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Background: Intracerebral hemorrhage (ICH) has an estimated heritability of 29%. We 

developed a genomic risk score for ICH and determined its predictive power in comparison to 

standard clinical risk factors.

Methods: We combined genome-wide association data from individuals of European ancestry 

for ICH and related traits in a meta-genomic risk score (metaGRS) (2.6 million variants). We 

tested associations with ICH and its predictive performance in addition to clinical risk factors 

in a held-out validation dataset (842 cases and 796 controls). We tested associations with risk 

of incident ICH in the population-based UK Biobank cohort (486,784 individuals, 1,526 events, 

median follow-up 11.3 years).

Results: One SD increment in the metaGRS was significantly associated with 31% higher odds 

for ICH (95%CI: 1.16-1.48) in age-, sex- and clinical risk factor-adjusted models. The metaGRS 

identified individuals with almost 5-fold higher odds for ICH in the top score percentile (OR: 4.83, 

95%CI: 1.56-21.2). Predictive models for ICH incorporating the metaGRS in addition to clinical 

predictors showed superior performance compared to clinical risk factors alone (c-index: 0.695 

vs 0.686). The metaGRS showed similar associations for lobar and non-lobar ICH, independent 

of the known APOE risk locus for lobar ICH. In the UK Biobank, the metaGRS was associated 

with higher risk of incident ICH (HR: 1.15, 95%CI: 1.09-1.21). The associations were significant 

within both a relatively high-risk population of antithrombotic medications users, as well as 

among a relatively low-risk population with a good control of vascular risk factors and no use of 

anticoagulants.

Conclusions: We developed and validated a genomic risk score that predicts lifetime risk of 

ICH beyond established clinical risk factors among individuals of European ancestry. Whether 

implementation of the score in risk prognostication models for high-risk populations, such 

as patients under antithrombotic treatment, could improve clinical decision making should be 

explored in future studies.

Graphical Abstract
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INTRODUCTION

Intracerebral hemorrhage (ICH) is the most devastating type of stroke. Although it accounts 

for 10-20% of all acute cerebrovascular events, it is responsible for almost 50% of stroke-

related morbidity and mortality.1 Given the lack of effective treatments and the devastating 

outcome of ICH, primary and secondary prevention is critical. As with many complex 

human diseases, ICH risk is comprised of both environmental and genetic factors. Early 

genome-wide association studies (GWAS) of ICH estimated a heritability of 29% and 

revealed a polygenic architecture,2,3 whereas large-scale GWAS for established risk factors 

for ICH, such as hypertension and smoking, have identified hundreds of associated genomic 

loci that cumulatively explain a large proportion of the variance of these traits.4-9

Beyond defining heritability and providing insight into biological mechanisms, GWAS 

findings have begun to show promise for disease risk prediction. Genomic risk scores 

(GRS), biomarkers representing the aggregated effect of many genetic variants on a given 

trait, have been proposed as powerful tools for identifying individuals at high risk for 

complex traits, with a predictive performance at times comparable to that of rare monogenic 

mutations.10 A GRS for ICH could have clinical utility in decision making algorithms, such 

as for complementing risk-benefit calculation tools in patients prescribed antithrombotic 

medications. Despite acknowledged limitations, pertaining mainly to translation of the 

accuracy of GRS findings from the cohort- to the individual-based level, as well as sex- and 

ancestry-specific predictive differences,11,12 if constructed according to best practices,11-14 

an ICH GRS could have important implications for patient selection for clinical trials. 
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However, as opposed to other vascular diseases,10 efforts to construct a GRS for ICH lag 

behind, likely because of the lower statistical power in available datasets due to the relative 

rarity of the disease.

Recent advances in analytical approaches offer more efficient alternative methods for GRS 

construction that allow to utilize data from multiple GWAS in order to overcome power 

limitations of genomic datasets of rare diseases.15,16 Based on the assumption that the 

majority of genetic variants exert their effects on a given disease by affecting intermediate 

traits, constructing a GRS based on genomic data of traits in the causal pathway of the 

disease of interest can improve both power and prediction.15 In this study, we sought 

to investigate whether combining genetic liability for possible ICH risk factors and traits 

reflecting pathologies underlying ICH into a meta-Genomic Risk Score (metaGRS) could 

improve our ability to predict ICH events among individuals of European ancestry. To 

further explore the potential utility of such a genomic score for clinical risk prediction, 

we also assessed whether the metaGRS improves ICH risk prediction beyond established 

clinical risk factors.

