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The human intestinal microbiome substantially affects human health and
resistance to infections in its dynamic composition and varying release of
microbial-derived metabolites. Short-chain fatty acids (SCFA) produced
by commensal bacteria through fermentation of indigestible fibres are
considered key regulators in orchestrating the host immune response to
microbial colonization by regulating phagocytosis, chemokine and central
signalling pathways of cell growth and apoptosis, thereby shaping the com-
position and functionality of the intestinal epithelial barrier. Although
research of the last decades provided valuable insight into the pleiotropic
functions of SCFAs and their capability to maintain human health, mechan-
istic details on how SCFAs act across different cell types and other organs are
not fully understood. In this review, we provide an overview of the various
functions of SCFAs in regulating cellular metabolism, emphasizing the
orchestration of the immune response along the gut–brain, the gut–lung
and the gut–liver axes. We discuss their potential pharmacological use in
inflammatory diseases and infections and highlight new options of relevant
human three-dimensional organ models to investigate and validate their
biological functions in more detail.
1. Introduction
The human microbiome consists of up to a thousand different bacteria, viruses,
fungi and other protozoa found in the digestive system, skin, vaginal cavity and
lungs. The influence of its composition and diversity on human health has
become strikingly evident in recent years. Due to the complexity of how the
microbiome communicates with the host at different levels ranging from
single metabolites to microbial communities, identifying individual microbial-
associated factors actively shaping human host response remains challenging.
Among bacterial-derived metabolites, the short-chain fatty acids (SCFAs)
acetate, propionate and butyrate belonged to the best-characterized molecules.
They were proven essential mediators in the interaction between the human
microbiota and its host [1].

The availability and composition of SCFAs are further influenced by nutri-
tion. The macronutrient composition of the diet affects SCFA production, with a
high in fat and protein diet resulting in reduced SCFA production, as gut bac-
teria preferentially ferment dietary fibre over fat. Conversely, a diet high in
carbohydrates and low in fat can lead to an increase in SCFA production [2].
SCFAs are produced in the intestine by various bacteria such as Lactobacillus
spp., Bifidobacterium spp., Akkermansia muciniphila, Clostridium butyricum, Fae-
calibacterium prausnitzii and others through saccharolytic fermentation of
carbohydrates and proteins [1,3]. Conversely, dysbiosis or an imbalance in the
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gut microbiota can reduce SCFA production [4]. Soluble
fibres such as pectin, beta-glucans and inulin are fermented
more readily by gut bacteria than insoluble fibres such as cel-
lulose and lignin [5]. As a result, consuming more soluble
fibres is expected to lead to higher levels of SCFAs, particu-
larly acetate, propionate and butyrate. Butyrate is produced
in large amounts when gut bacteria ferment resistant starch,
a type of carbohydrate that resists digestion in the small intes-
tine. Consuming prebiotics such as fructooligosaccharides
(FOS) and galactooligosaccharides (GOS) can also stimulate
the growth of beneficial gut bacteria that produce SCFAs
[5]. However, in a recently published systematic analysis, 12
studies were evaluated, reporting on the effects of dietary
fibres on SCFA profiles [6]. Among those studies, seven
studies demonstrated that the consumption of dietary fibres
led to a significant increase in total SCFAs, while no signifi-
cant changes were observed in the other five studies. The
modulation of the SCFA profile was found to be highly influ-
enced by the type of dietary fibre, its structure, and the dose
that was consumed. In addition, the individual composition
of the gut microbiota, which by itself is influenced by the
body mass index (BMI), health/disease status and age [7],
was also identified as a major factor affecting SCFA levels.
Another layer of complexity to consider is the phenomenon
of metabolic cross-feeding, defined as the interaction between
bacterial strains in which metabolites resulting from the
metabolism of one strain are further metabolized by another
strain [8]. These effects might help to explain reports from
studies where taxonomic changes were observed without a
modification of the SCFA profile. Although the beneficial
effects of dietary fibres are well established and widely
accepted [9], it is still difficult to define how they affect the
intestinal microbial ecosystem and SCFA levels in humans [6].

SCFAs are aliphatic acids absorbed by colonocytes and
metabolized as substrates in the tricarboxylic acid (TCA)
cycle [10]. The relative molar ratio of the SCFAs for acetate:
propionate: butyrate in the human intestine is about 60: 20:
20, depending on the processed substrates [1]. From the intes-
tine, SCFAs are distributed throughout the portal venous
system to other organs, including the lung, the brain, the
liver and the fat tissue [10–12]. As small molecules, SCFAs
can diffuse through the cell membrane and act intracellularly
as metabolic substrates in energy metabolism. Thereby, they
are providing acetyl-CoA as the substrate for histone acetyl-
transferases (HATs) and are further potent inhibitors of
histone-deacetylase complexes (HDACs), thereby regulating
its target gene expression [13,14]. However, SCFAs can also
directly bind and activate extracellular G protein-coupled
receptors (GPCRs), which are free fatty acid receptor 2
(FFAR2), FFAR3 and hydroxycarboxylic acid receptor 2
(HCA2, GPR109A). These receptors have been demonstrated
to play a significant role in SCFA-related signalling [15].
HCA2 is predominantly expressed by intestinal epithelial
cells, adipose tissue and activated adipose tissue macrophages,
and binds butyrate, but is not activated by propionate and
acetate [16]. HCA2 plays an important role in suppressing
colonic inflammation by promoting anti-inflammatory signal-
ling and regulation of lipid homeostasis [17,18]. FFAR2 is
mainly expressed in monocytes, eosinophils and neutrophils,
regulating the chemotaxis of leucocytes and neutrophils [19].
In addition, FFAR2 is highly expressed by regulatory T cells
(Treg) in the intestinal mucosa and regulates intestinal
immune homeostasis [20]. In enteroendocrine L-cells, acetate
and propionate induce the release of the glucagon-like peptide
1 (GLP1) upon SCFA-triggered elevation of intracellular Ca2+

