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Abstract

BACKGROUND: Our understanding of the pathophysiology underlying Alzheimer’s disease 

(AD) has benefited from genomic analyses, including those that leverage polygenic risk score 

(PRS) models of disease. The use of functional annotation has been able to improve the power of 

genomic models.

OBJECTIVE: We sought to leverage genomic functional annotations to build tissue-specific AD 

PRS models and study their relationship with AD and its biomarkers.

METHODS: We built 13 tissue-specific AD PRS and studied the scores’ relationships with 

AD diagnosis, cerebrospinal fluid (CSF) amyloid, CSF tau, and other CSF biomarkers in two 

longitudinal cohort studies of AD.

RESULTS: The AD PRS model that was most predictive of AD diagnosis (even without APOE) 

was the liver AD PRS: n = 1,115; odds ratio = 2.15 (1.67–2.78), P = 3.62 × 10−9. The liver AD 

PRS was also statistically significantly associated with cerebrospinal fluid biomarker evidence of 

amyloid-β (Aβ42:Aβ40 ratio, P = 3.53 × 10−6) and the phosphorylated tau:amyloid-β ratio (P = 

1.45 × 10−5).

DISCUSSION: These findings provide further evidence of the role of the liver-functional genome 

in AD and the benefits of incorporating functional annotation into genomic research.
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INTRODUCTION

Despite advances in our understanding of Alzheimer’s disease (AD), the causal mechanisms 

are not fully understood. Since the hallmarks of AD have long been its neuropathological 

findings [1], the brain has historically been the primary focus of investigations into AD 

etiology. However, recent research has implicated other systems in AD, including the 

immune system and processes of inflammation [2], the cardiovascular system [3], and 

the liver and metabolism [4]. The lack of clarity over the roles of these mechanisms and 

risk factors in AD hampers our ability to identify novel therapeutic targets and ultimately 

effective treatments [5].

Genomic research has provided a valuable tool for understanding upstream risk factors 

in AD. The importance of amyloid-β (Aβ), long known to aggregate and subsequently 

accumulate in plaques in the brain, has been underscored by the knowledge that familial AD 
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can be driven by genetic mutations in genes directly impacting Aβ processing, like APP, 

PSEN1, and PSEN2 [6]. In late-onset AD, genomic studies have repeatedly identified risk 

factors in a number of genes, like APOE, CR1, and ABCA7, expanding our knowledge 

of the molecular systems likely to be contributing to the development of AD [7–9]. For 

instance, the discovery of TREM2 as a genetic risk locus is now being expounded in follow-

up experimental research on soluble TREM2 levels, highlighting the role of microglia in AD 

[10–12].

One particular application of genomic research that can help tease apart the mechanisms 

contributing to a disease involves polygenic risk scores (PRS), which are a measure of 

risk composed of the contributions of many single nucleotide polymorphisms (SNPs). 

Genome-wide PRS models and related methods have already been useful in the study of 

AD, including predicting AD and age of onset [13–15], examining genetic risk beyond the 

APOE locus [16], identifying PRS-environment associations [17,18], and comparing the 

genetic basis of related forms of AD [19]. PRS models can further be enhanced by the 

incorporation of genome functional annotation, which can boost the prediction accuracy of 

a PRS for disease risk [17,20,21]. One of the benefits of incorporating functional annotation 

is that it can introduce information about tissues and cell types and their potential relevance 

to the genomics underlying a particular trait. In AD, where there is growing genetic evidence 

for the role of different tissue and cell types [22,23], such annotation can provide important 

information about the full spectrum of biology involved in AD.

Here, we leveraged cell-type-specific genomic functional annotations derived from 

epigenetic data [23–25] to create tissue-specific PRS models for AD. We estimated tissue-

specific genetic risk scores for participants in two longitudinal cohort studies of AD and 

analyzed the association between each tissue-specific PRS and AD diagnosis. Further, 

given that AD pathophysiology like brain amyloidosis and tau pathology can be identified 

using cerebrospinal fluid (CSF) biomarkers, we examined the possible associations between 

these tissue-specific PRS models and different pathologies in AD using CSF biomarkers of 

neurodegeneration and inflammation.

MATERIALS AND METHODS

Study participants

Data from two longitudinal AD cohorts focusing on middle and older aged adults were used 

for this study. The first was the Wisconsin Registry for Alzheimer’s Prevention (WRAP) 

study, described previously [26]. Briefly, participants were between the ages of 40 and 

65, fluent in English, able to perform neuropsychological testing, without a diagnosis or 

evidence of dementia at baseline, and without any health conditions that might prevent 

participation in the study.

