Skip to main content
. 2022 Aug 20;112(4):464–505. doi: 10.1007/s00392-022-02069-0

Table 3.

Active left ventricular venting

Venting mode Authors Year Trial Type Trial demograhics VA-ECMO-Indication Venting Technique Timing of venting initiation
Schrage et al. [52] 2020 Multicenter, retrospective (Enrollment period 2005–2019) n = 686, median age: 56.6 years, 77.7% male, rate of decompression using Impella in total study population: 49%, 1:1 propensity matched analysis of n = 255 undergoing ECMELLA compared to n = 255 VA-ECMO alone AMI: 64.3%; previous cardiac arrest: 67.1% [unmatched cohort] Impella 2.5: 22.3%; Impella CP: 67.1%; Impella 5.0: 5.5%; missing data: 5.1% [matched cohort] Impella as first device: 56%; VA-ECMO as first device: 44%; median interval from Impella to VA-ECMO: 0.0 h [matched cohort]
Tongers et al. [56] 2020 Singlecenter, prospective (Enrollment period 2012–2016) n = 69, median age: 57 years, 78% male, rate of decompression using Impella in total study population: 100% AMI: 54%; cardiomyopathy: 45%; incessant ventricular arrhythmia: 1%; out-of-hospital cardiac arrest: 33% n = 1 recieved pulmonary artery cannulation, no information on Impella subtypes VA-ECMO as first device: 49%; Impella before percutaneous coronary intervention: 28%
Colombier et al. [58] 2019 Singlecenter, retrospective (Enrollment period 2011–2015) n = 1248, median age: 54 years, 71% male, n = 587 treated with VA-ECMO and IABP, rate of decompression using Impella in total study population: 2.5% (n = 31) AMI: 52%; DCM: 23%; myocarditis: 10%; chronic valvular cardiopathy: 6%; PCS: 3% Impella 2.5: 29%; Impella CP: 13%; Impella 5.0: 58% Median interval between VA-ECMO and Impella implantation: 84 h; Impella upgrade within 48 h: 22% (n = 7/31)
Akanni et al. [54] 2018 Singlecenter, retrospective (Enrollment period 2010–2014) n = 225, median age: 57 years, 69.33% male, rate of decompression using Impella in total study population: 12.9% (n = 29) AMI: 25.8%; PCS: 36.44%; acute decompensated heart failure: 13.3%; primary graft failure: 11.1%; other (13.3%) Impella 2.5: 72.4%; Impella CP: 27.6%; VA-ECMO upgraded to ECMELLA: n = 14; Impella upgraded to ECMELLA: n = 15 Impella upgraded to ECMELLA: 51.7%; VA-ECMO upgraded to ECMELLA: 48.3%; median interval from VA-ECMO to ECMELLA upgrade: 12 h; median interval from Impella to ECMELLA upgrade: 7 h
Fiedler et al. [89] 2018 Singlecenter, retrospective (Enrollment period 2014–2017) n = 59, rate of decompression using Impella in total study population: 20.3% (n = 12, average age: 51.8 years, 66% male) AMI: 50%; myocarditis: 33%; mechanical complication: 8%; catheterization complication: 8%; CPR before cannulation: 41.2% [ECMELLA group] Impella 2.5, Impella CP No information
Schrage et al. [55] 2018 Singlecenter, retrospective (Enrollment period 2013–2018) n = 106, median age: 53 years, 82.1%, rate of decompression using Impella in total study population: 100% AMI: 59.4%; acute decompensated heart failure: 19.8%; myocarditis: 9.4%; sudden cardiac death: 8.5%; cardiac arrest before device therapy: 82% Impella 2.5: 21.7%; Impella CP: 78.3%; upgrade from Impella CP to Impella 5.0 required for VA-ECMO weaning in n = 12 Impella as first device: 20.8%; VA-ECMO as first device: 18.9%; simultaneous implantation: 60.3%; VA-ECMO implantation during refractory cardiac arrest: 48.1%