levels via FFAR2-dependent signalling [21].
Furthermore, SCFAs play a profound role in regulating

the immune response not only in the gut but also within
the liver, the lung and in the central nervous system
[22–24]. In this review, we will specifically highlight the
pleiotropic functions of these small carbonic acids and their
role in the metabolic crosstalk along the gut–lung, gut–liver
and gut–brain axes, where they act as essential mediators of
homeostasis and immune tolerance. We will further provide
an overview of available in vitro model systems for exploring
their therapeutic potential and characterizing their potential
role in preventing or alleviating dysbiosis-associated diseases
of the gut, the liver, the lung and the CNS.
2. Impact of SCFAs on peripheral immune
cells

In recent years the emerging research field of immunometabo-
lism was created by various studies that reported on the close
interconnection between the metabolism and the immune
response [25]. SCFAs have been demonstrated to affect
innate immune cells such as macrophages, monocytes and
neutrophils by rewiring their metabolism, inhibiting HDACs
and suppressing signalling via nuclear factor-kappa B
(NF-κB) [26,27].

2.1. T cells
The immunomodulatory effects of SCFAs on lymphocytes are
well established. Indirectly, butyrate acts on T cells via macro-
phages and dendritic cells (DCs) in an HCA2-receptor
depended manner on the regulation of T cell homeostasis and
differentiation into naive and regulatory T cells (Treg). Butyrate
modulates the release of IL10 and IL17, two central cytokines of
the pathogenesis of inflammatory bowel disease (IBD) [17,28].
SCFAs were further shown to control the immune response
of cytotoxic T lymphocytes (CTL) [29], and to increase the
number of Treg [28,30]. Acetate, propionate and butyrate can
selectively support the development of T helper cells (Th) 1
and Th17 effector cells and IL-10 secreting Treg depending on
the cytokine milieu and the immunological context. These regu-
latory pathways are independent of FFAR3 and FFAR2
signalling but rely on the inhibition of HDACs and increased
mTOR–S6K activity [31]. The activation of CD8+ T lymphocyte
activity involves the increase of the mitochondrial volume with
SCFAs directly acting as a substrate for fatty acid oxidation
(FAO) and the generation of acetyl-CoA, which fuels the tricar-
boxylic acid (TCA) cycle and oxidative phosphorylation
(OXPHOS) [32]. This mechanism has been found relevant to
promote CD8+ T cell long-term survival as memory cells.
CD8+ T cells require priming by professional antigen-present-
ing cells to participate in the immune response against
intracellular pathogens and tumours. Bachem et al. described
microbiota-derived butyrate to promote the memory potential
of antigen-activated CD8+ T cells [33]. In the study, butyrate
promoted CD8+ T cell long-term survival by shifting the
cellular metabolism through uncoupling the TCA cycle from
glycolysis and promoting OXPHOS by utilizing glutamine
and FAO. Studies on the tumour responsiveness to chemo- or
immunotherapies revealed that butyrate could also boost the
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efficacy of the chemotherapeutic drug oxaliplatin by modulat-
ing CD8+ T cell function and promoting the IL-12 signalling
pathway in the tumour microenvironment [34]. In adoptive T
cell therapy (ATC), pre-treatment of cytotoxic CAR T cells
with SCFAs enhanced antigen-specific anti-tumour activity. In
CTLs, pentanoate and butyrate increased the function of
mTOR, a central cellular metabolic sensor that induces meta-
bolic alterations associated with cytolytic activity against
targeted tumour cells [35]. Pentanoate caused an anti-inflamma-
tory phenotype characterized by increased release of IL-10 and
downregulation of IL-17A production in CD4+ T cells. Like
butyrate, pentanoate inhibits HDAC function but further acts
as a substrate for HATs after its metabolization to acetyl-CoA
[36]. In the same study, pentanoate was also demonstrated to
protect from autoimmune pathology by inducing the formation
of regulatory B-cells in experimental mouse models of colitis
and multiple sclerosis [36].
3:230014
2.2. B cells
Both butyrate and propionate have recently been demonstrated
to reduce local and systemic antibody responses in a dose-
dependent manner modulating epigenetic imprint in B cells.
Mechanistically, both SCFAs act as HDCA inhibitors and down-
regulate activation-induced cytidine deaminase (AID) and B
lymphocyte-induced maturation protein-1 (Blimp1) expression,
thereby inhibiting class-switch DNA recombination, somatic
hypermutation and plasma cell differentiation in C57BL/J6
mice. Butyrate and propionate upregulated miRNA expression
that target transcripts and silences genes of activation-induced
cytidine deaminase (Aicda) and PrDM (which encodes B lym-
phocyte-induced maturation protein-1 (BLIMP-1)), thereby
inducing the impairment of intestinal and systemic T-depen-
dent as well as T-independent antibody responses [37].
However, in another study, SCFAs induced the differentiation
of B-cells into plasma cells and stimulated class switching
with increased release of IgA by fuelling the Acetyl-CoA pool
[38]. By contrast to T cells, this metabolic switch relied on the
expression of FFAR2 [39].

Activation of B cells and the release of inflammation-pro-
moting antibodies plays a central role in the onset and
progression of rheumatoid arthritis (RA). Recently changes
in the gut microbiota and alterations in the formation of
SCFAs were found to alleviate disease symptoms in animal
disease models and RA patients [40]. In mice, regulatory B
cells (Breg), immunosuppressive cells that contribute to main-
taining immunological tolerance [41], were shown to limit
inflammation in RA. The serotonin-derived metabolite
hydroxy indole-3-acetic acid (5-HIAA) was found to mediate
the activation of Breg via the transcriptional regulator arylhy-
drocarbon receptor (Ahr), which supported Breg function and
thereby alleviated the severity of RA.

