression (DEG) analysis, and as shown in Figure 2A, the ratio of
significantly upregulated to downregulated genes is generally similar across the 43 con-
trasts. This finding is consistent with MeCP2′s reported role in both gene activation and
repression [16]. Furthermore, changes in the majority of the dysregulated genes are less
than two-fold. This magnitude of change is low when compared to other mouse disease
models, which have substantial quantities of genes with changes greater than two-fold [17].

In a traditional RNA-Seq study with one contrast (a comparison of the expression
between two groups), a gene is considered a DEG based on FDR thresholding and/or fold
change cutoffs. However, there are many contrasts in our data, and a truly biologically
important DEG should be observed consistently in several contrasts. We examined the
common FDR thresholds of 10% (0.1), 5% (0.05), and 1% (0.01), and due to MeCP2′s low
magnitude of gene dysregulation, no fold change cutoff was used. We then examined
number of contrast cutoffs of 1 (~2.5% of total contrasts), 4 (~10%), 12 (~30%), and 20 (~50%).
When examining the FDR thresholds for a specific contrast cutoff (Figures 2B and S2B, per
row), DEGs did not differ much. However, when comparing different numbers of contrasts
for a specific FDR threshold (Figure 2B, per column), we observed large differences in
DEG numbers. Moreover, when a gene is a DEG in many contrasts, it is likely to be either
consistently upregulated or consistently downregulated. This indicates that the number
of contrast threshold is a critical filter in establishing a robust set of DEGs. Thus, going
forward, we set a strict FDR of 1% and a number of contrasts cutoff (10%) for common core
DEGs, resulting in 2971 genes. Using average fold change, the common core DEGs were
sorted into either core up (1666) or core down (1305) for further analysis. Mouse core DEG
lists are in Table S2.

We next investigated properties unique to the common core DEGs. First, we examined
the annotations of these genes in relation to all the genes in the genome [18] and to all
expressed genes. We observed that the common core DEGs have a notably high proportion
of protein-coding genes. Specifically, while protein-coding genes constitute only 40.8%
(21,922 out of 53,661) of all the genes and 57.6% (18,748 out of 32,551) of the expressed
genes, they spike to 94% (2794 out of 2971) in the common core DEGs (Figure 2C). Next,
due to MeCP2′s role in both chromatin structure [19] and various epigenetic features [20],
we examined the common core DEGs for positional bias across the mouse genome. Within
each chromosome, there are differences in positional distribution between the up and down
core DEGs (Figures 2D and S2C). One striking example is on chromosome 8, where circular
binary segmentation (CBS) [21] identified a stretch at the beginning of the chromosome
(4,375,343–49,522,639) with many upregulated genes.
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Figure 2. Mouse transcriptome common core. (A) Distribution of log2 fold change across contrasts
with significant (FDR < 0.01) DEGs. Dark blue and dark red, respectively, indicate genes that are
core down and core up, and pale blue/pale red, respectively, indicate down and up DEG. Pie charts
with the same annotation colors show what percentage of each contrast’s DEGs falls into each
category. Stacked bar charts with the same annotation colors show each contrast’s DEG quantity.
(B) Histograms of significantly up and downregulated genes cut for different FDR thresholds and the
number of total contrasts in which a DEG appears. Genes at the extreme ratios of 0 or 1 percent
upregulated are highly concordant across contrasts, whereas genes that fall into the middle are
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discordant. For consistency in this analysis, we inverted the direction of fold change for the four
contrasts of the TG model. (C). Genes as annotated by Gencode and condensed into eight broad
categories. We considered 53,661 genes from our annotation and found 32,539 that passed our
expression filter in at least one contrast. The common core (FDR < 0.01 in at least four contrasts)
is comprised of 2971 genes. (D). Exploration of genome location trends in the common core. All
non-DEGs are plotted in the upper portion of the panel, and violin plots show areas of gene density.
Chromosome 8 was selected for further examination in the lower half of the panel, with baseline
genes in equal quantity to the core genes (150) also plotted. CBS method is used to identify trends in
the up/down/baseline genes. The bands on middle dot plot show these CBS results, and the lower
stack plot shows the density of up, down, and baseline genes on chromosome 8.