Eliet et al. [57] 2018 Singlecenter, retrospective (Enrollment period 2009–2013) n = 134, rate of decompression using Impella in total study population: 20% (median age: 44 years, 78% male) AMI: 44%; myocarditis: 11%; chronic heart failure: 33%; other: 11% [n = 27 Impella cohort] Impella 2.5: 52%; Impella 5.0: 48%; median Impella flow: 1.9 L/min [n = 27 Impella cohort] Median interval between VA-ECMO and Impella implantation: 20 h [n = 27 Impella cohort]
Pappalardo et al. [53] 2016 Two-center, retrospective (Enrollment period 2013–2015) n = 157, median age: 53 years, 87% male, rate of decompression using Impella in total study population: 21.7%, 1:2 propensity matched analysis of n = 21 undergoing ECMELLA compared to n = 42 VA-ECMO alone AMI; refractory VT/VF: 17%; myocarditis: 8%; post heart/lung transplantation: 2% [matched cohort] Impella 2.5, Impella CP Concomitant implantation of VA-ECMO and Impella: 100%
Pulsatile pump device (PulseCath) Tschöpe et al. [49] 2020 Case report n = 1, 49 yo, male Myocarditis PulseCath iVAC2L Impella CP implantation before VA-ECMO, substitution of Impella with iVAC2L 6 days after ECMELLA initiation
LV-Catheter Bloom et al. [44] 2019 Case report n = 1, 45 yo, male AMI Percutaneous insertion of a 7Fr pigtail catheter (Medtronic) into LV; venting flow 90 ml/min 4 days after VA-ECMO initiation
Hong et al. [38] 2016 Singlecenter, retrospective (Enrollment period 2013–2014) n = 7, mean age: 39.9 years, 71% male AMI: 71%; pulmonary embolism: 14%; dilated cardiomyopathy: 14%; eCPR rate: 58% Percutaneous insertion of a 5-6Fr pigtail catheter (PIG performa) into LV No information
Barbone et al. [51] 2011 Case report n = 1, 47 yo, male AMI Percutaneous insertion of a 7Fr pigtail catheter (Johnson&Johnson) into LV Simultaneous with VA-ECMO initiation
Fumagalli et al. [45] 2004 Case report n = 1, 34 yo, male Unknown Percutaneous insertion of a 17Fr pediatric pigtail catheter into LV; venting flow 300 ml/min 24 h after VA-ECMO initiation
Cheung et al. [46] 2003 Case report n = 1, 15 yo, male Congenital heart disease: 100% Percutaneous insertion of a 11Fr Mullins transseptal sheath with side holes into the LV through an iatrogenic atrial septal defect after frustrane blade septostomy Shortly after VA-ECMO initiation
Active, left ventricle (surgical) Trans-apical Takeda et al. [41] 2017 Singlecenter, retrospective (Enrollment period 2007–2016) n = 112, analyis of n = 22 undergoing VA-ECMO and trans-apical LV cannulation (median age: 58.0 years, 77.3% male) compared to n = 90 undergoing BiVAD insertion (median age: 52.5 years, 72.2% male) AMI: 63.6% (VA-ECMO + Vent), 53.3% (BiVAD); acute decompensated heart failure: 31.8% (VA-ECMO + Vent), 34.4% (BiVAD); myocarditis: 4.55% (VA-ECMO + Vent), 12.2% (BiVAD); patients with recent open-heart surgery did not recieve VA-ECMO + Vent, but BiVAD Left thoracotomy, trans-apical insertion of a 28-32Fr cannula into LV through a stab incision [VA-ECMO + Vent] Simultaneous with VA-ECMO initiation [VA-ECMO + Vent]
Eudailey et al. [43] 2015 Case report n = 1, 61 yo, male Perioperative cardiac arrest Trans-diaphragmatic trans-apical insertion of a 20Fr DLP sump cannula (Medtronic) into LV through a stab incision Shortly after VA-ECMO initiation
Guirgis et al. [59] 2009 Case report n = 1, 17 yo, female Myocarditis Subxiphoid access, trans-apical insertion of 20Fr sump cannula into LV through a stab incision Shortly after VA-ECMO initiation
Trans-pulmonary Beyls et al. [65] 2020 Case report n = 1, 21 yo, female Rocuronium-related hypersensitivity myocarditis Trans-pulmonary insertion of a 22Fr DLP cannula (Medtronic) into LV Shortly after VA-ECMO initiation