The regulation of an appropriate B cell response is crucial
in the intestinal mucosa to protect against human pathogens
and their toxins. Cholera toxin (CT), an enterotoxin secreted
by Vibrio cholerae, is a potent adjuvant for inducing mucosal
immune responses. Depleting the gut microbiota with anti-
biotics decreased both systemic and mucosal antibody
responses induced by CT. In line with this observation, oral
supplementation of mice with acetate or butyrate restored
IgA and IgG antibody responses to CT in an FFAR2-
dependent manner [42].
2.3. Macrophages
Macrophages can adopt various complex and transient activation
patterns depending on their specific microenvironment. For sim-
plicity, these activation patterns are often termed M1 and M2
polarization stages. Although this simple concept neglects essen-
tial aspects of the complete biological complexity of macrophage
plasticity, it still helps mechanistic studies identify and character-
ize regulatory pathways controlling inflammatory processes. The
M1 polarization is characterized by a proinflammatory profile,
increased glycolysis and a disrupted TCA cycle resulting in the
accumulation of succinate and itaconate [43]. By contrast, M2-
polarized macrophages, which are involved in tissue remodel-
ling, show an anti-inflammatory profile and rely on using the
TCA cycle and OXPHOS as primary energy sources [44,45]. In
the intestine, tissue-resident macrophages form a protective
barrier against invading pathogenic microorganisms. They are
replenished primarily by blood monocytes and act as critical
gatekeepers shaped in their activation pattern by commensal
and pathogenic microorganisms [46,47]. SCFAs produced by
the gut microbiota are essential regulators of macrophage polar-
ization. Butyrate has been shown to shift the metabolism of M2
macrophages towards OXPHOS and FAO [48]. In vitro, butyrate
decreases glycolysis resulting in higher AMP levels, activation of
AMP kinase and the suppression of mTOR kinase activity. This
metabolic shift is associated with an improved light chain-3
(LC3) -mediated phagocytosis and increased antimicrobial pep-
tide synthesis [49]. Consequently, the antimicrobial potential of
butyrate-treated macrophages is boosted by butyrate and could
be counteracted by stimulation of mTOR [46].

2.4. Neutrophils
Neutrophils belong to the most abundant cell types of the
peripheral immune system and provide a first-line immune
defence by phagocytosing, killing and digesting bacteria
and fungi. Neutrophils generate energy from glucose’s meta-
bolization via glycolysis [29,50]. In neutrophils, SCFAs have
been shown to directly act on FFAR2, thereby increasing
their migration to sites of inflammation [16]. Acetate has
been found to enhance innate immune responses of neutro-
phils via FFAR2 and to promote the activation of the
inflammasome, with subsequent release of IL-1β. This anti-
bacterial host response is supported and coordinated with
innate lymphoid cells type 3 (ILC3s) that augment IL-1 recep-
tor expression in an FFAR2-depended manner upon acetate
binding and secrete IL-22 in response to IL-1β stimulation
[51]. In line with this observation, the loss of FFAR2 reduces
the number of recruited neutrophils by acetate or butyrate in
the intestine [52].

Increased neutrophile recruitment by butyrate is respon-
sible for its antimicrobial activity in Clostridioides difficile (C.
diff.) infections (CDI). In a CDI mouse model, the colonization
with the butyrate-producing bacterium Clostridium butyricum
(CBM588) consequently ameliorated inflammatory disease
symptoms associated with increased neutrophil invasion
and elevated Th1 and Th17 cell counts during the early
phase of CDI [53]. SCFAs were further found to specifically
inhibit the generation of nitric oxide (NO) in neutrophils
[54]. However, in the context of inflammatory bowel disease,
butyrate suppressed in vitro neutrophil migration and the for-
mation of NETs in cells from patients suffering from Crohn’s
disease and ulcerative colitis. This was validated in a
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DSS-induced colitis model of mice, where butyrate signifi-
cantly ameliorated mucosal inflammation by inhibiting NET
formation and the release of proinflammatory cytokines,
chemokines and calprotectin [55].

These findings underline the importance of specific
environmental cues affecting SCFA-related signalling path-
ways and their provoked functions.
ing.org/journal/rsob
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3. SCFAs regulate organ-specific
functionality

3.1. Gut
Acting as an immunocompetent barrier, the gut regulates not
only the uptake of nutrients and electrolytes but is also essen-
tial for preventing the translocation of pathogens and their
toxins into the bloodstream. The mucosal immune system is
key in fine-tuning the complex mutual interaction with the
microbiota, thereby discriminating between beneficial com-
mensals and opportunistic pathogens [56]. As part of the
microbiome, SCFAs mediate an adapted intestinal immune
response toward a dynamically changing microbiota [57].
In the intestine, SCFAs can be passively taken up through dif-
fusion by intestinal epithelial cells or via the sodium-coupled
monocarboxylate transporter1 (SMCT-1) and butyrate via
monocarboxylate transporter 1 (MCT-1) [58]. Butyrate is the
primary energy source for colonocytes providing 60–70% of
their energy supply [59]. Butyrate further promotes the
transcription of tight junction proteins such as Claudin-1, sta-
bilizing epithelial integrity and improving intestinal barrier
functionality [59]. Under ‘physiological hypoxia’, the
oxygen consumption in enterocytes is driven by butyrate,
which stabilizes the hypoxia-inducible factor 1 (HIF-1), a
transcription factor that upregulates gene expression of
Claudin-1 [60,61].