To further examine MeCP2′s regulatory role on these common core DEGs in an unbi-
ased manner, we carried out unsupervised Leiden clustering [22]. From the nine clusters
obtained, the two largest clusters (clusters 0 and 1) consisted mainly of the consensus core
up and core down genes, respectively (Figure 3A). The clear directional separation of these
clusters validates our core DEG selection methodology. Subsequent gene ontology (GO)
analysis of these two clusters showed an enrichment in RNA Polymerase II (Pol2) and other
transcription-related terms for the upregulated cluster (cluster 0) and an enrichment in neu-
ronal and general nervous system-related terms for the downregulated cluster (cluster 1)
(Figure 3B). Both up- and downregulated clusters displayed significant enrichment for cell
differentiation, signal transduction, and general developmental terms. Our computational
approach therefore provides some evidence not only the roles of MeCP2 as both activator
and repressor but also established the core genes and functions involved.

We further examined the common core DEGs’ expression changes using a heatmap
with annotation of contrast with cell fraction (Figure 3C). The unsupervised clustering
shown on the heatmap categorizes the contrasts into three groups: (1) a mixture of all
three types of cell fractions, (2) mainly with nucleus, and (3) mainly with whole cell. The
common core DEGs are concordantly changed in about half of the contrasts, which fall
into the first group of mixed-cell fractions. The two largest gene clusters identified from
Leiden clustering are strongly up- and downregulated in this concordant set. Genes have
lower expression changes in the second (nucleus) group. Notably, contrasts from the whole
cell are categorized into two separate groups. The expression changes of common core
DEGs are stronger and concordant in the first group and then weaker but still concordantly
changed in the 17 contrasts of the third group. This is consistent with our findings in Figure
S3, in which we observed solid overlap between common core DEGs and the common
cores redefined separately by their sequenced cell fraction. Although the bulk of our data
is comprised of whole cell, this picture of the transcriptome is not drastically different from
MeCP2-dependent expression in the chromatin or the nucleus.
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Figure 3. Unsupervised clustering on core genes. (A). The left UMAP plot colors each gene by cluster,
assigned through unsupervised Leiden clustering. The right UMAP plot displays the percentage
of contrasts in which the gene was upregulated on a spectrum of red (upregulated in all contrasts)
to blue (downregulated in all contrasts). We can see that the green and orange clusters roughly
encompass the up and downregulated genes. (B). Results of GO analysis on Leiden clusters 0 and 1.
The bar colors correspond to cluster. Bar length represents the proportion of genes enriched with the
term in the cluster, and the line plot represents the FDR of the enrichment. (C) Heatmap of contrasts
(columns) by genes (rows). Contrasts are labelled based on the experiment’s cell fraction, and genes
are labelled based on their Leiden cluster. We can see the general downregulation in the orange
cluster and the upregulation in the green cluster. We can also see from this figure that the other
clusters are generally caused by extreme deviations in one or two studies.