Schmack et al. [39] 2017 Singlecenter, retrospective (Enrollment period 2004–2014) n = 48, mean age: 49.7 years, 64.6% male, rate of decompression using surgical LV venting in total study population: 41.6% AMI: 12.5%; DCM: 22.8%; myocarditis: 18.8%; valvular disease: 10.4%; ischemic cardiomyopathy: 6.3%; others: 31.3%; VA-ECMO initiation post-cardiotomy: 10% (LV vent), 46% (VA-ECMO alone) (p < 0.01) Trans-pulmonary insertion of a heparin-coated 24Fr cannula into LV Simultaneous with VA-ECMO initiation
Keenan et al. [42] 2016 Case series n = 3, median age: 54 years, 100% male AMI: 33%; ischemic cardiomyopathy: 33%; non-ischemic cardiomyopathy: 33%; out-of-hospital cardiac arrest: 33% Right anterior thoracotomy, trans-pulmonary insertion of a 20-26Fr cannula into LV; venting flow between 400-800 ml/min Simultaneous with VA-ECMO initiation
Weymann et al. [63] 2014 Singlecenter, prospective (Enrollment period 2010–2013) n = 12, median age: 31.6 years, 83% male AMI: 25%; myocarditis: 50%; acute cardiac decompensation: 25% Median sternotomy, trans-pulmonary insertion of a heparin-coated 24Fr venting cannula (Medtronic) into LV Simultaneous with VA-ECMO initiation
Sandrio et al. [64] 2014 Singlecenter, retrospective (Enrollment period 2011–2012) n = 8, median age: 1.15 years, 50% male Myocarditis: 37.5%; post-cardiotomy mechanical support: 50%; DCM: 12.5% Trans-pulmonary insertion of a 10-24Fr cannula into LV Insertion of LV venting cannula 9 h/13.5 h after VA-ECMO initiation in first two patients, respectively, remaining 6 patients had simultaneous LV venting with VA-ECMO initiation
Active, left ventricle (mixed analysis) Impella vs. VA-ECMO ± surgical venting Patel et al. [90] 2019 Singlecenter, retrospective (Enrollment period 2014–2016) n = 66, median age: 63 years (n = 30, ECMELLA ± surgical Vent group), 55 years (n = 36, VA-ECMO group, containing n = 21 with surgical Vent), 70% (ECMELLA), 67% (VA-ECMO) male STEMI: 50% (ECMELLA), 17% (VA-ECMO) (p = 0.007) Impella 2.5: 6.7%; Impella CP: 80%; Impella 5.0: 13.3%, no information on surgical techniques Implantation of Impella concomitantly or within 24 h of VA-ECMO initiation in majority of cases
Venting mode Mechanical support duration Follow-up time Hemodynamic effect of decompression Mortality outcome Additional outcome information Complications/adverse events
Median duration of VA-ECMO: 5.0 days (ECMELLA group), 4.0 days (VA-ECMO alone group); median duration of Impella: 6.0 days (ECMELLA) [matched cohort] 30 days No information 30-day mortality rate: 56.9% (ECMELLA), 63.5% (VA-ECMO alone) (p = 0.03); 30-day mortality rate lower with early LV unloading shortly before or at VA-ECMO initiation: HR 0.76, p = 0.03 [matched cohort] Bridge to durable LVAD: 12.4% (ECMELLA), 6.5% (VA-ECMO alone) Severe bleeding: 38.4% (ECMELLA), 17.9% (VA-ECMO alone) (p < 0.01); moderate bleeding: 51.0% (ECMELLA), 38.5% (VA-ECMO alone) (p = 0.01); hemolysis: 33.6% (ECMELLA), 22.4% (VA-ECMO alone) (p = 0.01); intervention because of access site-related ischemia: 21.6% (ECMELLA), 12.3% (VA-ECMO alone) (p < 0.01); laparotomy because of abdominal compartment: 9.4% (ECMELLA), 3.7% (VA-ECMO alone) (p = 0.02); renal replacement therapy: 58.5% (ECMELLA), 39.1% (VA-ECMO alone) (p < 0.01) [matched cohort]