METHODS

Data availability statement

The data that support the findings of this study will be available from the corresponding 

author upon reasonable request. MetaGRS single nucleotide polymorphism (SNP)-specific 

weights will be made publicly available at The Polygenic Score (PGS) Catalog.

Study design and participating studies

As our primary data source, we used genotype and phenotype data from 1,861 ICH cases 

and 1,722 ICH-free controls from three independent GWAS datasets: the North American 

(USA) multi-center Genetics of Cerebral Hemorrhage on Anticoagulation (GOCHA) study, 

a prospectively collected case-control study of European ancestry subjects aged > 55 years 

with primary ICH17; the European member sites contributing ICH cases and controls to the 

International Stroke Genetics Consortium (EUR/ISGC); and the Genetic and Environmental 

Risk Factors for Hemorrhagic Stroke (GERFHS) study, a prospectively collected case-

control study of subjects > 18 years of age with spontaneous ICH in the Greater Cincinnati 

region18. GOCHA and EUR/ISGC were the training datasets, whereas GERFHS was our 

primary validation dataset. Furthermore, we performed an external validation of the derived 

score for incident ICH events in the UK Biobank (UKBB) cohort, over a median follow-up 

of 11.3 years among 486,623 individuals aged 40-69 years at recruitment without a prior 

history of ICH.19 All studies were approved by the Institutional Review Board or Ethics 

Committee at each participating institution. We followed the GRS reporting guidelines as 

outlined in the Polygenic Risk Score Reporting Standards developed by the Clinical Genome 

Resource (ClinGen) Complex Disease Working Group and the PGS Catalog14. Details on 

ascertainment of cases and controls and on imputation of the GWAS datasets are provided in 

Supplemental Material.
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Trait-specific GRS and ICH metaGRS construction

We used GOCHA (436 ICH cases and 405 controls) and EUR/ISGC (577 ICH cases and 

523 controls) as training datasets to develop GRS for 21 traits associated with ICH risk. 

We leveraged publicly available GWAS summary-level data from international consortia, as 

detailed in Table S1.4,20-32 For all traits, we used data from European-only populations and 

excluded duplicate and ambiguous AT/GC SNPs and SNPs with MAF≤1%. No GOCHA 

or EUR/ISGC cases or controls were included in the selected studies. For each trait, we 

generated a range of candidate trait-specific GRS and selected the best-performing ones 

based on the highest area under the receiving operating characteristics curve of a logistic 

regression model for ICH. Following a standardized meta-analytic approach, we constructed 

an ICH metaGRS creating a weighted-average of the trait-specific GRS. We used GERFHS 

as our primary validation dataset. Details are provided in Supplemental Methods, Tables 

S2-S23.

ICH metaGRS performance and clinical evaluation in GERFHS and UKBB

We explored the metaGRS performance in the validation dataset and its comparison with 

clinical predictors. The primary metaGRS and alternative versions were entered as linear 

predictors in logistic regression models for ICH in the primary validation dataset. We 

performed complementary analyses to investigate the association between the metaGRS and 

ICH. We evaluated the potential clinical utility of the metaGRS exploring its associations 

with ICH independently of clinical risk factors in GERFHS and performed external 

validation in a population-based setting in the UKBB (Supplemental Methods).

RESULTS

Construction of a metaGRS for ICH in the training dataset

A schematic of our study design is provided in Figure 1. Following quality checks, we 

developed 21 optimized GRS for ICH-associated traits on the basis of associations with ICH 

in GOCHA and EUR/ISGC. The numbers of variants included in these GRS ranged from 

213 to 1,148,192 (Table S23). Detailed results are provided in the Supplemental Results, 

Tables S24-S25, and Figures S1-S4.

Associations between the metaGRS and ICH in the validation dataset

We explored associations between the derived metaGRS and ICH risk in GERFHS. 

Characteristics of ICH cases and ICH-free controls in GERFHS are presented in Table S26. 

After adjusting for age, sex, and two PCs, one SD increase in the metaGRS was associated 

with 45% higher odds of ICH (OR 1.45; 95% CI: 1.30-1.63; p=6.2x10−11). Patients in 

higher thresholds of the metaGRS distribution were at progressively higher risk for ICH 

(Figure 2). Notably, patients in the top 2.5% and 1% had substantially increased odds of 

ICH, respectively, compared to the rest of sample. We observed an expected gradual change 

in ICH odds when moving to either the higher or lower ends of the metaGRS distribution 

from the middle decile (Figure S5). Modeling risk of ICH relative to the bottom 10% of the 

metaGRS loading did not reveal any significant non-linear effects (Figure S6).
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In analyses comparing ICH odds between the primary and the alternative metaGRS, we 

overall found that the primary metaGRS achieved the best performance (Figure S7). 