Butyrate further stimulates the synthesis of antimicrobial
peptides (AMP), thereby shaping intestinal microbiota compo-
sition [62]. Consequently, prolonged antibiotic treatment could
disturb intestinal homeostasis and induces dysbiosis by
decreasing colonization with SCFA-producing commensal
bacteria [60]. The mucus layer secreted by intestinal goblet
cells provides a substrate for colonizing bacteria and acts as
a barrier that separates the microbiota from direct interaction
with epithelial cells. Butyrate can improve mucin production
by increasing the frequency of mucin-secreting goblet cells in
the colon crypts in a macrophage-dependent manner. Mechan-
istically, butyrate facilitates M2 macrophage polarization while
blockade of Wnt secretion or ERK1/2 activation suppresses
the beneficial effect of butyrate-primed macrophages on
goblet cell function. In line with this, the adoptive transfer of
butyrate-induced M2 macrophages in a dextran sulfate
sodium (DSS)-induced mice model of colitis restores mucus
secretion. It ameliorates disease symptoms by stimulating
goblet cell regeneration [63]. In clinical studies, the oral admin-
istration of sodium butyrate as a nutritional supplement was
further shown to induce the secretion of the antimicrobial pep-
tide AMP cathelicidin (CAMP), REGIIIβ/γ and β- defensins by
human intestinal epithelial cells [62,64]. In addition to buty-
rate, acetate and propionate directly modulate the epithelial
immune response (i.e. by inducing the release of the pro-
inflammatory cytokine IL-18, which is proposed to improve
intestinal barrier function [65]). Further, IL-18 belongs to key
epithelial-derived cytokines regulating intestinal CD4+ T cell
subsets and contributes to maintaining intestinal immune
homeostasis [66].

SCFAs mount anti-inflammatory conditions in the intes-
tine by activating HCA2, expressed by intestinal dendritic
cells and macrophages, and mediate the release of anti-
inflammatory cytokine IL-10, which subsequently promotes
differentiation of Treg [17,18,67,68]. Treg expressing the tran-
scriptional regulator FoxP3 are critical in regulating
intestinal inflammation, with their differentiation depending
on the microbial colonization of the mucosa. The number of
Treg in the colon is significantly decreased in germ-free
mice. Still, it could be reconstituted to physiological levels
by oral administration of spore-forming SCFA-producing
Clostridium bacteria [30,69]. Treg differentiation is stimulated
by the inhibition of HDACs through SCFAs promoting his-
tone H3 acetylation of the Foxp3 gene promoter [30]. The
mechanism was recapitulated in vivo by applying the
HDAC inhibitor trichostatin A, which induces the expansion
of Foxp3+ Treg and attenuated colitis in mice [70].

SCFAs are also central regulators in preventing IBD, a
chronic illness linked to the dysregulation of the mucosal
immune response to luminal antigens [71,72]. The disturb-
ance of the composition of the intestinal microbiome is
typically seen in IBD. It might be directly linked to an
unfavourable composition of SCFAs, which can regulate the
release of anti-microbial peptides. In IBD, the main subtypes
ulcerative colitis and Crohn’s disease can be distinguished.
Several lines of evidence from in vitro and in vivo studies
demonstrated the beneficial effect of SCFAs as a potential
treatment option for both subtypes of IBD. In animal studies,
oral administration of butyrate ameliorates mucosal inflam-
mation and prevents gut barrier impairment [73]. Also,
propionate was shown to enhance Treg function in an
FFAR2-dependent manner, protecting mice from colitis [74].
This has been validated in FFAR2-deficient mice that show
an exacerbated or unresolved inflammation in experimentally
induced colitis [75]. Results from clinical trials support this
finding for ulcerative colitis patients receiving pre- and/or
probiotic treatments to augment the endogenous formation
of SCFAs [76–78]. However, the beneficial effect of SCFAs
for Crohn’s disease patients through supplementation of
SCFAs or oral uptake of pre- or probiotics to alleviate disease
symptoms is less clear [77].

Dysbiosis is frequently observed as a significant side
effect of prolonged antibiotic treatment, which is also an
important predisposing factor for C. diff. infections, causing
intestinal diseases ranging from mild diarrhea to pseudo-
membranous colitis. In addition to its function on
neutrophils, oral supplementation of sodium butyrate was
shown to protect from C. diff.-induced colitis by reinstalling
physiological hypoxic conditions and stabilizing HIF-1α
expression in intestinal epithelial cells [60,61]. A summary
of the different functions of SCFAs on intestinal epithelial
cells, and peripheral and tissue-resident immune cells
within the intestine is provided in figure 1.

Impairment of the intestinal barrier is also linked to the
onset of cystic fibrosis [79,80], allergic asthma [81], non-alco-
holic fatty liver disease (NAFLD) [82,83] and multiple
sclerosis (MS) [84]. In the following sections, we will discuss
the role of intestinal-derived SCFAs as regulators of the
inflammatory response in the liver, the lung and the central
nervous system (CNS) and the potential therapeutic options
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of SCFA supplementation in ameliorating disease-associated
inflammation in these organs.