Median duration of VA-ECMO: 141 h; median duration of Impella: 117 h; median duration of ECMELLA: 94 h 6 months Rapid decline in catecholamine requirement and blood lactate levels after Impella addition In-hospital survival rate: 61%; 30-day survival rate: 49%; 6-month survival rate: 40%; > 13.5 h from shock-to-first-device predicted increased mortality; active withdrawal of ICU therapy according to patients living will: 12/69 Time of shock-to-first device: 5.5 h; cardiopulmonary status at discharge: 17.4% NYHA I, 47.8% NYHA II, 34.8% NYHA III; neuromuscular status at discharge: 73.9% CPC I, 26.1% CPC II Major bleeding: 1%; minor bleeding: 29%; minimal bleeding: 28%; no bleeding: 42%; hemolysis: 55%; acces site complications: 6%; lower extremity ischemia or compartment syndrome: 9%; stroke: 7%; device explantation due to dysfunction: 3%
Median duration of Impella: 8 days 30 days Multiorgan failure during VA-ECMO: 81%; resolution of multiorgan failure after Impella addition: 68% 30-day survival rate: 53% (ECMELLA group), 56% (all n = 1248 VA-ECMO treated patients); mortality rate under ECMELLA: 26% Weaning rate: 26% (VA-ECMO), 74% (Impella); discharge rate: 39% (12/31) Insertion site bleeding: 26%; blood transfusion: 50%; Impella displacement: 65%; lower limb ischemia: 3%; Impella insertion site infection: 3%; stroke: 19%
Median duration of VA-ECMO: 3.29 days (Impella upgraded to ECMELLA), 3.65 days (VA-ECMO upgraded to ECMELLA), 3.58 days (VA-ECMO alone) 30 days Decrease of systolic and diastolic PAP 24 h after Impella addition (VA-ECMO upgraded to ECMELLA, p = 0.049); no significant differences in MAP, systolic/diastolic PAP and CVP 24 h after ECMELLA upgrade compared to all VA-ECMO alone 30-day survival rate: 48.98% (VA-ECMO alone), 42.86% (VA-ECMO upgraded to ECMELLA), 48.67% (Impella upgraded to ECMELLA) (p = 0.913) Transition to durable LVAD: 24.49% (VA-ECMO alone), 35.71% (VA-ECMO upgraded to ECMELLA), 66.67% (Impella upgraded to ECMELLA) (p < 0.05); discharge rate: 42.35% (VA-ECMO alone), 35.71% (VA-ECMO upgraded to ECMELLA), 40.00% (Impella upgraded to ECMELLA) Bleeding: 44.83% (ECMELLA), 40.31% (VA-ECMO alone) (p = 0.688); hemolysis: 44.83% (ECMELLA); 17.35% (VA-ECMO alone) (p = 0.002); infection 0% (ECMELLA), 13.78% (VA-ECMO alone) (p = 0.03)
Average duration of ECMELLA: 5.6 days Hospita-lisation No information Survival rate: 58% (7/12) Discharge rate: 58% (7/12); bridge to recovery: 5/12; bridge to orthotopic heart transplantation: 1/12; bridge to durable LVAD: 1/12 Bleeding: 42%; hemolysis: 58.3%; renal dysfunction requiring CVVH: 33.3%; stroke: 25%; long-lasting neurologic deficits: 0%
Median duration of VA-ECMO: 6.0 days; median duration of Impella: 6.0 days 30 days PCWP decrased after VA-ECMO upgrade to ECMELLA in all 3 patients with available data 30-day mortality rate: 64.2%; 30-day mortality rate higher in patients who underwent eCPR; 30-day mortality rate higher in patients not weaned from VA-ECMO (p < 0.01) VA-ECMO weaning rate: 51.9%; weaning rate in patients who underwent eCPR: 35.3% (p < 0.01) Bleeding requiring intervention: 24.8%; hemolysis: 47.1%; vascular complication requiring intervention: 34.3%; renal replacement therapy: 59.4%; hypoxic brain damage: 19.1%; stroke: 11.4%; abdominal compartment with the need of laparotomy: 22.9%; sepsis: 41.9%
No information No infor-mation MAP: 66 mmHg (Impella setting P1), 79 mmHg (final Impella setting) (p < 0.0001); LVEDD: 49 mm (P1), 30 mm (final) (p < 0.0001); EtCO2: 9 mmHg (P1), 19 mmHg (final) (p < 0.0001); pulmonary VTI: 2.3 cm (P1), 5 cm (final) (p = 0.001) [n = 11 patients, from whom Impella ramp test data was available] No information No information No information