However, these metaGRS with penalized and adjusted weights still demonstrated significant 

associations with ICH risk, albeit with weaker effect size estimates and lower predictive 

performances (Figure S7, Table S27).

Predictive performance of metaGRS for ICH in comparison with clinical risk factors

We next explored the performance of the metaGRS with established clinical risk factors 

for predicting ICH in GERFHS. History of ischemic stroke, hypertension, diabetes, high 

cholesterol, heavy alcohol use, anticoagulant use, and education less than high school were 

most strongly associated with ICH risk (Table S28). After adjusting for these clinical risk 

factors, the metaGRS continued to be independently associated with ICH risk (OR = 1.31 

per one standard deviation of the metaGRS; 95% CI 1.16 – 1.48 p < 0.0001). Adding the 

metaGRS to a model including the clinical risk factors significantly improved the model fit 

(AIC of clinical predictors = 1989.65, AIC of clinical predictors + metaGRS = 1972.86, 

LRT = 4x10−5).

The metaGRS showed comparable predictive performance to hypertension, and higher than 

the remaining clinical risk factors apart from education (Figure 3). Importantly, the c-index 

of a model including the entire set of clinical risk factors (C: 0.686, 95%CI: 0.663-0.718) 

increased after including the metaGRS in the model (C: 0.695, 95%CI: 0.673 – 0.727, 

Figure 3). Similar results were observed for the alternative metaGRS versions (Figure S8, 

Table S29). Stratified analyses showed significant associations of the metaGRS with both 

lobar and non-lobar ICH (Tables S30-S34). When exploring in the same model the metaGRS 

and APOE genotype, a known risk locus for ICH, we found that both were independently 

associated with the odds of ICH (Table S35).

Validation of the metaGRS in the UKBB population

As a final step, we explored associations between the metaGRS and incident ICH risk in 

a general population sample. In the prospective population-based UKBB cohort, a total of 

486,623 participants without a history of ICH, were followed-up for a median of 11.3 years 

(IQR: 10.6-11.1 years) (Table S36). We again found the metaGRS to be associated with a 

higher risk of incident ICH (HR per SD increment: 1.15, 95%CI: 1.09-1.21, p=7x10−7) after 

adjusting for age, sex, the first 10 PCs of population structure, kinship, genotyping chip, and 

genetic ancestry. Accounting for death as a competing risk with the subdistribution hazard 

approach did not substantially alter the results (HR per SD increment of metaGRS: 1.14, 

95%CI: 1.08-1.20, p=4x10−6). Figure 4A presents the Kaplan-Meier curves with age as the 

time variable for individuals at upper, median, and lower quantiles of the metaGRS. Within 

both high-risk individuals using antithrombotic medications at baseline, as well as low-risk 

individuals with well-controlled vascular risk factors at baseline and no antithrombotic 

medications, the metaGRS retained association with incident ICH risk (Figures 4B, C). We 

again found the metaGRS to be associated with a higher risk of incident ICH (HR per SD 

increment: 1.15, 95%CI: 1.09-1.21, p=7x10−7, concordance: 0.705, 95%CI: 0.693-0.717) in 

a model adjusted for age, sex, the first 10 PCs of population structure, kinship, genotyping 

chip, and genetic ancestry.
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DISCUSSION

We developed a genomic risk score for ICH in a training dataset of 1,013 cases and 928 

controls based on GWAS data for 21 ICH-related traits. We found the derived metaGRS to 

be significantly associated with the odds of ICH in an independent validation dataset of 842 

ICH cases and 796 ICH-free controls. The metaGRS was independent of traditional clinical 

risk factors of ICH and improved model performance in prediction of ICH. Furthermore, 

the score was significantly associated with incident ICH risk in a population-based cohort 

study of 480,000 individuals followed-up for a median of 11 years (1,500 incident ICH 

events). Our results provide important insights into genomic prediction for ICH and could 

have implications for clinical practice.