The second cohort was the Wisconsin Alzheimer’s Disease Research Center (WADRC) 

study, described previously [27]. WADRC participants were categorized into one of six 

subgroups: 1) mild late-onset AD; 2) mild cognitive impairment (MCI); 3) age-matched 

healthy older controls (age > 65); 4) middle-aged adults with a positive parental history 

of AD; 5) middle-aged adults with a negative parental history of AD; and 6) middle-aged 
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adults with indeterminate parental history of AD. The clinical diagnoses for these groups 

were based on the National Institute of Neurological and Communicative Disorders and 

Stroke and Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) 

[28] and National Institute on Aging and Alzheimer’s Association (NIA-AA) [29]. Briefly, 

participants were over the age of 45, able to fast from food and drink for 12 hours, with 

decisional capacity, and without a history of certain medical conditions (like congestive 

heart failure or major neurologic disorders other than dementia) or any contraindication to 

biomarker procedures.

This study was performed as part of the GeneRations Of WRAP (GROW) study, which 

was approved by the University of Wisconsin Health Sciences Institutional Review Board. 

Participants in the WADRC and WRAP studies provided written informed consent. 

STREGA reporting guidelines [30] were used in the description of the results.

Clinical diagnoses

AD, MCI, and other diagnoses of cognitive status for both WRAP and WADRC were 

made by a consensus review committee comprising an expert panel of dementia-specialist 

physicians, neuropsychologists, and nurse practitioners [26]. CSF biomarker status was not 

used in the process of making the clinical diagnoses.

CSF biomarkers

Details on the collection of CSF for biomarker analyses have been previously described 

[31]. Briefly, CSF samples were acquired using a uniform preanalytical protocol and the 

same staff between 2010 and 2018 for both studies, improving the comparability of the data 

between the two cohorts. Samples were collected in the morning using a Sprotte 24- or 

25-gauge atraumatic spinal needle, and 22 mL of fluid was collected via gentle extraction 

into polypropylene syringes and combined into a single 30 mL polypropylene tube. After 

gentle mixing, samples were centrifuged to remove red blood cells and other debris. Then, 

0.5 mL CSF was aliquoted into 1.5 mL polypropylene tubes and stored at −80 degrees 

Celsius within 30 minutes of collection.

All CSF samples were assayed between March 2019 and January 2020 at the Clinical 

Neurochemistry Laboratory at the University of Gothenburg. CSF biomarkers were assayed 

using the NeuroToolKit (Roche Diagnostics International Ltd., Rotkreuz, Switzerland), a 

panel of automated robust prototype immunoassays designed to generate reliable biomarker 

data that can be compared across cohorts. Measurements with the following immunoassays 

were performed on a cobas e 601 analyzer: Elecsys® β-amyloid (1–42) CSF (Aβ42), 

Elecsys Phospho-Tau (181P) CSF, and Elecsys Total-Tau CSF, β-amyloid (1–40) CSF 

(Aβ40), and interleukin-6 (IL-6). The remaining NTK panel was assayed on a cobas e 411 

analyzer, including markers of synaptic damage and neuronal degeneration (neurogranin, 

neurofilament light protein [NFL], and α-synuclein) and markers of glial activation 

(chitinase-3-like protein 1 [YKL-40] and soluble triggering receptor expressed on myeloid 

cells 2 [sTREM2]).

A total of 9 CSF biomarkers were analyzed in this study: the Aβ42/Aβ40 ratio, 

phosphorylated tau 181 (ptau), the ptau/Aβ42 ratio, NFL, α-synuclein, neurogranin, 
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YKL-40, sTREM2, and IL-6. Details on the relationship of these biomarkers with the 

stages of AD progression have been previously reported [31]. Since the CSF biomarker 

measurements were to be used as outcomes, each biomarker was assessed for skewness 

using the skewness function of the R package moments (version 0.14) [32]. Any biomarker 

with a skewness ≥ 2 was transformed with a log10-transformation to better meet the 

normality assumption of regression. The outcomes that were log10-transformed were ptau, 

the ptau/Aβ42 ratio, NFL, and IL-6.

Genomic data

The genomic data collection in the WRAP and WADRC cohorts has been described 

previously [33]. The WRAP samples were genotyped using DNA from whole blood 

samples and the Illumina Multi-Ethnic Genotyping Array at the University of Wisconsin 

Biotechnology Center [34]. Samples and variants with high missingness (> 5%) or 

inconsistent genetic and self-reported sex were removed. Samples from individuals of 

European descent (determined by PCA with the 1000 Genomes Project data using KING 

[35] and PC-AiR [36], described previously [34]) were then imputed using the Michigan 

Imputation Server [37] and the Haplotype Reference Consortium (HRC) reference panel 

[38], with low quality variants again removed (R2 < 0.8) post-imputation. A total of 1,198 

samples with 10,499,994 SNPs were present at the end of quality control.