2.3. Cross-Species and Cross-Disease Comparisons of MeCP2′s Transcriptomic Signature

As we seek to understand the broad and complex role of MeCP2, mouse data alone re
insufficient. Accordingly, we uniformly processed three human datasets, yielding seven
contrasts. Human data yield fewer DEGs on average than mouse data, but the DEGs have
similar ranges in fold change (Figure 4A) and a similar proportion of upregulation versus
downregulation. The overlap between DEGs from these ten contrasts is low (Figure S4A),
suggesting limited homogeneity in the molecular signature of human MeCP2 dysregulation.
This heterogeneity may reflect the fact that seven (GSE51607_1-4) out of the ten contrasts
are from cell models, whereas the other three are from postmortem brain tissues. This
separation is also seen in the heatmap of expression changes of human data on the mouse
common core DEGs using unsupervised hierarchical clustering (Figure 4B). This heatmap
shows limited qualitative correlation between the direction of human and mouse common
core DEG dysregulation.
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We also found transcriptome data for rat (Rattus norvegicus), macaque (Macaca fascic-
ularis), and zebrafish (Danio rerio) MeCP2 models, which we processed and compared to 
the mouse common core. We found two rat studies with one contrast each, one monkey 
study with two contrasts, and one zebrafish study with one contrast. These data yield 
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Figure 4. Mouse transcriptome translation to other models. (A). Distribution of log2 fold change
across contrasts with significant (FDR < 0.01) DEGs. Blue and red, respectively, indicate down and up
DEGs. Pie charts with the same annotation coloring show the percentage of each contrast’s DEGs in
each category. Stacked bar charts with the same annotation color show each contrasts’ DEG quantity.
The upper 7 contrasts are human data, and the lower 5 are other species. (B). Heatmaps of log2
fold change plotted to compare direction of dysregulation to the consensus from mouse data. Genes
examined are the mouse common core, and plots are annotated on mouse core down and mouse core
up. (C). Per-contrast visualization of GSEA normalized enrichment score and FDR. Direction and
color of line represents normalized enrichment score, and point size represents log10(FDR). Contrasts
are grouped and shaded corresponding to their model of origin. MDS model is annotated with a
small star. (D). Sankey plot of ASD contrast metadata characteristics. From left to right: first author,
tissue, strain, target gene, and experimental procedure. (E). Fisher’s exact test results. Points sized
by –log10(p-value), length determined by odds ratio, data colored by gene. Points are opaque, and
overlap to MeCP2 core is considered significant if the Fisher p-value is less than 0.05. (F). Pie charts
show the magnitude of overlap between selected ASD contrasts and the MeCP2 common core. Down
and up only show genes changed in the same direction in both sets. p-values beneath each plot show
the Fisher’s exact test significance of the overlap for each intersection, colored red if the p-value is
less than 0.05.

We also found transcriptome data for rat (Rattus norvegicus), macaque (Macaca fascic-
ularis), and zebrafish (Danio rerio) MeCP2 models, which we processed and compared to
the mouse common core. We found two rat studies with one contrast each, one monkey
study with two contrasts, and one zebrafish study with one contrast. These data yield more
DEGs than the human data, with roughly even proportions of up and down gene dysregu-
lation. After associating DEGs to mouse orthologs, we found some overlap between these
cross-species models and the mouse common core, with more overlap seen between mouse
and rat than with other species (Figure S4B). Figure 4B qualitatively shows a correlation
between the mouse core and the rat data as well as some of the monkey data.
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To provide a quantitative correlation between these data sets, we performed gene set
enrichment analysis (GSEA). Pre-ranked analysis was run with our up and down mouse
cores as gene sets (Figure 4C). Ranked lists from the 15 non-mouse contrasts were checked
for overrepresentation in both up and down cores. We expect contrasts to be positively
enriched in the up core and negatively enriched in the down core. The rat model has the
best enrichment concordance, with both contrasts enriched as expected. Overall, these
contrasts were more significantly negatively enriched in the down core than significantly
positively enriched in the up core.

RTT and autism spectrum disorder (ASD) share a range of similar symptoms including
loss of social, cognitive, and language skills. Altered MeCP2 expression is also commonly
detected in autism brain samples [23]. Therefore, we hypothesized that our MeCP2 common
core would display significant overlap with perturbed genes of other established ASD
models. To generate an autism common core for comparison to our MeCP2 common
core, we explored the expression changes in eight ASD models selected from the Simons
Foundation Autism Research Initiative (SFARI) [24] (Figure 4D, Table S3). All experiments
involving knockdown or modification of the SFARI mouse model genes were retrieved
from the ARCHS4 database. Across the eight target model genes, we processed 223 samples
in 18 studies from 15 authors, from which we generated 28 contrasts. In our initial attempts
to generate an overall ASD core, we found that expression changes were not generally
concordant across contrasts (Figure S4C), which was expected, as the contrasts contained a
wide range of model genes and experimental procedures.