First, the metaGRS identified individuals at very high risk for ICH. For example, individuals 

at the top percentile had almost 5-fold increased odds for ICH, as compared to the rest 

of the population. While it remains to be clarified how these individuals would benefit 

from potential primary preventive interventions, this information could be useful both for 

screening for hypertension, the main clinical risk factor for ICH, and early initiation of 

antihypertensive treatment, as well as for decision making when considering initiation 

of antiplatelet or anticoagulation treatments that might increase ICH risk. These risk 

stratification strategies based on genomic information are increasingly important as millions 

of persons in the US and around the world have been genotyped by direct-to-consumer 

genotyping companies.

Second, the metaGRS improved risk discrimination for ICH when compared to classical 

clinical predictors. Specifically, it was associated with ICH risk independently of vascular 

risk factors and was found to have a predictive value superior to all predictors except for 

education. The predictive power of the metaGRS was comparable to that of hypertension, 

the clinical risk factor for ICH that explains the most variance in the trait.33 These findings 

support the incorporation of genetic information into clinical tools aiming to quantify ICH 

risk within specific patient subgroups. A post-hoc analysis of trial data showed that among 

patients with atrial fibrillation and a CHA2-DS2-VASc score of 2, a high genomic risk score 

for ischemic stroke led to an absolute ischemic stroke risk equivalent to those with a higher 

score.34 Whether integration of a genomic risk score for ICH in such analyses could lead 

to a more precise assessment of the risk-benefit ratio for specific patients remains to be 

determined. Along these lines, the several clinical trials currently evaluating anticoagulation 

as a secondary prevention strategy after ICH constitute a unique opportunity for genomic-

based risk-stratification, as a portion of them have built-in biobanks that are collecting DNA 

samples.

Third, despite its rarity, we found the metaGRS to be significantly associated with 

prospective ICH risk in the general population. As expected, the strength of association was 

attenuated in the relatively healthy population of UKBB, compared to the disease-focused 

case-control setting where the metaGRS was developed. The metaGRS was associated with 

a higher risk of ICH even among individuals with evidence-based control of relevant risk 

factors, who were not actively smoking, had blood pressure of 140/90 mmHg or less, no 

evidence of diabetes, normal BMI, and who reported no use of anticoagulants. While such 

Myserlis et al. Page 7

Stroke. Author manuscript; available in PMC 2024 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



analyses are restricted by lack of power, our results suggest that for individuals with a high 

genetic risk, the recommended treatment targets for modifiable risk factors might not be 

sufficient for primary ICH prevention. The importance of this observation lies on the fact 

that the genomic information is available long before risk factors are present and could 

thus be used for earlier risk stratification in otherwise low-risk individuals. Concomitantly, 

the metaGRS was also associated with a higher risk of ICH even among a high-risk group 

of individuals using antithrombotic medications, indicating its potential utility among a 

relevant group of patients for whom bedside calculation of ICH risk might be particularly 

relevant to clinical care.

Our study has limitations. First, the sample sizes of the available genetic datasets for 

ICH are limited, as compared to other clinical endpoints. This introduces uncertainty to 

the association estimates between the genetic variants and ICH risk, which were used to 

construct the metaGRS, and thus impacts negatively on its predictive performance. Indeed, 

when compared with metaGRS for other traits that have been developed in larger datasets, 

such as coronary artery disease and ischemic stroke,15,16 the association with incident ICH 

events is weaker. Additionally, while previous studies exist exploring the genetic architecture 

of ICH and cerebral small vessel disease that could potentially be used for construction 

and comparison of our genomic risk score, these were either derived from the same 

population sample as the one we use in the current study, are ICH GWAS in ancestrally 

diverse populations, or derived from candidate gene studies2,3,35. As such, utilizing the 

above studies to construct a GRS would result in significant over-estimation of association 

estimates13 and limit the GRS accuracy partly due to linkage disequilibrium and allele 

frequency differences across populations36, as well as by including a limited number of 

non-replicated loci37. Second, ICH is a phenotypically heterogeneous disease, with the 

most common etiologies being hypertensive small vessel disease (typically in non-lobar 

locations) and cerebral amyloid angiopathy (typically in lobar locations). To maximize the 

power of our approach, we have pooled cases, which could have negatively impacted the 

predictive performance for specific ICH etiologies. While our score was predictive for both 

non-lobar and lobar ICHs, developing etiology-specific scores might be of more relevance 

for specific clinical scenarios. Furthermore, in the training and the validation datasets, we 

did not account for dose of risk factors, due to either suboptimal phenotyping in the datasets, 

or to avoid including a larger number of clinical variables than already included, which 

would likely contribute to model instability, respectively. Third, while the metaGRS showed 

significant associations with risk of incident ICH in the UKBB, we could not explore 

its effects in concert with other clinical predictors, because the metaGRS was generated 

using datasets including data from the UKBB. Therefore, independent validation either of 

a score trained in an entirely UKBB-independent dataset or of the described metaGRS 

in another external cohort would be necessary. Fourth, the metaGRS was constructed 

solely based on data from individuals of European genetic ancestry, and may thus not 

be applicable for individuals of other ancestries. Larger multi-ethnic GWAS studies of 

ICH currently underway will facilitate the generation of ancestry-specific GWAS datasets. 