Whole blood samples from the WADRC were genotyped by the Alzheimer’s Disease 

Genetics Consortium (ADGC) at the National Alzheimer’s Coordinating Center (NACC) 

using the Illumina HumanOmniExpress-12v1_A, Infinium HumanOmniExpressExome-8 

v1-2a, or Infinium Global Screening Array v1-0 (GSAMD-24v1-0_20011747_A1) 

BeadChip assay. Each chip’s genomic data were initially processed separately. After strict 

quality control that removed variants or samples with high missingness (> 2%), out of 

Hardy-Weinberg equilibrium (HWE) (P < 1×10−6), or with inconsistent genetic and self-

reported sex, samples were imputed with the Michigan Imputation Server where they were 

phased using Eagle2 [39] and imputed to the HRC reference panel. Low quality variants (R2 

< 0.8) or out of HWE were removed. After imputation, the data sets from the different chips 

were merged together, leaving a data set with 376 samples of European descent (determined 

in the same manner as in the WRAP cohort) and 7,049,703 SNPs.

To prevent variant overlap issues, all genomic data sets used in this study were harmonized, 

including the WADRC, WRAP, International Genomics of Alzheimer’s Project (IGAP) 

2019 GWAS of AD [7], and the 1000 Genomes Utah residents with Northern and 

Western European ancestry (CEU) [40] data sets. The GRCh37 genome build was used, 

all ambiguous SNPs were removed, and all SNPs were aligned to have strand and allele 

orientations consistent with the WADRC data set. Only the subset of SNPs successfully 

harmonized and present across all four data sets was used to build the PRS. To avoid sample 

overlap between participants in the WADRC and IGAP, 165 overlapping participants were 

removed, leaving a total of 1,409 participants (211 WADRC, 1,198 WRAP) with 5,631,405 

SNPs before any functional annotations were considered.

As an additional measure to ensure the effect of APOE was removed, each sample was 

additionally assigned an APOE genotype based on the participant’s combination of the ε2, 
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ε3, and ε4 alleles for APOE from a separate set of genotyping. DNA was extracted from 

whole blood samples, which was then genotyped for the APOE alleles using competitive 

allele-specific PCR-based KASP genotyping for rs429358 and rs7412 [21]. The count of 

APOE ε4 alleles was correlated with each tissue-specific PRS without APOE to determine if 

APOE was still correlated with the PRS.

Tissue-specific functional SNP sets

To categorize the genome into tissue-specific functional regions, annotations from 

GenoSkyline-PLUS [23–25] (v 1.0.0) were used. GenoSkyline is an unsupervised 

framework that uses epigenetic data sets from the Roadmap Epigenomics Project [41] to 

predict tissue-specific functional regions of the genome. For each region of the genome and 

for each cell type, GenoSkyline predicts a value between 0 and 1 that represents whether 

that region is likely to be functional for that cell type, with 1 indicating functional and 0 

non-functional. Due to the bimodal distribution of these scores, values ≥ 0.5 were considered 

functional and values < 0.5 were considered non-functional in this study. GenoSkyline-

PLUS annotations are available for a variety of cell types, with each cell type labeled as 

part of a larger tissue type. The full list of GenoSkyline-PLUS tissues and included cell 

types can be found in Supplementary Table 1. For each tissue, the union of all functional 

genomic regions from all included cell types was defined as the functional genomic region 

for that tissue, and all SNPs falling within that region were included in that tissue’s set 

of tissue-specific functional SNPs. A total of 13 tissue-specific SNP sets were defined in 

this manner, with a 14th SNP set comprising all SNPs regardless of tissue functionality or 

annotation to create a non-tissue-specific, non-annotated genome-wide PRS for comparison. 

For all of the PRS models, the effect size estimate for each SNP came from the 2019 

IGAP GWAS results[7]. The nearest protein-coding gene to each SNP was also added using 

GENCODE (version 19) annotations [42].

Since certain genotypes in the APOE locus are known to be strongly associated with AD, 

we sought to examine whether the PRS were associated with AD beyond the effect of the 

APOE locus. To do so, we built tissue-specific PRS using the same procedure as above with 

the exception that all SNPs in a window around the APOE genomic region were removed 

(defined as between the PVR and GEMIN7 genes: chromosome 19, base pairs 45,147,098–

45,594,782; 932 SNPs were removed in this way). Some SNPs from the APOE locus were 

considered functional for each tissue, so the PRS scores changed for all tissues when the 

APOE locus was removed.

PRS calculation

Each SNP set as defined above was then used to construct the corresponding tissue-specific 

PRS. Each PRS was constructed with PRSice [43] (v 2.2.4) using the Kunkle et al. 2019 

IGAP summary statistics [7] as the base data set and the 1000 Genomes CEU samples to 

estimate linkage disequilibrium (LD). An R2 of 0.5 was used for clumping SNPs and a P 

threshold of 0.0025 based on an early prototype of the PUMAS method[44] was used for 

the inclusion of SNPs, leaving a maximum of 649,987 SNPs remaining for PRS construction 

depending on the SNP set used. The risk score for each tissue was calculated for each 

participant in the combined WADRC/WRAP data set using the default “average” PRS 
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equation that divides the weighted sum of the alleles by the total count of alleles used 

(“--score avg” option for PRSice), and then each tissue-specific PRS was standardized to a 

mean of 0 and variance of 1.