We thus analyzed the contrasts individually and performed Fisher’s exact test to
determine the significance of overlap between each contrast and the MeCP2 core. We
observed significant overlap in five contrasts (Figure 4E), representing five studies and
four model genes (ADNP, ARID1B, CHD8, and SHANK3). We plotted the fold change of
MeCP2 core genes in these five contrasts (Figure S4E). We focused further on three of these
contrasts (two CHD8 and one ADNP) with the largest DEG counts and most significant
overlap and found that the significant overlap persisted even when considering only genes
perturbed in the same direction in the contrast and the MeCP2 core (Figure 4F).

We then carried out GO analysis on the significantly overlapping gene sets. GO analy-
sis of genes upregulated in both the MeCP2 core and a CHD8 contrast reveals significant
enrichment for Pol2-arelated terms, while downregulated genes are enriched for nervous
system development terms (Figure S4D). This is consistent with our observations for up
and down genes in the MeCP2 core. Even with the much smaller set of genes (~400 up and
~500 down in the overlap set compared to ~1600 up and ~1400 down in the MeCP2 core),
we observed a similar gene ontology signal.

2.4. Sample Size Has a Major Impact on DEG Detection

MeCP2 interacts with other genes in an expansive manner [25], which lends our
transcriptome data a low signal-to-noise ratio (SNR). This contributes to the limited number
of clear consensus expression targets as well as the high degree of discordance in many
individual data sets. To increase data detection sensitivity with low SNR, the number
of samples therefore plays an important role. Yet, published MeCP2 studies often fail to
meet to the conventional recommendation of at least six biological replicates [26]. To learn
whether this problem limited the DEGs delineated from MeCP2 studies, we performed
differential gene analysis on replicate down-sampled subsets of the data set with the highest
number of replicates (GSE128178 Contrast 1). We found that the number of replicates has a
negative correlation with the number of DEGs detected (Figure 5A). With no fold change
cutoff, we could not saturate the number of detected DEGs with as many as ten replicates,
which is far more sequencing than found in most published MeCP2 datasets. With a mild
fold change cutoff (10% changed), the number of additionally detected DEGs in higher
sample counts still did not appear close to saturation. Some saturation and flattening of the
power curve began to occur with a 20% fold change cutoff.
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were downsampled to smaller and more common experimental sample number, and DEG analysis
was run on these subsets. Box plot and jitter points are plotted for resultant DEG numbers under
each condition. Cutoffs for MeCP2 are sample numbers 9 through 3. Cutoffs for psoriatic data are
sample numbers 8 through 3. Each cutoff number was repeated 100 times, with random samples
discarded each time. Results are plotted at FDR < 0.01. MeCP2 data are fold change (FC) cutoff at any
FC, FC > 10%, and FC > 20%. Psoriatic skin data are FC cutoff at any FC, FC > 10%, and FC > 200%.
Curves indicate the percent of DEGs remaining at continuous |log2 fold change| cutoffs. Horizontal
line indicates 50% of genes removed.

To confirm our findings, we repeated the analysis using an RNA-Seq dataset in a
psoriatic skin disease model (GSE63979) [27]. We chose this dataset for its high sample
size and to understand how different transcriptomic SNRs affect the optimal number of
replicates. We found relatively similar patterns (Figure 5B) but a reduced DEG loss effect
from fold change thresholding. This finding confirms that the impact of replicate number
on detected DEG is not unique to MeCP2 or to disease models with low SNRs.

Trends are also verified across common FDR thresholds, and Rand index is computed
between full and down-sampled gene sets to understand how much the down-sampled
results differ from the full results (Figure S5A,B). Figure S5C shows the differences between
SNR in MeCP2 and psoriatic skin disease. The low power in MeCP2 data also supports our
choice to require our common core DEGs to appear in just 10% of the contrasts.

To examine bias in and created by undetected DEGs in smaller n (sample number)
studies, we first found the supersets of genes comprising each DEG cutoff number. For
each DEG, we then computed average absolute log2 fold change (across contrasts). The
higher n analyses detected DEGs at lower fold changes than analyses with lower sample
numbers (Figure 5, last column), demonstrating that DEG sets from different sample
sizes are affected differently by fold change cutoffs. A cutoff that removes many genes
from a high sample size experiment may remove very few genes from a low sample size
experiment. Moreover, the DEGs missed because they have too few biological replicates
that are those with subtle perturbation, which is especially problematic for disease models
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with a low SNR. Researchers should be aware of this phenomenon when choosing fold
change cutoffs and evaluating results.