3.2. Liver
The liver is the central organ for metabolizing nutrients and
drugs absorbed by the intestine. SCFAs produced in the
gut are shuttled to the liver via the bloodstream of the
portal venous system [1]. By contrast to acetate, butyrate
and propionate are almost entirely eliminated from the
bloodstream by the liver [12]. In western countries, NAFLD
represents an increasingly relevant disease, affecting a quar-
ter of the USA and Asian population [85]. The disease is
characterized by lipid accumulation in hepatocytes and
increased cell death. It can develop into non-alcoholic steato-
hepatitis (NASH), which ultimately results in liver cirrhosis
with a higher risk of end-stage liver diseases, such as liver
decompensation and hepatocellular carcinoma. Accumulat-
ing data indicate the association between dysbiosis, low
levels of SCFAs and the onset of NAFLD [86]. SCFAs are
able to reduce lipid deposition in the liver by stimulating
AMP-activated protein kinase (AMPK) and inducing the
expression of FAO in a peroxisome proliferator-activated
receptor-γ (PPARγ)-depended manner [87,88]. Further,
acetate suppresses proinflammatory activation of liver macro-
phages, thereby limiting hepatic inflammation and
alleviating NASH symptoms [87]. Beneficial effects of
SCFAs have been reported for butyrate, which protects
against the onset of insulin resistance and NAFLD by
inhibiting NF-kB activation through limiting Toll-like recep-
tor (TLR) activity in the liver [89]. Experiments in rats
revealed a significant improvement in liver dysfunction
after partial hepatic ischemia upon treatment with butyrate.
The improvement was associated with limited nuclear trans-
location of NF-κB p65 and a decreased release of the pro-
inflammatory cytokines TNFα and IL-6 by Kupffer cells
[90]. In mice, butyrate protects against western-style diet-
induced NASH by reducing TLR-4-dependent inflammation
and improving the metabolism of lipids and glucose [91].
In line with this, the colonization of mice with 12 different
strains of the commensal SCFA-producing bacterium Faecali-
bacterium prausnitzii significantly restored serum lipid profiles
and ameliorated glucose intolerance, adipose tissue dysfunc-
tion, hepatic steatosis, inflammation and oxidative stress in a
NAFLD disease model [92].

Acetate fuels cellular energy metabolism and represents a
building block in cholesterol synthesis [10,93]. Still, studies
demonstrated a significant decline in serum cholesterol
levels induced by acetate and propionate by decreasing the
enzyme activities in the cholesterol synthesis cycle [88,94].
Further, intestinal cholesterol uptake is reduced by propio-
nate through inhibition of the major cholesterol transporter
Niemann-Pick C1-like 1 (Npc1l1) [95].

The progression of NAFLD to liver cirrhosis is a major
risk factor for developing hepatocellular carcinoma. Hepato-
cellular carcinoma formation was found to be associated
with dysbiosis and decreased levels of acetate-producing bac-
teria resulting in diminished IL-17A secretion by hepatic
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ILC3 [96]. Several studies have reported anti-tumorigenic
effects of SCFAs on cancerogenesis [96–98]. Butyrate could
inhibit tumour growth by suppressing HDAC activity and
inducing apoptosis in cancer cells by modulating the miR-
22/SIRT pathway resulting in the upregulation of ROS pro-
duction, the release of cytochrome c, and the activation of
caspase-3 [99]. In vivo, the administration of butyrate
during chemotherapy allowed a reduction in the concen-
tration of the chemotherapeutic drug irinotecan [100] and
reduced the toxic side effects of irinotecan in rats [101].
However, there are also reports that increased SCFA concen-
trations in the portal venous blood could create a tumour-
promoting microenvironment for hepatocytes with expansion
of Treg and attenuation of CD8+ T cells [102,103].

3.3. Lung
The lung has long been considered a sterile organ that, under
healthy conditions, is not colonized by bacteria, viruses, or
other microorganisms. However, with the rise of culture-
independent tools for detecting microbes in recent years,
there is now evidence that also in the lungs, at least a transi-
ent microbiome exists under homeostatic conditions [104]. It
is assumed that respiratory colonization occurs primarily
via the micro-aspiration of microorganisms from the orophar-
ynx but is also influenced by the microbiome composition of
the upper gastrointestinal tract [105]. Similarly, the diversity
in the lung microbiome decreases with age and with the
severity of diseases [106]. In healthy subjects, the composition
of the microbiome in the lower respiratory tract is indistin-
guishable from microbial colonization in the supraglottic
respiratory tract. The composition of this microbiome has
typically been influenced by the microbial immigration
within the respiratory tract, the elimination of microorgan-
isms by the immune system, and the relative microbial
reproduction rates [107]. The development of lung diseases
such as cystic fibrosis and chronic obstructive pulmonary dis-
ease (COPD) is associated with a shift in the composition of
the lung microbiome [108], which is reflected at SCFA
levels in the lung [109]. Vice versa, IBD patients show an
increased prevalence of COPD, indicating disease-relevant
crosstalk between gut and lung via SCFAs [110,111]. How-
ever, it is still unclear whether the observed changes in the
lung microbiome composition are causative of impaired
lung function or simply reflect new local growing conditions
related to the disease progression.

The connection between the gut and lung is already
formed during embryonic development, where booth
organs derive from the common embryological origin of the
primitive foregut [112]. Although SCFAs are detectable in
human lungs [113] the required substrates for SCFA for-
mation through fermenting bacteria are missing indicating
that SCFAs found in the lung originate from the gut. The
presence of various SCFA receptors such as olfactory recep-
tor-78 (OLFR78) in the upper airways, and FFAR3 and
FFAR2 in alveolar macrophages, alveolar type 2 progenitor
cells, airway smooth muscle cells and the airway epithelium,
however, suggests that SCFAs have a functional role in the
lung as well [113–115]. Clear indication for functional cross-
talk between gut and lung involving acetate is provided by
the observation of newborns that have a significantly
increased risk of developing bronchial asthma and atopy by
the age of 3 years when they develop an intestinal dysbiosis
with reduced acetate levels already at the age of three months
[116]. The disease pattern of bronchial asthma is character-
ized by airway hyperreactivity (AHR) and inflammation
driven by a deviating Th2 response. In this context, a high
fibre-associated incline in SCFA production in the gut was
demonstrated to prevent the progression of AHR [117]. In
mice, butyrate-producing gut bacteria suppress inflam-
mation in AHR by modulating oxidative phosphorylation
and glycolytic metabolic pathways of pulmonary ILC2. In
this study, butyrate was demonstrated to downregulate
GATA3 expression resulting in reduced eosinophilic inflam-
mation and less mucus formation [118]. Thio et al. were also
able to validate the butyrate-mediated reduction of proin-
flammatory cytokine production release in human ILC2
cells underlining the potential of butyrate supplementation
for the treatment of AHR [119]. Butyrate, propionate, and
partially acetate have been shown to have beneficial effects
on the treatment of asthma. Huang et al. investigated the
influence of SCFAs on the inflammatory process in an oval-
bumin-induced asthma model of mice [120]. The authors
studied alternatively activated M2 macrophages that can
promote the production of Th2 cytokines, accumulate
inflammatory cells, and stimulate mucus secretion in
AHR. In this context, the adoptive transfer of M2 macro-
phages enhanced airway inflammation in Aspergillus
fumigatus-induced asthma.