PRS-AD diagnosis associations

Among the WADRC/WRAP data set, all 1,409 participants had at least one study visit 

with a consensus conference diagnosis. The most recent visit for each participant with an 

AD, MCI, or cognitively unimpaired diagnosis was kept. Then, among related individuals 

(defined by estimated genetic relationships in WADRC or self-defined families in WRAP) 

only one participant was kept per family (chosen arbitrarily), leaving 1,163 unrelated 

participants. The association between each PRS and AD diagnosis (compared to cognitively 

unimpaired individuals; n = 78 cases with AD and n = 1,037 cognitively unimpaired 

controls; MCI cases excluded) was estimated with logistic regression using the R [45] glm 

function, controlling for sex and age at the time of diagnostic assessment by the consensus 

review committee. A Bonferroni correction for the number of PRS tested (P = 0.05 / 14 = 

0.0036) was used in reporting significant results.

As a follow-up analysis, a comparison of the top-performing risk score between AD, MCI, 

and cognitively unimpaired participants was made using a box plot, with both ANOVA and 

pairwise t-tests used to compare the risk score distributions among the groups. Participants 

were then divided into 5 groups based on the PRS quantiles, and the distributions of the AD 

diagnoses across these PRS quantiles were compared.

Though the two cohort populations were similar geographically and demographically, the 

possibility of confounding by cohort or population substructure was assessed. The PRS-

diagnosis associations were repeated as above but using only the participants from WADRC 

and additionally controlling for the first 5 principal components (PCs) of genetics. WADRC 

was used for this sensitivity analysis because it had a more balanced distribution of clinical 

diagnoses than WRAP.

To assess whether the effect of APOE was solely driving the associations of the PRS with 

AD diagnosis, another sensitivity analysis was conducted with the set of tissue-specific PRS 

constructed without the APOE locus. The associations between these PRS without APOE 
and AD diagnosis were estimated with logistic regression as before and compared to the 

original models with APOE included in the PRS.

To assess whether the top-performing PRS was substantially better than the rest of the 

genome in predicting AD diagnosis, a sensitivity analysis was conducted where only non-

tissue-functional SNPs were used to construct a PRS. To build this PRS (referred to as an 

inverse PRS), the same procedure as before was used for the top-performing tissue PRS 

except that only SNPs in the non-functional regions for that tissue were included. The 

association of this PRS with AD diagnosis was estimated in a logistic regression as before 

and compared to that of the tissue-functional PRS, both with and without the APOE region 

included.
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Finally, to assess whether the top-performing PRS was significantly different from the 

non-tissue-specific PRS (labeled “all”), we estimated the difference in the odds ratios (OR) 

of the top-performing PRS and the non-tissue-specific PRS across 1,000 bootstrap samples 

and calculated the significance of that OR difference. The Z score of the OR difference was 

calculated as the OR difference in the original data divided by the standard deviation of the 

odds ratio difference across the bootstrap samples [46].

PRS-CSF biomarker associations

To investigate the intermediate biological pathways driving the association between the PRS 

most strongly associated with AD diagnosis, the relationship between this PRS (both with 

and without APOE) and the CSF biomarkers was assessed using the longitudinal data set 

of unrelated WADRC and WRAP participants with biomarker measurements available (up 

to 250 visits from 167 individuals). A linear mixed-effects model was used to test each 

liver PRS-biomarker association, controlling for age at CSF collection and sex and including 

a random intercept for the individual to account for the longitudinal CSF measurements 

(R package lme4, version 1.1–26). A Bonferroni correction for the number of biomarkers 

tested (P = 0.05 / 9 = 0.0056) was used for reporting significant associations. The marginal 

pseudo-R2 was calculated using the R package MuMIn (version 1.43.17) [47] for each 

model as well as the model with the PRS term removed in order to quantify the impact of the 

PRS in prediction.

To assess the robustness of the linear mixed model results, the CSF biomarker analyses were 

rerun using only the first visit available from each participant (n up to 167). The results were 

checked against those from the original linear mixed model.