2.5. Batch and Technical Variation Must Be Overcome in Order to Integrate and Understand Data

Relevant non-biological factors, commonly called batch factors, are often present in a
given researcher’s data. These batch factors could reflect the use of particular tissues, mouse
litters, sequencing platforms, or other variables. Therefore, it is important to integrate and
analyze transcriptomic data across years of work with dozens of meta-characteristics. We
saw extreme batch effects on the raw count values for all samples included in MECP2pedia
in that the samples were initially segregated by study (Figure 6A). After batch correction and
normalizing the raw counts, the segregation was reduced, but samples remained grouped
by study. This finding indicates that batch correction and normalization failed to fully
resolve this batch effect. When we examined all available meta-characteristics, we observed
that the clustering weakly overlapped with the studies’ prominent meta-characteristics,
such as cell fraction, tissue, and gender (Figure S6A). As a basis for comparison, we
performed the same analysis on a set of 316 samples from nine neurological degeneration
studies analyzed in Wan et al. [28]. We observed a similar outcome: an extreme batch effect
on raw data and an inability of batch effect correction and normalization algorithms to
fully remove this batch effect (Figure 6A and Figure S6B).
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To better understand the concordance between sexes in MeCP2 models, we compared
their molecular signatures. RTT occurs almost exclusively in females, but most MeCP2
studies are carried out in male mice due to their relative ease of use and availability [29].
Hence, we had only one fair comparison between male and female models of similar age
and tissue (Figure 6B). We found that the DEGs from the male mouse model had no overlap
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with the female model at one time point and minimal overlap at a second time point.
Furthermore, the direction of dysregulated genes did not show a concordant trend. More
data are needed to understand these differences, but researchers should be mindful of sex
in their experimental design, especially in RTT.

3. Discussion

With the low cost and high quality of modern sequencing, the scope of publicly
available data is rapidly expanding. However, to make the leap from big data to big
insights, curation and automation are essential. In addition to gleaning insights from the
portal’s data, researchers can compare their own novel data to this convenient aggregation
of publicly available transcriptome profiles. We plan to add new datasets to the portal and
also add a feature allowing users to upload their own processed data for comparison.

MeCP2 transcriptomics from published studies often seem contradictory, perhaps
due to low SNR and disparities in experimental design. However, by bringing a robust
approach to the integration of big data, we uncovered a common core of MeCP2 DEGs with
high concordance across studies, suggesting that MeCP2′s core function is universal across
the examined breadth of tissues, cell fractions, mutations, and mouse strains. The positional
bias in common core distribution demonstrates MeCP2′s importance to the epigenome,
while unbiased clustering further underscores the concordance in core genes, providing
insight into their regulatory relationship. When the clusters were enriched to GO terms
associated with Pol2 activation and neuronal function, respectively, the two main clusters
from the unsupervised clustering correspond to up- and downregulated genes. Exploration
of the smaller mixed clusters may similarly reveal insights into other proposed mechanisms
of MeCP2 action [30,31].

Examination of diverse MeCP2 models provides quantitative comparisons of MeCP2′s
dysregulatory molecular signature across species. Robust enrichment across species in the
downregulated DEGs supports the core we have derived, and this finding can be further
explored in the context of our delineation on up versus down core genes. Comparison
across disease models revealed links between MeCP2 disorders and common ASD models.
Specifically, we observed highly significant concordant overlap between genes perturbed
in the MeCP2 core and two ASD models: ADNP and CHD8. The RNA Pol2 function in the
upregulated genes and neuronal development in the downregulated genes we observed in
the MeCP2 core are also enriched genes common to MeCP2, ADNP, and CHD8 models.
These overlaps could provide the basis for deeper exploration of the relationship between
MeCP2 disorders and other autistic spectrum disorders.