By contrast to reports from the gut and liver, butyrate,
propionate and acetate inhibited M2 macrophage polariz-
ation in an FFAR2-dependent manner and were found to
be protective against the development of airway inflam-
mation and AHR by inhibiting HDAC activity [120,121].
There is further evidence that the lung microbiome of dis-
eased patients responds differently to SCFAs [109]. In a
model of cystic fibrosis, bronchial epithelial cells from
patients expressed higher levels of FFAR3. They showed no
decrease in IL-8 secretion even at very high propionate con-
centrations compared to epithelial cells derived from
healthy donors [109].

Intestinal colonization with SCFA-producing bacteria
was further shown to mediate protective effects in pneumo-
nia, where infection with Klebsiella pneumoniae was resolved
faster after Bifidobacterium longum (B. longum) adminis-
tration. The colonization with B. longum led to the release
of anti-inflammatory IL-10 in the lung, protecting infected
animals from severe tissue damage and significantly
reducing their mortality [122]. Hagihara et al. reported
important crosstalk along the gut–lung axis after oral
administration of the butyrate-producing bacterium Clostri-
dium butyricum, which increases the resistance to influenza
virus infection after upregulation of interferon (IFN)-λ in
lung epithelial cells. The ω-3 fatty acid 18-hydroxy eicosa-
pentaenoic acid (18-HEPE) enhanced ω-3 fatty acid
sensitivity in the lungs by promoting the expression of
GPR120 and induction of IFN-λ release [123]. However, in
another study, high-dose propionate treatment of the lung
reduced the immune containment in Staphylococcus aureus
pneumonia and diminished the host defence against the
pathogen [124]. This illustrates the importance of carefully
considering the complex modulation of the inflammatory
response by SCFA regarding their local and systemic avail-
ability to unfold its host protective effects but to avoid any
detrimental dose-dependent immunosuppressive effects in
the course of infections.
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3.4. Central nervous system
Intestinal barrier perturbation and the resulting inflamma-
tory conditions are associated with the development of
various neurological diseases [125,126]. The communication
between the CNS and the intestine with its enteric nervous
system (ENS) is mainly mediated by the sympathetic and
parasympathetic nervous system and various hormones reg-
ulating gut mobility and appetite [127,128]. There is evidence
of bidirectional crosstalk between the CNS and the intestine
[129]. SCFAs directly impact physiological processes on the
blood-brain-barrier (BBB) integrity and the cellular energy
metabolism along the gut–brain axis. Butyrate is capable of
preventing the translocation of inflammatory agents through
the BBB by improving its integrity [130,131].

Furthermore, acetate has been found to play an important
role in the energy metabolism of the CNS by increasing
acetyl-CoA- and ATP levels in the brain [132,133]. Acetate
also represents an important energy source for astrocytes
[134]. Both butyrate and acetate further dampen the inflam-
matory response in lipopolysaccharides (LPS) induced
neuroinflammation [135,136] and are required for the main-
tenance of homeostasis and the maturation of microglia
cells by modulating neuroinflammation in an FFAR2-depen-
dent manner [137].

Propionate seems to have an important function in MS [84]
where its level in the intestine is significantly decreased [138].
A causal link for propionate has been demonstrated in a mice
model of induced experimental autoimmune encephalitis
(EAE), an animal surrogate of MS. In this model, the neuro-
logical symptoms associated with EAE were ameliorated by
administration of propionate [139]. These results were con-
firmed by a clinical study with MS patients, where the
standard drug medication was amended with propionate sup-
plementation over three years. A post-hoc analysis revealed a
significant reduction in relapses and brain atrophy and nor-
malization of Treg function in propionate-supplemented MS
patients [138]. Like MS, also the treatment of Parkinson’s dis-
ease and Alzheimer’s disease was found to be improved by the
supplementation with SCFAs highlighting their attractive
therapeutic potential through amelioration of the disease-
associated neuroinflammatory processes [140,141]. In a Droso-
phila model of Parkinson’s disease, butyrate application
improved locomotor impairment and elevated dopamine
levels resulting in higher survival rates [142]. These obser-
vations are supported by studies with murine and human
neuronal cells in which the neuroprotective effect of butyrate
was also confirmed [143–145]. In mice models of Alzheimer’s
disease, butyrate improved memory function in the advanced
stage of the disease [146], inhibited aggregation of beta-amy-
loid [147] and reduced neuroinflammation that improved
synaptic plasticity [148]. Furthermore, butyrate ameliorated
the social behaviour in autism spectrum disorder (ASD)
through the improved expression of apical junctional complex
proteins at the BBB, thereby limiting neuroinflammation and
disease progression [125,149].