Median duration of VA-ECMO: 148 h (ECMELLA group), 73.5 h (VA-ECMO alone group) (p = 0.2) [matched cohort] Hospita-lisation No information In-hospital mortality rate: 48% (ECMELLA), 74% (VA-ECMO alone) (p = 0.04) [matched cohort] VA-ECMO weaning rate: 48% (ECMELLA), 28% (VA-ECMO alone) (p = 0.047); bridge to next therapy or recovery: 62% (ECMELLA), 36% (VA-ECMO alone) (p = 0.048); duration of mechanical ventilation: 163 h (ECMELLA), 48 h (VA-ECMO alone) (p = 0.04) [matched cohort] Major bleeding: 38% (ECMELLA), 29% (VA-ECMO alone) (p = 0.6); minor bleeding: 19% (ECMELLA), 24% (VA-ECMO alone) (p = 0.8); hemolysis: 76% (ECMELLA), 33% (VA-ECMO alone) (p = 0.004); CVVH: 48% (ECMELLA), 19% (VA-ECMO alone) (p = 0.02) [matched cohort]
Pulsatile pump device (PulseCath) Duration of iVAC2L support: 5 days 11 days Increase in LVEF from 10 to 20%, stabilization of blood pressure No information Patient successfully weaned from iVAC2L Hemolysis under ECMELLA, no complications related to iVAC2L
LV-Catheter Duration of VA-ECMO: 48 days; duration of LV pigtail: 4 days 92 days Resolution of pulmonary edema within 24 h Patient survived Patient bridged to heart transplantation by durable LVAD No procedure-related complications reported
Median duration of VA-ECMO: 5.8 days (survivors), 6.7 days (non-survivors) (p = 0.840) No infor-mation LVEDD: 59 mm (pre pigtail insertion), 50 mm (post pigtail insertion) (p = 0.044); LVEF: 18.3% (pre pigtail insertion), 38.3% (post pigtail insertion) (p = 0.094) Mortality rate: 42% Discharge rate: 58%; VA-ECMO weaning rate: 58% No procedure-related complications reported
Duration of VA-ECMO and LV catheter venting: 4 days 1 year LVEDV: 221 ml (pre VA-ECMO), 136 ml (post pigtail insertion) Patient survived Patient bridged to heart transplantation by durable LVAD No procedure-related complications reported
Duration of VA-ECMO: 7 days No infor-mation PCWP: 40 mmHg (pre pigtail insertion), 7 mmHg (post pigtail insertion); CVP: 11 mmHg (pre pigtail insertion), 3 mmHg (post pigtail insertion) Patient survived Patient recieved heart transplantation No procedure-related complications reported
Duration of VA-ECMO and LV catheter venting: 5 days No infor-mation Echocardiographic imaging showed sufficient LV decompression Patient survived Patient recieved heart transplantation No procedure-related complications reported
Active, left ventricle (surgical) Trans-apical Median duration of VA-ECMO 28.6 days [VA-ECMO + Vent] No infor-mation No information 30-day mortality rate: 13.6%; 1-year mortality rate: 39% [VA-ECMO + Vent] Weaning rate: 27%; durable LVAD implantation: 46%; heart transplantation: 4.6% [VA-ECMO + Vent] Major bleeding: 31.8%; stroke: 18.2% [VA-ECMO + Vent]
Duration of VA-ECMO and LV venting: 2 days 3 months LV decompression confirmed by live TEE imaging, decreasing vasopressor requirement over subsequent 48 h Patient survived Discharge on postoperative day 20, dramatic improvement of LVEF from 5–10% intraoperatively to 40–45% after VA-ECMO weaning No procedure-related complications reported
No information No infor-mation No information Patient survived Bridge to biventricular assist device on post-admission day 6 No procedure-related complications reported
Trans-pulmonary Duration of VA-ECMO and LV venting: 10 days No infor-mation LVEF: 5% (pre decompression), 60% (post decompression); re-opening of aortic valve and resolution of LV blood stasis post decompression Patient survived Discharge from ICU 54 days after cardiac arrest No procedure-related complications reported
Median duration of VA-ECMO: 7.4 days (LV vent group), 5.2 days (VA-ECMO alone group) (p = 0.055) Mean follow-up time: 0.83 years No relevant differences in end-organ function parameters (LV vent vs. VA-ECMO alone) 30-day mortality rate: 45% (LV vent), 75% (VA-ECMO alone) (p = 0.034); long-term survival rate showed trend towards LV vent superiority (p = 0.066) Bridge to VAD: 50% (LV vent), 14% (VA-ECMO alone) (p < 0.01); death during support: 25% (LV vent), 57% (VA-ECMO alone) (p = 0.027) No information