Since small sample size leads to low statistical power, the validity, specificity, and
robustness of the DEGs delineated from a single study may be unreliable [26]. We validated
this concern in our analysis of multiple datasets, and the problem is exacerbated when the
SNR is low. Researchers who are interested in perturbations with a small effect should
therefore aim to generate large datasets, with 10 or more samples per condition. If resources
are limited, six samples per condition would be a good compromise. However, most
studies failed to meet even this lower threshold, which may explain the lack of consensus
conclusions across independent studies and their failure to capture the complete picture of
transcriptomic perturbation. Another limitation of this resource is the low availability of
female data, especially given Rett’s primary impact on girls.

Our expansive study sheds light on the high variability in transcriptomic profiles
of a disease model across different tissues, ages, sexes, species, and other biological and
technical artifacts. The specific experimental conditions of a single study therefore cannot
capture the complete picture of transcriptomic changes. Individual researchers will always
be limited in the data that they can personally generate. Our big data integration platform
solves this problem, making it invaluable for scientists studying complex diseases such as
RTT and MDS.
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4. Materials and Methods
4.1. Data Collection

To generate this resource, we queried NCBI GEO (https://www.ncbi.nlm.nih.gov/gds)
on 7 August 2019 for “MeCP2” and then filtered the results for “expression profiling by high
throughput sequencing”. This search resulted in a preliminary list of 47 GEO entries. We
filtered this list for entries dated 2015 or later (with an exception made for GSE51607 due to
sparsity of human data) and then further filtered for entries with at least two RNA-Seq wild-
type samples each and a treatment labeled either “Knock out”, “Rett”, “Point Mutation”,
“Transgenic”, “Overexpression”, or “MeCP2 Duplication”. We retained 26 GEO entries.
Datasets with no associated publications were included. We subsequently added three more
studies, namely GSE123941, GSE128178, and GSE123372, based on the scope and relevance
of their data. All preprocessing was carried out with a uniform, streamlined Python pipeline.
SRA files were downloaded with prefetch from SRAtoolkit.2.9.6-1-centos_linux64 [32] and
then converted to fastq with fasterq-dump version 2.3.5, using the –split-files option. Fastq
files were then checked for quality with FastQC version 0.11.7 [33]. Both ArrayExpress and
European Nucleotide Archive (ENA) were queried on 13 September 2022 for “MeCP2”.
Identical inclusion criteria were applied, and six mouse studies comprising 11 contrasts
were retained, all from ENA. These were downloaded with wget and processed identically
to the GEO studies.

4.2. Mouse Data Processing

Mouse samples were aligned to GENCODE GRCm38p6 primary assembly, version
18 (https://www.gencodegenes.org/mouse/release_M18.html, accessed 18 July 2019),
with STAR version 2.6.0a [34] at default parameters. STAR gene quantifications were
used (–quantMode GeneCounts). The assembly also contained an appended copy of
human MeCP2 from hg38. BigWig files were generated with bamCoverage version 3.3.1
from deepTools [35]. We assessed alignment quality with RSeQC geneBody_coverage
and read_distribution, both version 3.0.0. Overall quality per study was examined with
MultiQC v1.7 [36]. DEG analysis was performed in R version 3.5.2 (Eggshell Igloo) with
DESeq2 version 1.24.0 [37] after loose expression filtering (per contrast, a gene must have a
sum of 10 counts in at least half the samples).

Data were not trimmed except for samples SRR3679844, SRR3679845, SRR3679848,
SRR3679849, SRR3679852, and SRR3679853 from GSE83474 due to slight anomalies in their
raw sequences. The trim was performed with Trimmomatic-0.36 [38] using the following
parameters: PE ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 HEADCROP:8

4.3. Data Annotation

We downloaded SRA run tables for each GEO entry. Data characteristics of interest
were: genotype, organism, experiment, run, sample name, cellular fraction, strain, age, cell
line, cell type, tissue, sex, mutation, and disease. Incomplete run tables were filled in from
the contents of their publications, if available. After processing, we annotated samples for
sequencing depth and contrasts for number of DEG at FDR < 0.01 with no fold change
cutoff.