RESULTS

PRS creation

A total of 14 PRS were initially generated based on the GenoSkyline-PLUS functionality 

annotation: one genome-wide PRS (labeled “all”) and 13 tissue-specific PRS (blood, 

thymus, and spleen; brain; breast; connective tissue; fat; gastrointestinal; heart; liver; 

lung; muscle; ovary; pancreas; and skin) (Supplementary Figure 1). The proportion of 

the 5,631,405 SNPs considered functional for each tissue ranged from 2.5% (ovary) to 

25.3% (blood, thymus, and spleen) (Supplementary Figure 2). Among the 1,163 unrelated 

participants, the genome-wide and tissue-specific PRS values for the WADRC/WRAP 

cohort were all roughly normally distributed whether the APOE region was included or 

excluded from the PRS (Supplementary Figures 3–4). The PRS were generally correlated 

with each other with a median pairwise correlation of 0.872 (APOE included) and 

0.754 (APOE excluded) (Supplementary Figures 5–6 and Supplementary Table 2). The 

correlations of the PRS with APOE excluded with APOE ε4 allele count were all low, 

ranging from 0.028 to 0.090.

PRS-AD diagnosis associations

The 1,163 unrelated participants were considered for the PRS-AD analyses (Table 1). The 

majority (1,037, 89.2%) of these participants were cognitively unimpaired at their most 
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recent visit, with the AD and MCI diagnosis participants older and less often female. For 

the analysis of the PRS-AD diagnosis associations, only the 1,115 AD and cognitively 

unimpaired participants were used.

The association of each PRS with AD diagnosis (versus cognitively unimpaired) is shown in 

Figure 1 (full regression results and model areas under the curve [AUC] in Supplementary 

Table 3). All PRS were individually and statistically significantly associated with AD 

diagnosis after Bonferroni correction for multiple testing, with all PRS showing an increase 

of polygenic risk associated with a diagnosis of AD relative to cognitively unimpaired and 

AUCs between 0.839 and 0.865. Three tissue PRS (liver, ovary, and brain) had greater 

estimated effects on AD diagnosis than the genome-wide PRS, with an odds ratio of having 

AD relative to being cognitively impaired (OR) (and 95% confidence intervals [CI] and P 

values) of 2.15 per standard deviation (SD) increase in the PRS (95% CI = 1.67–2.78, P = 

3.62 × 10−9), 2.05 (1.58–2.65, P = 5.72 × 10−8), and 1.99 (1.53–2.60, P = 3.84 × 10−7), 

respectively, compared to the genome-wide PRS with OR of 1.99 (1.53–2.60, P = 3.85 × 

10−7).

The genetic risk scores for the liver PRS (with APOE) increased with increasing severity 

across the three cognitive diagnoses from a mean value of −0.02 (SD = 0.96) for cognitively 

unimpaired individuals to 0.59 (SD = 1.10) for participants with AD (Figure 2). The mean 

liver score was different across the three groups (ANOVA P = 3.4 × 10−7) and significantly 

different between the unimpaired and AD participants (t-test P = 8.4 × 10−6). When the 

participants were stratified into 5 liver PRS risk quantiles, the highest risk (5th quantile) and 

lowest risk (1st quantile) showed a corresponding enrichment of AD and MCI participants at 

the highest PRS risk (19.0%) relative to the lowest PRS risk (6.4%) (Supplementary Figure 

7).

When these PRS-AD diagnosis analyses were repeated using just the WADRC cohort (n = 

176) and including the first 5 genetic PCs as additional covariates, the results were similar 

but with weaker associations. All PRS with APOE included were statistically significantly 

associated with AD diagnosis with the liver PRS having the largest estimated OR of 2.19 

(95% CI: 1.49–3.23, P = 6.68 × 10−5). When APOE was excluded, only the liver PRS 

remained statistically significantly associated with an OR of 2.04 (1.29–3.24, P = 0.00227), 

though its P value was just below the Bonferroni-corrected significance threshold.

To rule out the possibility that the PRS associations with AD diagnosis were solely driven 

by the effect of the APOE locus, the PRS-AD diagnosis associations were recalculated using 

the PRS that excluded the APOE region. In this sensitivity analysis, only the liver and 

ovary PRS remained significantly associated with AD diagnosis after Bonferroni correction 

for the number of PRS tested with an OR of 1.58 (95% CI: 1.20–2.06, P = 9.01 × 10−4) 

and an OR of 1.46 (1.13–1.88, P = 3.47 × 10−3), respectively, (Figure 3), although the 

AUCs remained similar across PRS models (range: 0.814–0.826; Supplementary Table 

3). A similar increasing genetic risk score across the diagnosis groups from cognitively 

unimpaired to AD was seen with the liver PRS without the APOE locus. A statistically 

significant difference in the genetic risk scores for the liver PRS between cognitively 

unimpaired (mean score = −0.001, SD = 0.97) and AD (mean score = 0.35, SD = 0.99) 
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groups was observed with a t-test P = 0.0034, and the proportion of AD and MCI 

participants among the highest risk quantile was 14.7% compared to 6.9% in the lowest 

risk quantile.