In a murine stress model with stress-induced intestinal
damage, the oral admission of SCFAs resulted in lowered
corticosterone release and decreased anxiety-like and
depressive-like behaviour [150,151]. Further, butyrate
induced the expression of genes linked to an anti-stress
response by inhibiting HDAC activity [152–154]. Its anti-
depressive effects are related to reduced microglia cell
activation and diminished TNFα signalling [155–157]. Based
on the results of these studies, the supplementation of buty-
rate represents a promising treatment option for depression
and other stress-related diseases.

Acetate was reported as a modulator in the release of the
hypothalamic neuropeptide [158]. Interestingly, acetate can
even reduce liver steatosis by suppressing appetite by
acting on enteroendocrine cells and glutamate-glutamine
and GABA neuroglial cycles associated with increasing hypo-
thalamic lactate [159]. Mechanistically, FFAR2 and FFAR3
expressed by enteroendocrine cells mediate the release of
peptide YY and GLP-1 [160], both important mediators of
satiety [161,162]. In another study, butyrate supplementation
was associated with reduced food uptake, promoted FAO
and activation of brown adipose tissue with increased utiliz-
ation of plasma triglyceride-derived fatty acids, which
prevented diet-induced obesity, hyperinsulinemia, hypertri-
glyceridemia and hepatic steatosis [163]. The most
important pleiotropic functions of SCFAs in the crosstalk
between the gut and the lung, the CNS and the liver are
presented in figure 2.
4. State-of-the-art models to study the
effects of SCFAs

Most existing studies on SCFA function have used animal
models, while clinical studies are scarce. Rodents are well-
established animal models for studying the systemic effects
of SCFAs and their multiple functions on various organs
[20,95]. In particular germ-free mice were used in a multitude
of studies to explore the role of the microbiome and how it is
shaping the human host’s immune response. However, the
translational potential of rodent models to the human situ-
ation is limited due to alterations in the immune system of
germ-free mice and more general species-related differences
in the function and composition of the immune system
between animals and men [164–167]. Given the vast pleiotro-
pic effects of SCFAs in different organs and individual cell
types in a complex mutual interaction of the microbiota
with its host, it is challenging to avoid technical bias in the
complex animal organism. Although animals provide a ‘com-
plete picture’ in terms of biological complexity, reductionistic
but scalable in vitro models offer an attractive option to sys-
tematically address mechanistic questions of SCFAs from
the cellular to the tissue level under defined and controllable
experimental conditions in human genetic background.

Current in vitro models often use cancerogenic cell lines,
which show important alterations in SCFA metabolism com-
pared to primary cells. In cancer cells, SCFAs could
accumulate due to the Warburg effect, which describes the
uncoupling of aerobic glycolysis from oxidative respiration.
Under these conditions, intracellular butyrate and propionate
levels incline faster due to their limited metabolization. They
could inhibit HDAC activity more efficiently with altered his-
tone acetylation compared to non-cancerogenic cells. Another
issue in standard cell culture models to consider is the influ-
ence of glucose, which is in standard cell culture media for
immortalized cell lines and is often present in very high
non-physiological concentrations. Under low, physiologically
more relevant glucose conditions, the oxidative metabolism
in cancer cells is increased, and butyrate and propionate
are metabolized more efficiently, thereby lowering their



bacterial
fermentation

blood–brain barrier

endothelial
cells

pericytes

astrocytes

tight junction
improvement

energy source

amiloration of diesease symptoms in:

Parkinson disease
Alzheimer disease
multiple sklerosis
autism spectrum disease

neuroinflammation

microglia cells

maintenance and
homeostasis

acetate
butyrate

ameliorated
stress response
antidepressive

HDAC inhibition

FAO
appetite suppression
satiety

PYY
GLP-1NASH

cirrhosis

HCC

acetate
propionate
butyrate

AMPK

lipid
deposition

FAO

NF-
kB

TNF� IL-6

macrophage

alveolar
macrophage

M2

immune cell
infiltration

inflammation
AHR
asthma

pulmonary
ILC2

butyrate

GATA3
HDAC

Klebsiella
pneumoniae

protection
against
infections

influenza
virus

protection against
airway inflammation

chronic liver disease

central nervous system lung

liver gut

Figure 2. SCFAs produced and released from the gut are distributed via the bloodstream, eventually reaching the liver, the lung and the CNS. SCFAs can be
metabolized via FAO or in the TCA cycle. They can mediate anti-inflammatory effects, contribute to tissue homeostasis, protect from blood barrier breakdown,
and alleviate symptoms of inflammatory diseases and neural disorders. HCC, hepatocellular carcinoma; AHR, airway hyperreactivity; NASH, non-alcoholic
steatohepatitis. Created with BioRender.com.

royalsocietypublishing.org/journal/rsob
Open

Biol.13:230014

8

epigenome-modulating effects [168]. As most of those in vitro
studies were performed with cancer cell lines, these mechan-
isms should be considered in the extrapolation of in vitro
SCFA effects to the in vivo situation [168].

An interesting alternative to cancer cell lines are orga-
noids that have become more and more important as
sophisticated in vitro models to study the human host-micro-
biome interaction. The cellular arrangement in these tissue
models allows the execution of developmental programs
capable of specifically guiding intricate, temporally varying
signalling dynamics of stem cells for determining its cell
fate and cell linage commitment in a spatio-temporal
manner to form an organotypic structure that recapitulates
essential microanatomical features with high cellular diver-
sity [169,170]. Cell growth and differentiation of the stem
cells are guided by genetically preserved embryonic develop-
mental programs enabling these organoids to recreate cellular
polarization and to mimic a realistic expression pattern of
receptors and transporter proteins for SCFAs. In such orga-
noid models, it has recently been shown that the crypt
architecture formed by colonocytes protects the stem cell
niche through a metabolic barrier by consuming butyrate,
thereby preventing the suppression of intestinal stem cell pro-
liferation by butyrate at the base of the crypts [171]. Intestinal
organoids derived from patients with colorectal cancer (CRC)
were further used to study the effects of SCFAs on the
responsiveness to radiotherapy. By contrast to propionate
and acetate, only butyrate was able to suppress the prolifer-
ation of organoids and enhance radiation-induced cell
death. Importantly, radiation-induced cell death was not
enhanced in normal organoids, where it improved the regen-
eration capacity after irradiation [172].