4.4. Data Visualization

Unless otherwise specified, plots were made in R with ggplot2 version 3.2.1 [39]. Box
plot elements are as follows: minimum, first quartile, median, third quartile, and maximum.

4.5. Portal Development

Mouse data are in the portal, while human and cross species are not. Python pipeline
analysis results and GEO sample information were parsed and saved using the MongoDB
NoSQL database. The web server was written in JavaScript and serves an API that gives
access to the data and the web portal application. Data visualization uses the D3.js library

https://www.ncbi.nlm.nih.gov/gds
https://www.gencodegenes.org/mouse/release_M18.html
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and IGV.js [40] for genomics tracks. ENA studies are in the portal but not included in the
analysis and common core.

4.6. Core Gene Identification and Clustering

First, fold changes with FDR > 0.01 were set to zero. Contrasts with all non-significant
fold changes were removed. To generate our set of core genes, we kept only genes with
non-zero fold change in four or more contrasts (10%). This resulted in a set of 2971 genes
for further analysis. For consistency in the analysis and the visualization of gene regulation
direction, we inverted the direction of fold change for the four contrasts of the MDS model
(GSE123372_3, GSE66870_2, GSE71235_1, GSE71235_2).

We also identified alternative core genes based on contrast metadata characteristics.
For each type of cell fraction (chromatin, nucleus, whole cell) and the cortex and forebrain
tissue types, we performed the same core gene identification filtering as we did for the
main core. We considered only the contrasts with the metadata feature of interest and kept
only genes with significant and non-zero fold change in at least 10% of the contrasts. We
included an upset plot generated with the R package UpSetR [41] as Figure S3.

After identifying the set of core genes, we assigned unsupervised clusters using the
Scanpy [42] implementation of the Leiden algorithm with the parameters: number of
neighbors = 45 and resolution = 0.5. Then, we generated UMAP coordinates with the
parameters: number of neighbors = 45, minimum distance = 0.1, and spread = 10. We then
used UMAP’s Scanpy implementation to generate plots of the unsupervised clusters as
well as up- and downregulation.

4.7. Core Gene Characteristics and Location

We annotated mouse genes with GRCm38p6 primary, version 18 from GENCODE.
Genes were sorted into eight super-categories to show broad function. Expressed genes
(32,539) is a superset of the genes that pass the expression filter in any contrast.

Core genes were plotted by their TSS (Transcription start site). Chromosome 8 was
plotted with an equivalent number of randomly drawn non-core genes (150) to show the
strength of its regional core up DEG enrichment. We validated this trend with the CBS
algorithm implemented with R Package PSCBS version 0.65.0. The core up, core down, and
non-core genes were, respectively, assigned values of 6, 0, and 3 for segmentation detection
and plotting.

4.8. GO Analysis

GO analysis was performed using the Python GOAtools package [43]. We performed
an enrichment analysis on each MeCP2 Leiden cluster, using all NCBI protein coding mouse
genes as the background set. For each Leiden cluster, we retained the top six biological
process GO terms by frequency. We used the same methodology to perform GO enrichment
on overlapping MeCP2 and ASD core genes, also retaining the top six biological process
GO terms by frequency.

4.9. Human Data Processing and Comparative Analysis

Human data were aligned to GRCh38p12 primary assembly, version 28 from GEN-
CODE with STAR. BigWig generation, assembly quality metrics, and DEG analysis were
performed identically on mouse data. Human genes were then queried for their orthology
to mouse genes with DIOPT 8.0 [44] using the “return only best match” option. Upset plots
were made with function upset from Package UpSetR, version 1.4.0. Human and other
metadata are available in Table S5.