To explore whether the liver-functional genome was indeed more predictive of AD diagnosis 

than the remaining genome, the performance of the liver PRS was compared to the PRS 

constructed using every part of the genome except for the liver-functional genome (i.e., the 

“liver inverse” PRS), both with and without the APOE region included. Regardless of the 

inclusion of the APOE region, the liver-functional genome PRS had a greater estimated 

effect on AD diagnosis (vs. cognitively unimpaired) than the liver inverse PRS, although all 

PRS were nominally associated. With APOE included, the liver PRS’ OR was 2.15 (95% CI 

= 1.67–2.78, P = 3.62 × 10−9) compared to the liver inverse PRS with an OR of 1.86 (95% 

CI = 1.43–2.43, P = 4.30 × 10−6). Without APOE, the liver PRS OR was 1.58 (95% CI = 

1.20–2.06, P = 0.0009) compared to the liver inverse PRS with an OR of 1.36 (95% CI = 

1.05–1.75, P = 0.018) (Supplementary Figure 8).

Finally, we compared the liver PRS to the non-tissue-specific PRS (“all” PRS) to see if 

the annotation-stratified liver PRS was statistically significantly different in terms of its 

association with AD diagnosis than a typical AD PRS (both scores including APOE). The 

mean OR difference (liver PRS OR minus all PRS OR) across the bootstrap resampling 

procedure was 0.17 (95% CI = −0.17–0.51, P = 0.37).

PRS-CSF biomarker associations

The longitudinal data set for the CSF biomarkers included all available WADRC/WRAP 

visits for participants where CSF biomarker and genetic data were available, which ranged 

from 1 to 5 visits per participant (median average time between visits for those with multiple 

visits = 1.75 years). The total number of participants included per biomarker analysis ranged 

from 164–167, comprising 245–250 total visits (Table 2). The mean age at visit across all 

included visits was 64.1 (SD 7.1) with 64.0% of the visits from female participants.

The results of the linear mixed-effects models that regressed each outcome on the liver PRS 

(controlling for age at visit and sex) are summarized in Figure 4 (full regression results 

in Supplementary Table 4). After Bonferroni correction, the liver PRS was statistically 

significantly associated with three outcomes: the Aβ42/Aβ40 ratio, ptau, and the ptau/Aβ42 

ratio. The liver PRS was nominally associated with three other outcomes: NFL, neurogranin, 

and α-synuclein. The remaining three outcomes (YKL-40, sTREM2, and IL-6) were not 

associated with the liver PRS. The increase in marginal pseudo-R2 between the models with 

and without the PRS term ranged from 0.001 (sTREM2) to 0.101 (ptau/Aβ42) and 0.112 

(Aβ42/Aβ40).

When these analyses were repeated with the APOE region removed from the liver PRS, 

the majority of the association signal was lost: no outcome was statistically significantly 

associated with the liver PRS without APOE after Bonferroni correction, although the 

PRS was nominally associated with sTREM2 (Supplementary Figure 9). The difference in 

marginal pseudo-R2 was negligible except for sTREM2, which had an increase of 0.018 

from the model without the PRS term to the model with the PRS term. Furthermore, when 
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these analyses were rerun using only the first visit available per participant, the results 

did not substantively change, indicating that the results were robust to whether a linear 

model or linear mixed model were used: the liver PRS with APOE was still statistically 

significantly associated with just the Aβ42/Aβ40 ratio, ptau, and the ptau/Aβ42 ratio while 

being nominally associated with NFL, neurogranin, and α-synuclein, and the liver PRS 

without APOE was only nominally associated with sTREM2.

DISCUSSION

The main result from the analysis of the association between tissue-specific PRS and AD 

diagnosis was that the liver PRS showed the greatest effect size and area under the curve 

(AUC), although the differences in AUC were subtle and the difference between the liver 

PRS and the typical, non-tissue-specific PRS was not statistically significant. When the 

effect of APOE was mitigated by excluding all SNPs in the APOE region, the liver PRS was 

the only PRS to remain statistically significant following multiple testing correction in its 

association to AD diagnosis and be significantly associated in just the WADRC cohort alone. 

The importance of the APOE region in driving much of the association signal for the PRS 

models, including the liver PRS, was expected, as the APOE locus has long been known to 

be strongly associated with AD risk [48,49], especially among a population predominantly 

of European ancestry [50], as was the case here. However, the liver PRS was associated with 

AD diagnosis beyond the impact of the APOE locus.

Interpreting the meaning of the liver PRS’ relationship with AD was aided by the follow-up 

analysis with the CSF biomarkers. The liver PRS was most strongly associated with the core 

biomarkers of AD, amyloid and tau (CSF Aβ42/Aβ40, ptau, and ptau/Aβ42), suggesting 

that the PRS was more directly capturing these features of AD pathology rather than 

some of the other processes of neuroinflammation and neurodegeneration. However, these 

associations with amyloid and tau were removed when the APOE locus was removed from 

the liver PRS, leaving only a nominal association with sTREM2. Weaker association signals 

among the CSF biomarker data set could be attributed in part to the much smaller sample 

size available with CSF biomarker data compared to that with AD diagnosis data (n = 250 

vs n = 1,115). Still, the reason for the liver PRS without APOE being associated with AD 

diagnosis but not any of the CSF biomarkers was unclear.