However, organoids tend to vary in their morphology,
size and number depending on donor-specific characteristics
and culture conditions. Further, a standardized and reprodu-
cible coculture of a living microbiota inside organoids is
challenging, as the number of bacteria and volume needed
for microinjection depends on the individual organoid size
and lumen, which tends to be heterogenous among donors
and even within one batch from a given donor. The size
and morphological variability of organoids in standard cul-
tures are further impracticable for standardization in
studies when larger sample numbers are required. Organ-
on-chip models offer a way to circumvent some of the limit-
ations of conventional organoid cultures. In most of the
models, a porous membrane serves as a functionable cell cul-
ture substrate this is separating two channels and supporting
cell growth by providing a scaffold for perfusion with cell
culture medium and removal of cellular waste products
[173–177].

Gut-on-chip models were used to study the effects of
SCFAs on the barrier function and regulation of the immune
response in vitro. The HuMix model allows the coculture of
a living microbiota with intestinal epithelial cells and
immune cells under physiologically relevant anaerobic con-
ditions (figure 3a). In this model, the commensal bacterium
Lactobacillus rhamnosus GG (LGG) was cocultured with
human intestinal epithelial cells and induced similar transcrip-
tional, metabolic and immunological responses as observed
in vivo [180]. The HuMix system was further used to coculture

http://BioRender.com
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colon rectal cancer (CRC)-derived epithelial cells with a probio-
tic and prebiotic treatment. Using multi-omics and in silico
metabolic modelling, it was demonstrated that the combination
of probiotic and prebiotic stimuli caused distinct ratios of
SCFAs and induced the downregulation of genes involved in
pro-carcinogenic pathways and drug resistance. Formate, an
SCFA produced by Fusobacterium nucleatum, has been identified
in a follow-up study in the HuMix model to promote CRC
development [181]. Patient-derived CRC cells were cocultured
with F. nucleatum and displayed a metabolic shift toward
increased formate secretion. The authors could show the for-
mate-mediated protumorigenic effects by driving CRC
tumour invasion through triggering AhR signalling and
increasing cancer stemness. These findings were validated in
mice where F. nucleatum and formate treatment caused an
increased tumour incidence and tumour size associated with
an expansion of Th17 cells favouring a proinflammatory milieu.

The modulation of T cell responses by SCFAs has also
been studied in a multi-organ system emulating the gut–
liver axis in the context of ulcerative colitis (figure 3b). Con-
ditions of inflammation were recreated in the gut model by
coculture of primary human UC epithelial cells with dendri-
tic cells and macrophages. In this model, the exposure to
SCFAs decreased innate immune cell activation through
PPAR signalling and the downregulation of the NF-kB path-
way. The gut model was coupled to a model of the liver, in
which the hepatic metabolic function improved due to the
reduced inflammatory profile in the gut system. In the
multi-organ model, the conversion of SCFAs was increased
and resulted in enhanced production of bile acids and
increased gluconeogenesis, lipid metabolism, and the for-
mation of ketone bodies. Surprisingly, SCFAs induced
increased hepatocyte damage by acting on T cells and
stimulating metabolic reprogramming toward increased
differentiation of circulated CD4+ T cells into activated Treg
and Th17 cells through inhibiting HDAC and p62-TRAF6
function [179].
Several groups have established in vitro models of the BBB
[182–184] and even more complex models of the neurovascular
unit (NVU), which also includes glia cells or neurons [185,186].
With these systems, advances have been made in modelling
specific neurological disorders, such as Alzheimer’s disease
[187,188] and Parkinson’s disease [189–191]. In future studies,
these model systems will help to investigate SCFAs and their
role in modulating signalling processes and the immune
response along the gut–brain axis. New modelling approaches
with multi-organ-on-chip systems will further contribute to
the evaluation of the therapeutic potential of SCFAs for the
treatment of neurological and neurovascular disorders.
5. Conclusion
SCFAs are potent modulators of the host immune response
and efficiently orchestrate the crosstalk between the intestine
and the lung, the liver and the CNS. Its specific effects are
mainly a result of induced metabolic and metagenomic
changes by SCFAs and FFAR-related signalling on both the
adaptive and the innate immune system. Recent data from
various studies highlight the pharmacological potential of
SCFAs in acute and chronic inflammatory diseases and infec-
tions. However, still many questions remain open. To fully
explore the pleiotropic effects of SCFAs and to understand
the multiple signalling processes related to SCFA binding,
uptake and metabolization, a reasonable combination of
emerging three-dimensional organ models and well-charac-
terized animal models will provide more insight into SCFA
biology and its therapeutic potential. Still, it remains challen-
ging to define the therapeutic potential of SCFA (i.e. on the
improvement of IBD or in the context of carcinogenesis).
Although SCFAs show apparent effects in reducing the
inflammatory response in sterile or allergic transmitted lung
injuries, their therapeutic use for treating reparatory diseases
still needs further evaluation. Thus, more extensive clinical
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trials are required to unravel the pharmaceutical potential of
SCFAs in diseases such as Crohn’s disease, ulcerative colitis,
NASH, hepatocellular carcinoma or pneumonia.
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