Duration of VA-ECMO and LV venting: 5 days/18 days/7 days, respectively 20 months/18 days/7 days, re-spectively Improvement of LVEF from 15 to 25% in one patient Mortality rate: 66% Surviving patient was successfully weaned from VA-ECMO after 5 days and underwent heart transplantation after 14 days Persistent bleeding from axillary cannulation site requiring relocation in one patient, upper extremity swelling with subsequent operative revision of arterial cannula in one patient, temporary CVVH required in one patient
Mean duration of VA-ECMO: 8.0 days No infor-mation Reduction of serum bilirubin 3 days after VA-ECMO initiation compared to pre-operative Mortality rate: 41.7% Discharge rate: 58.3%; surival on VA-ECMO support: 100% Bleeding requiring surgical re-exploration: 41.7%; coagulation disorder: 66.7%; renal failure requiring hemodialysis: 50%; stroke: 8.3%; deep sternal wound infection: 8.3%
Median duration of VA-ECMO: 6 days No infor-mation Improvement of left ventricular distension and pulmonary edema after venting initiation in first two patients, intraoperative TEE imaging showed improved LV venting with cannulation of LV instead of LA Mortality rate: 25% Weaning rate: 87.5%; bridge to biventricular assist device: 25% In-line thrombus development in venous and left ventricular venting cannula resulting in deterioration and death of the patient
Active, left ventricle (mixed analysis) Impella vs. VA-ECMO ± surgical venting Median duration of VA-ECMO: 144 h (ECMELLA), 149 h (VA-ECMO) 30 days Inotropic score at day 2: 0 (ECMELLA), 11 (VA-ECMO) (p = 0.001); inotropic score at day 3: 0 (ECMELLA), 4 (VA-ECMO) (p = 0.02) 30-day mortality rate: 57% (ECMELLA), 78% (VA-ECMO) (p = 0.02); 1-year all-cause mortality rate: 69% (ECMELLA), 87% (VA-ECMO) (p = 0.02); mortality rate in patients with CPR: 75% (ECMELLA), 87% (VA-ECMO) Weaning rate: 53% (ECMELLA), 47% (VA-ECMO) (p = 0.81); bridge to recovery: 40% (ECMELLA), 22% (VA-ECMO); bridge to durable LVAD: 33% (ECMELLA), 13% (VA-ECMO); need for mechanical support 24 h post decannulation in surviving patients: 20% (ECMELLA), 56% (VA-ECMO); three patients in ECMELLA group required re-cannulation Major bleeding: 36% (ECMELLA), 33% (VA-ECMO); hemolysis: 22% (ECMELLA), 27% (VA-ECMO); need for dialysis: 22% (ECMELLA), 27% (VA-ECMO); stroke: 5.6% (ECMELLA), 10% (VA-ECMO)

VA-ECMO, venoarterial extracorporeal membrane oxygenation; IABP, intra-aortic balloon pump; AMI, acute myocardial infarction; PCS, postcardiotomy shock; DCM, dilated cardiomyopathy; VT, ventricular tachycardia; VF, ventricular fibrillation; STEMI, ST-elevation myocardial infarction; eCPR, extracorporeal cardiopulmonary resuscitation; LA, left atrium; LV, left ventricle; CI, cardiac index; PCWP, pulmonary capillary wedge pressure; CVP, central venous pressure; PAP, pulmonary arterial pressure; MAP, mean arterial pressure; LVEDD, left ventricular end-diastolic diameter; LVEDV, left ventricular end-diastolic volume; LVEF, left ventricular ejection fraction; etCO2,end-tidal carbon dioxide; VTI, velocity time integral; TEE, trans-oesophageal echocardiography; BiVAD, biventricular assist device; LVAD, left ventricular assist device; VAD, ventricular assist device; ICU, intensive care unit; HR, hazard ratio; CPC, Cerebral performance Category; CVVH, continuous venovenous hemofiltration