Whether the liver PRS’ association with AD risk indicates a role for the liver organ itself 

remains an open question. The liver PRS here may be associated with AD due to some role 

of the liver itself or simply through the genes that happen to be functional in the liver but 

are not uniquely expressed in the liver. Across the 560 SNPs that were part of the liver 

PRS (APOE excluded), many of the major AD loci were represented, including CLU, BIN1, 

PICALM, SPI1, ABCA7, SORL1, and others (Supplementary Table 5), many of which are 

expressed in brain as well where their connection to AD may be most relevant [51]. Previous 

studies that looked to aggregate AD genetic associations to the roles of tissues have at times 

indicated an enrichment of AD-associated genes expressed in the liver [8], though gene-set 

based tissue-enrichment approaches have tended to identify the spleen as an enriched tissue 

[8,52]. Nevertheless, there is mounting evidence pointing to metabolic dysregulation and 

the liver as relevant to AD. Several metabolic traits, including dyslipidemia, metabolic 
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syndrome, obesity, and type 2 diabetes, appear to be risk factors for AD [53,54]. More 

specific to the liver, Neuner et al. suggest that cholesterol regulation may be a point of 

common ground between the liver, APOE, neurons, and AD [6]. Recent evidence has 

also indicated an association between measures of liver function, including blood levels of 

alanine aminotransferase (ALT) and aspartate aminotransferase (AST), and AD diagnosis, 

amyloid, tau, and neurodegeneration [4]. Perhaps most intriguing was a recent study in mice 

showed additional evidence for the liver, highlighting how Aβ produced specifically by the 

liver could lead to neurodegeneration and cognitive decline [55]. Our findings here provide 

potential further evidence of the relevance of the liver and metabolism in relation to AD.

More generally, this study reinforces the benefit of using functional annotation to improve 

genomic prediction as the PRS’ performance was improved, albeit subtly, by incorporating 

predicted functional information. Among the PRS models with APOE excluded, 6 of the 13 

tissue-specific PRS were more strongly associated with AD diagnosis than the genome-wide 

PRS in association. This increased strength of association is likely the result of improved 

filtering of the included SNPs to just those that are more likely to be causal due to their 

predicted functionality. This finding would support a general theme among the functional 

annotation literature that suggests that functional annotation can improve genomic analyses 

of disease. Early work demonstrated that genomic functional annotation could be used to 

filter down a set of SNPs to those more likely to be causal for both dominant and recessive 

Mendelian traits [56]. Recent approaches have used functional annotation to boost GWAS 

power in identifying SNP associations [57], stratify heritability of complex disease by 

functional annotation [58], and improve genetic risk prediction for disease [20,59]. Our work 

further demonstrates the potential utility of incorporating functional annotation in genetic 

risk prediction, though additional work is needed to quantify whether the improvement in 

this case is reproducible and enough to be clinically relevant.

Limitations of this study included the limited sample size. In the study of PRS-AD diagnosis 

associations, the sample was predominantly cognitively unimpaired with only 78 individuals 

diagnosed with AD, and in the follow-up analysis of CSF biomarker data, only 167 unique 

individuals were available with data. However, even among these smaller sample sizes, 

detectable association signals were still observed. As these cohort studies continue to grow 

so too will our capability to investigate genetic associations with AD pathology. We note 

too that there is potential for selection bias in the underlying cohorts, for example with 

WRAP due to its explicit recruitment of individuals without dementia at baseline. While 

our sensitivity analysis using just the WADRC cohort alone showed results consistent 

with the full analysis with the WRAP cohort included, additional sensitivity analyses and 

external replication would be helpful to further rule out potential biases. Also, here, we 

focused on tissue-specific functional annotation, but information at the cell type level would 

also be informative, so an application of our framework to individual cell types could be 

useful. We also use tissue functionality models that did not incorporate some data sets like 

DNA conservation and single-cell transcriptomics, both of which may be useful in further 

improving these models. It is also worth noting that this method of choosing SNPs for 

a PRS based on predicted functionality could theoretically include SNPs that tag causal 

SNPs further away that are not functional for the tissue for which the tagging SNP is 

functional. Given the fact that individual SNPs tend to have weak effects on AD risk (with 
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the exception of APOE) and that the simple annotation-stratified approach we used here is 

known to effectively quantify heritability enrichment at the genome-wide scale for complex 

traits, including AD [23], we expect that the SNPs used here in the tissue-specific PRS 

models would be strongly enriched for causal variants that overlap with functional genomic 

regions in that tissue. The correlation between the different tissue-specific PRS also merits 

caution, as the differences in the predictiveness of tissue-specific PRS were subtle and 

the OR difference between the liver PRS and the typical, non-tissue-specific PRS was not 

statistically significant with bootstrap resampling. This overlap in PRS across tissue types 

may reflect, in part, SNPs that are functional in multiple tissues, similar to the observed 

sharing of genetic effects across tissues in GTEx [60]. Larger sample sizes and different 

strategies for annotating SNPs with tissue types that would minimize overlap between the 

PRS would be beneficial in further determining differences in predictiveness between tissue-

specific PRS and more common non-tissue-specific PRS approaches. Another limitation was 

the population of study, which was limited to European ancestry due to lack of sample size 

in other populations in the data set at the time the data were pulled. Further studies will be 

needed to better understand the transferability of these tissue-specific PRS findings to other 

populations.