4.10. Other Model Data Processing and Comparative Analysis

Rat data were aligned to the Rnor_6.0 toplevel assembly and annotated with Rnor_6.0.99
from Ensembl [45]. Zebrafish data were aligned to Danio_rerio.GRCz11 toplevel assembly
and annotated with Danio_rerio.GRCz11.100 from Ensembl. The orthology tables for rat



Int. J. Mol. Sci. 2023, 24, 5122 15 of 18

and zebrafish genes were retrieved from DIOPT, as was done for human data. Macaque data
were aligned to Macaca_fascicularis_5.0 and annotated with Macaca_fascicularis_5.0.100
from Ensembl. Macaque gene orthology data were retrieved with the function getBM from
R package biomaRt, version 2.38.0 [46]. The only data trimmed were GSE57974, using
Trimmomatic-0.36 with the following parameters: LEADING:3 TRAILING:20 MINLEN:50.
Genotype labels for GSE87855 were inferred based on MeCP2 level.

Heatmaps were made in R with pheatmap package version 1.0.12 [47] using log2 fold
change, no clustering on rows, and clustering_distance_cols = “euclidean”. For consistency
in the analysis and the visualization of gene regulation direction, we inverted the direction
of log2 fold change for the MDS contrast (GSE57974_1)

4.11. GSEA

GSEA [48,49] version 4.1.0 Pre-Ranked was run with default parameters besides
set_max of 100,000 and set_min of 1. Ranking values were computed per gene as –
log10(adjusted p value) * log2 fold change. For consistency in the analysis and the visualiza-
tion of gene regulation direction, we inverted the direction of normalized enrichment score
fold change for the MDS contrast (GSE57974_1). GSEA results are available as Table S6.

4.12. ASD Model Comparison

All experiments involving knockdown or modification of the SFARI mouse model
genes were retrieved from the ARCHS4 database. There were 18 such studies, which we
processed using DESeq2 to generate DEGs across 28 contrasts. We retained only DEGs
with FDR < 0.01. With the DEGs for each ASD contrast, we used the hypergeometric and
Fisher’s exact tests to determine the significance of overlap with the set of all the MeCP2
core genes and also both up- and downregulated subsets. Computed ASD contrast fold
change is available as Table S4.

We also used the previously described process to perform GO analysis on genes in the
intersection of the ASD contrasts and MeCP2 cores.

4.13. Down Sampling Analysis

MeCP2 data are from GSE128178. All 10 samples of wild-type and knockout whole-
cell data were randomly selected to create 100 random drawings at each different sample
number. (For instance, sample 9 was one random sample removed from each genotype,
and so on.) Once selected, samples were normalized with each other and analyzed with
the same DEG methodology detailed above. The Rand index was then computed using the
rand.index function in R (fossil, version 0.4.0) [50]. Vectors indicating if each gene was a
DEG for a particular run were compared to the vectors of DEGs for the complete contrast
of 10 wild-type and 10 knockout samples, respectively.

Psoriatic skin data are from GSE63979 (SRP050971). This study contains the total RNA-
Seq data of nine normal skin samples, nine lesional psoriatic samples, and twenty-seven
uninvolved psoriatic samples. In order to conduct the downsampling analysis between
two groups with the same sample number, only normal skin samples and lesional psoriatic
samples were chosen. For each phenotype, all nine samples were randomly selected to
create 100 random drawings at each different sample number. For instance, sample 8 was
one random sample removed from each phenotype, and so on. The DEG analysis and Rand
index comparison on psoriatic skin data was the same used for MeCP2 data.

4.14. Technical Variation/Batch Effect Analysis

All raw MeCP2 mouse expression value data were dimensionally reduced using
UMAP version 0.2.6.0 in R and plotted with color for contrast of origin. ComBat_seq [51]
from R package sva, version 3.36.0, was then run with contrast as batch to deconvolute the
data. ComBat_seq-normalized data were then size factor-normalized with DESeq2 and
plotted again.
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To provide an alternate dataset to evaluate batch effect, we used a set of Alzheimer’s
disease data stored on Synapse from Wan et al. [28]. We retrieved raw count data and
plotted the samples using UMAP. Count data were normalized with DESeq2, and then, we
used the ComBat_seq function to attempt to control for batch effect.

4.15. Sex Comparison

The compared contrasts are GSE90736_1, GSE90736_2, and GSE66211_1. Genes were
considered DEGs if they passed FDR < 0.01. The plot was made with R package VennDia-
gram version 1.6.20.
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