Furthermore, because our metaGRS is derived from genetic susceptibility to common 

vascular risk factors, it is likely to carry associations with other cardiovascular traits as 

well, despite being trained on ICH. This is a fundamental limitation of the technique, and 
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our metaGRS is therefore not intended as a tool to identify risk of ICH at the exclusion 

of other endpoints, such as coronary artery disease. However, this expected pleiotropic 

effect of the metaGRS allows for pursuing follow-up research, focused on composite 

outcomes that share common biological underpinnings. Last, overarching limitations and 

challenges still exist on the generation and validation of GRS across disease states, 

which apply to our metaGRS as well. Some of them include the possible differences in 

sex-specific predictive performances, the translation of GRS estimates from the cohort- to 

the individual-specific level which has been suggested to introduce additional variability, 

as well as the heterogeneity of the different methods for GRS construction which could 

ultimately hinder clinical application.11,12 Towards that end, efforts are currently underway 

to standardize and delineate procedures surrounding GRS construction and reporting, such 

that prediction models incorporating GRS-based estimations can be leveraged in a consistent 

and reproducible manner.14

In conclusion, our study represents the first comprehensive attempt to develop and validate 

a genomic risk score for ICH. Our results demonstrate that the incorporation of genomic 

information in clinical prediction models for ICH could enhance predictive performance. 

As such, it lays the groundwork for future analyses in larger genetic datasets for ICH 

to optimally combine genomic information to maximize predictive benefit. Exploration of 

the performance of genomic risk scores for ICH in clinical trials of patients receiving 

antithrombotic medications could offer useful insights in risk prediction of ICH in this 

high-risk population with potential relevance for clinical decision making.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Study design.
(A) Individual genomic risk scores (GRS) were derived for intracerebral hemorrhage (ICH)-

related traits from publicly available summary statistics. (B) The GRS were optimized 

in the combined training dataset of GOCHA and EUR/ISGC. (C) MetaGRS parameters 

were determined on the basis of association with ICH in the training datasets. (D) The 

metaGRS was compiled in the GERFHS validation dataset and associations with ICH were 

explored using logistic regression. (E) The metaGRS was externally validated in the general 

population-based UKBB cohort using Cox proportional hazards regression analyses.
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Figure 2. Odds for intracerebral hemorrhage (ICH) across the metaGRS distribution.
Depicted is the metaGRS distribution (centered around a mean of 0 and a standard deviation 

of 1) in the GERFHS validation dataset and the odds ratios (OR) for ICH per percentile 

group, relative the rest of the sample, as derived from logistic regression models adjusted for 

age, sex and the first 2 principal components of the population structure.
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Figure 3. Performance of clinical risk factors, metaGRS, and their combination for predicting 
odds for intracerebral hemorrhage (ICH).
Depicted are the c-indices derived from logistic regression models including age, 

sex, 2 principal components of population structure (baseline model, dotted line) and 

additionally in successive models the reported clinical variables (history of ischemic stroke, 

hypertension, diabetes, high cholesterol, heavy alcohol use, anticoagulant medication use, 

and education) and the metaGRS in the validation GERFHS dataset. Percentile confidence 

intervals of the c-indices were calculated after bootstrapping over 1000 iterations.
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Figure 4. MetaGRS and cumulative risk of incident intracerebral hemorrhage (ICH) in the 
population-based UK Biobank sample.
The results are derived from (A) entire UKBB population, (B) users of antithrombotic 

medications at baseline, and (C) low-risk individuals with conventional vascular risk factors 

under control and no use of anticoagulant medications after excluding prevalent cases of 

ICH. Depicted are the Kaplan-Meier curves for different metaGRS quantiles, as well as the 

hazard ratios (HR) per standard deviation (SD) increment in metaGRS, as derived from Cox 

proportional hazards regression models adjusted for baseline age, sex, the first 10 principal 

components of the population structure, genetic ancestry, genotyping chip, and kinship.
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