In conclusion, we leveraged genome functional annotation to create tissue-specific PRS for 

AD, identifying the liver PRS as being associated with AD diagnosis. Follow-up analysis 

of the liver PRS with CSF biomarkers of AD, neurodegeneration, and neuroinflammation 

revealed potential intermediate pathways related to the role of the liver-functional genome 

in AD, but the limited sample size of the biomarker data set and the apparent role of APOE 
in driving these biomarker results merit further study. Altogether, these findings provide 

further evidence for the role of the liver-functional genome in AD and highlight the benefit 

of incorporating genomic functional annotation into genetic research of complex disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Association of tissue-specific PRS with AD diagnosis (APOE included)
The strength of association of each PRS (with the APOE locus included) with AD diagnosis 

(relative to cognitively unimpaired participants; MCI cases excluded) from the logistic 

regression models is shown (n = 1,115). The horizontal lines indicate thresholds for 

significance, with the black line indicating the nominal threshold of P = 0.05 and the 

red line indicating the Bonferroni-corrected threshold of P = 0.0036. All PRS scores were 

statistically significantly associated with AD diagnosis, with the liver PRS being the most 

strongly associated score.
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Figure 2. Distribution of liver PRS by diagnosis group (APOE included)
The distribution of the liver PRS with the APOE region included across the three clinical 

stages of AD is shown (n = 1,409). Pairwise t-tests of the diagnosis group means (P values 

shown above each box plot pair) revealed a statistically significant difference between the 

liver PRS scores of the cognitively unimpaired and AD groups. An ANOVA test similarly 

identified a difference in means across all three groups (P = 3.4 × 10−7).
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Figure 3. Association of tissue-specific PRS with AD diagnosis (APOE excluded)
The strength of association of each PRS (with the APOE locus excluded) with AD 

diagnosis (relative to cognitively unimpaired participants; MCI cases excluded) from the 

logistic regression models is shown (n = 1,115). The horizontal lines indicate thresholds for 

significance, with the black line indicating the nominal threshold of P = 0.05 and the red 

line indicating the Bonferroni-corrected threshold of P = 0.0036. Only the liver and ovary 

PRS remained statistically significantly associated with AD diagnosis after multiple testing 

correction.
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Figure 4. Association of the liver PRS with CSF biomarkers (APOE included)
The strength of association of the liver PRS (with the APOE locus included) with each 

CSF biomarker from the linear mixed effects regression models is shown (n range = 245–

250 visits). The horizontal lines indicate thresholds for significance, with the black line 

indicating the nominal threshold of P = 0.05 and the red line indicating the Bonferroni-

corrected threshold of P = 0.0056. The liver PRS was statistically significantly associated 

with the measures of amyloid and tau but not with the other biomarkers.
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Table 1.

AD diagnosis cohort demographics

By diagnosis Cohort

Diagnosis n Age (mean, SD) Female (n, %) WADRC (n, %) WRAP (n, %)

AD 78 76 (9.1) 34 (43.6%) 69 (88.5%) 9 (11.5%)

MCI 48 75.1 (8.2) 20 (41.7%) 28 (58.3%) 20 (41.7%)

Cognitively unimpaired 1037 66.2 (6.6) 716 (69.0%) 107 (10.3%) 930 (89.7%)

By cohort

Cohort n Age (mean, SD) Female (n, %)

WADRC 204 71.5 (8.8) 105 (51.5%)

WRAP 959 66.4 (6.8) 665 (69.3%)
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Table 2.

CSF biomarker data set description

Outcome Individuals Visits Outcome mean Outcome SD

α-synuclein (pg/mL) 167 250 183.87 83.43

Aβ42:Aβ40 ratio 166 247 0.060 0.020

IL-6 (pg/mL) 164 245 4.48 2.62

Neurogranin (pg/mL) 167 250 849.62 354.44

NFL (pg/mL) 167 250 115.78 84.49

ptau (pg/mL) 166 247 21.59 12.55

ptau:Aβ42 ratio 166 247 0.034 0.034

sTREM2 (ng/mL) 167 250 8.74 2.82

YKL-40 (ng/mL) 167 250 160.05 63.76
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